Generic placeholder image

Current Pharmaceutical Biotechnology


ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Targeted Delivery of CRISPR/Cas13 as a Promising Therapeutic Approach to Treat SARS-CoV-2

Author(s): Kazem Abbaszadeh-Goudarzi, Mohammad H. Nematollahi, Hashem Khanbabaei, Hossein H. Nave, Hamid R. Mirzaei, Hossein Pourghadamyari* and Amirhossein Sahebkar *

Volume 22, Issue 9, 2021

Published on: 09 October, 2020

Page: [1149 - 1155] Pages: 7

DOI: 10.2174/1389201021666201009154517

Price: $65


On a worldwide scale, the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to extensive damage to the health system as well as the global economy. Hitherto, there has been no approved drug or vaccine for this disease. Therefore, the use of general antiviral drugs is at the first line of treatment, though complicated with limited effectiveness and systemic side effects. Given the pathophysiology of the disease, researchers have proposed various strategies not only to find a more specific therapeutic way but also to reduce the side effects. One strategy to accomplish these goals is to use CRISPR/Cas13 system. Recently, a group of scientists has used the CRISPR/Cas13 system, which is highly effective in eliminating the genome of RNA viruses. Due to the RNA nature of the coronavirus genome, it seems that this system can be effective against the disease. The main challenge regarding the application of this system is to deliver it to the target cells efficiently. To solve this challenge, it seems that using virosomes with protein S on their membrane surface can be helpful. Studies have shown that protein S interacts with its specific receptor in target cells named Angiotensin-Converting Enzyme 2 (ACE2). Here, we propose if CRISPR/Cas13 gene constructs reach the infected cells efficiently using a virosomal delivery system, the virus genome will be cleaved and inactivated. Considering the pathophysiology of the disease, an important step to implement this hypothesis is to embed protein S on the membrane surface of virosomes to facilitate the delivery of gene constructs to the target cells.

Keywords: COVID-19, CRISPR/Cas13, virosome, SARS-CoV-2, infection, genome, antiviral.

Graphical Abstract
Bassetti, M.; Vena, A.; Giacobbe, D.R. The novel Chinese coronavirus. ‐nCoV) infections: Challenges for fighting the storm. Eur. J. Clin. Invest., 2019, 2020(3), e13209.
[] [PMID: 32003000]
She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Transl. Med., 2020, 9(1), 19.
[] [PMID: 32078069]
Tuite, A.R.; Ng, V.; Rees, E.; Fisman, D. Estimation of COVID-19 outbreak size in Italy. Lancet Infect. Dis., 2020, 20(5), 537.
[] [PMID: 32199494]
Sun, P.; Lu, X.; Xu, C.; Sun, W.; Pan, B. Understanding of COVID-19 based on current evidence. J. Med. Virol., 2020, 92(6), 548-551.
[] [PMID: 32096567]
Li, Y.; Xia, L. Coronavirus Disease 2019 (COVID-19): Role of chest CT in diagnosis and management. AJR Am. J. Roentgenol., 2020, 214(6), 1280-1286.
[] [PMID: 32130038]
Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis., 2020, 94, 44-48.
[] [PMID: 32171952]
Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, 20(4), 400-402.
[] [PMID: 32113509]
Patel, A.B.; Verma, A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: What is the evidence? JAMA, 2020, 323(18), 1769-1770.
[] [PMID: 32208485]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[] [PMID: 32142651]
Gurwitz, D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res., 2020, 81(5), 537-540.
[] [PMID: 32129518]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[] [PMID: 32147628]
Fung, T.S.; Liu, D.X. Human coronavirus: Host-pathogen interaction. Annu. Rev. Microbiol., 2019, 73, 529-557.
[] [PMID: 31226023]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[] [PMID: 16877062]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[] [PMID: 27578435]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[] [PMID: 32125455]
Sun, K.; Gu, L.; Ma, L.; Duan, Y. Atlas of ACE2 gene expression in mammals reveals novel insights in transmission of SARS-Cov-2; BioRxiv, 2020.
Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov., 2020, 6(1), 11.
[] [PMID: 32133153]
Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 2014, 88(2), 1293-1307.
[] [PMID: 24227843]
Li, F. Receptor recognition mechanisms of coronaviruses: A decade of structural studies. J. Virol., 2015, 89(4), 1954-1964.
[] [PMID: 25428871]
Hofmann, H.; Pöhlmann, S. Cellular entry of the SARS coronavirus. Trends Microbiol., 2004, 12(10), 466-472.
[] [PMID: 15381196]
Liczbiński, P.; Michałowicz, J.; Bukowska, B.J.P.R. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother. Res., 2020, 34(8), 1992-2005.
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[] [PMID: 32113704]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
Dai, W-J.; Zhu, L-Y.; Yan, Z-Y.; Xu, Y.; Wang, Q-L.; Lu, X-J. CRISPR-Cas9 for in vivo gene therapy: Promise and hurdles. Mol. Ther. Nucleic Acids, 2016, 5, e349.
[] [PMID: 28131272]
Yi, L.; Li, J. CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim. Biophys. Acta, 2016, 1866(2), 197-207.
[PMID: 27641687]
Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv., 2018, 25(1), 1234-1257.
[] [PMID: 29801422]
Savić, N.; Schwank, G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res., 2016, 168, 15-21.
[] [PMID: 26470680]
Zhang, X-H.; Tee, L.Y.; Wang, X-G.; Huang, Q-S.; Yang, S-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids, 2015, 4, e264.
[] [PMID: 26575098]
Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; Virgin, H.W.; Listgarten, J.; Root, D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol., 2016, 34(2), 184-191.
[] [PMID: 26780180]
Yin, H.; Song, C-Q.; Suresh, S.; Kwan, S-Y.; Wu, Q.; Walsh, S.; Ding, J.; Bogorad, R.L.; Zhu, L.J.; Wolfe, S.A.; Koteliansky, V.; Xue, W.; Langer, R.; Anderson, D.G. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat. Chem. Biol., 2018, 14(3), 311-316.
[] [PMID: 29377001]
Fu, Y.; Sander, J.D.; Reyon, D.; Cascio, V.M.; Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 2014, 32(3), 279-284.
[] [PMID: 24463574]
Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; Lander, E.S.; Voytas, D.F.; Ting, A.Y.; Zhang, F. RNA targeting with CRISPR-Cas13. Nature, 2017, 550(7675), 280-284.
[] [PMID: 28976959]
Konermann, S.; Lotfy, P.; Brideau, N.J.; Oki, J.; Shokhirev, M.N.; Hsu, P.D. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell, 2018, 173(3), 665-676.
Matsoukas, I.G. Commentary: RNA editing with CRISPR-Cas13. Front. Genet., 2018, 9, 134.
[] [PMID: 29722368]
Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science, 2017, 358(6366), 1019-1027.
[] [PMID: 29070703]
Yan, F.; Wang, W.; Zhang, J. CRISPR-Cas12 and Cas13: The lesser known siblings of CRISPR-Cas9. Cell Biol. Toxicol., 2019, 35, 489-492.
Freije, C.A.; Myhrvold, C.; Boehm, C.K.; Lin, A.E.; Welch, N.L.; Carter, A.; Metsky, H.C.; Luo, C.Y.; Abudayyeh, O.O.; Gootenberg, J.S. Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell, 2019, 76(5), 826-837.
Mahas, A.; Aman, R.; Mahfouz, M. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol., 2019, 20(1), 263.
[] [PMID: 31791381]
Corman, V.; Bleicker, T.; Brünink, S.; Drosten, C.; Zambon, M. Diagnostic detection of 2019-nCoV by real-time RT-PCR; World Health Organization, 2020.
Shirato, K.; Nao, N.; Katano, H.; Takayama, I.; Saito, S.; Kato, F.; Katoh, H.; Sakata, M.; Nakatsu, Y.; Mori, Y. Development of genetic diagnostic methods for novel coronavirus 2019 (nCoV-2019) in Japan. Jpn. J. Infect. Dis., 2020, 73(4), 304-307.
Ibraheem, D.; Elaissari, A.; Fessi, H. Gene therapy and DNA delivery systems. Int. J. Pharm., 2014, 459(1-2), 70-83.
[PMID: 24286924]
Ruan, C.; Liu, L.; Wang, Q.; Chen, X.; Chen, Q.; Lu, Y.; Zhang, Y.; He, X.; Zhang, Y.; Guo, Q.; Sun, T.; Jiang, C. Reactive oxygen species-biodegradable gene carrier for the targeting therapy of breast cancer. ACS Appl. Mater. Interfaces, 2018, 10(12), 10398-10408.
[PMID: 29498264]
Chen, Y.H.; Keiser, M.S.; Davidson, B.L. Viral vectors for gene transfer. Curr. Protoc. Mouse Biol., 2018.
Nematollahi, M.H.; Torkzadeh-Mahanai, M.; Pardakhty, A.; Ebrahimi Meimand, H.A.; Asadikaram, G. Ternary complex of plasmid DNA with NLS-Mu-Mu protein and cationic niosome for biocompatible and efficient gene delivery: A comparative study with protamine and lipofectamine. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1781-1791.
[PMID: 29081256]
Barani, M.; Nematollahi, M.H.; Zaboli, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Pardakhty, A.; Karam, G.A. In silico and in vitro study of magnetic niosomes for gene delivery: The effect of ergosterol and cholesterol. Mater. Sci. Eng. C, 2019, 94, 234-246.
[] [PMID: 30423705]
Kim, J-S. Liposomal drug delivery system. J. Pharm. Investig., 2016, 46(4), 387-392.
Kaneda, Y. Virosome: A novel vector to enable multi-modal strategies for cancer therapy. Adv. Drug Deliv. Rev., 2012, 64(8), 730-738.
[] [PMID: 21443915]
Rathor, S.; Soni, P.; Lal, D. Unique drug delivery system. Virosomes. Res. J. Pharm. Dos. Forms Technol., 2019, 11(4), 304-308.
Almeida, J.D.; Edwards, D.C.; Brand, C.M.; Heath, T.D. Formation of virosomes from influenza subunits and liposomes. Lancet, 1975, 2(7941), 899-901.
[] [PMID: 53375]
Daemen, T.; de Mare, A.; Bungener, L.; de Jonge, J.; Huckriede, A.; Wilschut, J. Virosomes for antigen and DNA delivery. Adv. Drug Deliv. Rev., 2005, 57(3), 451-463.
[] [PMID: 15560951]
Amacker, M.; Engler, O.; Kammer, A.R.; Vadrucci, S.; Oberholzer, D.; Cerny, A.; Zurbriggen, R. Peptide-loaded chimeric influenza virosomes for efficient in vivo induction of cytotoxic T cells. Int. Immunol., 2005, 17(6), 695-704.
[] [PMID: 15843436]
Mohammadzadeh, Y.; Gholami, S.; Rasouli, N.; Sarrafzadeh, S.; Seyed Tabib, N.S.; Samiee Aref, M.H.; Abdoli, A.; Biglari, P.; Fotouhi, F.; Farahmand, B.; Tavassoti Kheiri, M.; Jamali, A. Introduction of cationic virosome derived from vesicular stomatitis virus as a novel gene delivery system for sf9 cells. J. Liposome Res., 2017, 27(2), 83-89.
[] [PMID: 26981843]
Dong, W.; Rijken, P.; Ugwoke, M. Method for preparing virosomes., U.S. Patent 0,199,480A1. 2016.
Shaikh, S.N.; Raza, S.; Ansari, M.A.; Khan, G.; Athar, S.H.M. Overview on virosomes as a novel carrier for drug delivery. J. Drug Deliv. Ther., 2018, 8(6-s), 429-434.
Bartelds, R.; Nematollahi, M.H.; Pols, T.; Stuart, M.C.; Pardakhty, A.; Asadikaram, G.; Poolman, B. Niosomes, an alternative for liposomal delivery. PLoS One, 2018, 13(4), e0194179.
Kim, H.S.; Park, Y.S. Effect of lipid compositions on gene transfer into 293 cells using Sendai F/HN-virosomes. J. Biochem. Mol. Biol., 2002, 35(5), 459-464.
[PMID: 12359086]
de Jonge, J.; Leenhouts, J.M.; Holtrop, M.; Schoen, P.; Scherrer, P.; Cullis, P.R.; Wilschut, J.; Huckriede, A. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem. J., 2007, 405(1), 41-49.
[] [PMID: 17355227]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy