Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Microwave-promoted One-pot Synthesis of Imidazo[1,2-a]pyridines in Lemon Juice

Author(s): Hani Yeslam Saeed, Devendra S. Wagare, Mujahed Shaikh* and Ayesha Durrani*

Volume 7, Issue 3, 2020

Page: [238 - 243] Pages: 6

DOI: 10.2174/2213335607999201008144429

Price: $65

Abstract

Objective: A simple and highly efficient microwave-promoted procedure for the synthesis of imidazo[1,2-a]pyridine derivatives from the reaction of aromatic ketones, N-bromosuccinimide, and 2-aminopyridines in lemon juice was designed. The main advantages of this protocol, such as clean reaction profile, mild reaction condition, high yield, and minimum reaction time, were compared to other previously developed methods.

Methods: A mixture of aromatic ketones (1a-m) (0.005 m), N-bromosuccinimide (NBS) (0.005 m), and lemon juice (10 ml) was irradiated by microwave at 400-watt power at 85°C, and the formation of α- bromoketones was monitored by Thin Layer Chromatography (TLC). After completion of α-bromination, 2-aminopyridines (0.005 m) was added to the reaction mixture and it was further irradiated at the same reaction condition. After completion of the reaction, the reaction mass was poured in ice-cold water, the solid product obtained was filtered, washed with cold water, and recrystallized from aqueous ethanol.

Results: In the present investigation, we have developed an environmentally benign, easy, and highly efficient one-pot procedure for the synthesis of 2-phenylimidazo [1, 2-a] pyridines from the reaction of aromatic ketones, N-bromosuccinimide, and 2-aminopyridines in lemon juice as a natural acid catalyst and solvent under microwave irradiation. This new protocol offers very attractive features such as minimum reaction time, clean reaction profile, mild reaction condition, and green aspects such as avoid poisonous catalyst, hazardous solvents, ease of the work-up procedure, and higher yield.

Conclusion: In the present investigation, we have developed an environmentally benign, easy, and highly efficient one-pot procedure for the synthesis of 2-phenylimidazo [1, 2-a] pyridines from the reaction of aromatic ketones, N-bromosuccinimide, and 2-aminopyridines in lemon juice as a natural acid catalyst and solvent under microwave irradiation. This new protocol offers very attractive features such as minimum reaction time, clean reaction profile, mild reaction condition, and green aspects such as no need for a poisonous catalyst and hazardous solvents, ease of work-up procedure, and higher yield.

Keywords: Microwave irradiation, imidazo[1, 2-a]pyridine, one-pot, lemon juice, synthesis, aromatic ketones.

Graphical Abstract
[1]
Wang, Y.; Frett, B.; Li, H.Y. Efficient access to 2,3-diarylimidazo[1,2-a]pyridines via a one-pot, ligand-free, palladium-catalyzed three-component reaction under microwave irradiation. Org. Lett., 2014, 16(11), 3016-3019.
[PMID: 24854606]
[2]
Kuwahara, M.; Kawano, Y.; Shimazu, H.; Yamamoto, H.; Ashida, Y.; Miyake, A. Synthetic studies on condensed-azole derivatives. III. Synthesis and anti-asthmatic activities of C-substituted alkyl side chain derivatives of ω-sulfamoylalkylthioimidazo[1,2-b]pyridazines and related compounds. Chem. Pharm. Bull. (Tokyo), 1995, 43(9), 1516-1522.
[PMID: 7586075]
[3]
Byth, K.F.; Geh, C.; Forder, C.L.; Oakes, S.E.; Thomas, A.P. The cellular phenotype of AZ703, a novel selective imidazo[1,2-a]pyridine cyclin-dependent kinase inhibitor. Mol. Cancer Ther., 2006, 5(3), 655-664.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0205] [PMID: 16546980]
[4]
Lacerda, R.B.; de Lima, C.K.; da Silva, L.L.; Romeiro, N.C.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg. Med. Chem., 2009, 17(1), 74-84.
[http://dx.doi.org/10.1016/j.bmc.2008.11.018] [PMID: 19059783]
[5]
Shukla, N.M.; Salunke, D.B.; Yoo, E.; Mutz, C.A.; Balakrishna, R.; David, S.A. Antibacterial activities of Groebke-Blackburn-Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg. Med. Chem., 2012, 20(19), 5850-5863.
[http://dx.doi.org/10.1016/j.bmc.2012.07.052] [PMID: 22925449]
[6]
Gudmundsson, K.S.; Williams, J.D.; Drach, J.C.; Townsend, L.B. Synthesis and antiviral activity of novel erythrofuranosyl imidazo[1,2-a]pyridine C-nucleosides constructed via palladium coupling of iodoimidazo[1,2-a]pyridines and dihydrofuran. J. Med. Chem., 2003, 46(8), 1449-1455.
[http://dx.doi.org/10.1021/jm020339r] [PMID: 12672244]
[7]
Kaminski, J.J.; Doweyko, A.M. Antiulcer agents. 6. Analysis of the in vitro biochemical and in vivo gastric antisecretory activity of substituted imidazo[1,2-a]pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies. J. Med. Chem., 1997, 40(4), 427-436.
[http://dx.doi.org/10.1021/jm950700s] [PMID: 9046332]
[8]
George, P.G.; Rossey, G.; Sevrin, M.; Arbilla, S.; Depoortere, H.; Wick, A.E.L.E.R.S. Alpidem: Synthesis, physicochemical properties and structure-activity relationships. Monograph Ser., 1993, 8, 49-59.
[9]
Warshakoon, N.C.; Wu, S.; Boyer, A.; Kawamoto, R.; Sheville, J.; Renock, S.; Xu, K.; Pokross, M.; Evdokimov, A.G.; Walter, R.; Mekel, M. A novel series of imidazo[1,2-a]pyridine derivatives as HIF-1α prolyl hydroxylase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(21), 5598-5601.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.089] [PMID: 16962772]
[10]
Du, B.; Shan, A.; Zhang, Y.; Zhong, X.; Chen, D.; Cai, K. Zolpidem arouses patients in vegetative state after brain injury: quantitative evaluation and indications. Am. J. Med. Sci., 2014, 347(3), 178-182.
[PMID: 23462249]
[11]
Pellón, R.; Ruíz, A.; Lamas, E.; Rodríguez, C. Pharmacological analysis of the effects of benzodiazepines on punished schedule-induced polydipsia in rats. Behav. Pharmacol., 2007, 18(1), 81-87.
[PMID: 17218801]
[12]
Belohlavek, D.; Malfertheiner, P. The effect of zolimidine, imidazopyridine-derivate, on the duodenal ulcer healing. Scand. J. Gastroenterol. Suppl., 1979, 54, 44-44.
[PMID: 161649]
[13]
Scribner, A.; Dennis, R.; Lee, S.; Ouvry, G.; Perrey, D.; Fisher, M.; Wyvratt, M.; Leavitt, P.; Liberator, P.; Gurnett, A.; Brown, C.; Mathew, J.; Thompson, D.; Schmatz, D.; Biftu, T. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II. Eur. J. Med. Chem., 2008, 43(6), 1123-1151.
[http://dx.doi.org/10.1016/j.ejmech.2007.09.013] [PMID: 17981367]
[14]
Enguehard-Gueiffier, C.; Gueiffier, A. Recent progress in the pharmacology of imidazo[1,2-a]pyridines. Mini Rev. Med. Chem., 2007, 7(9), 888-899.
[http://dx.doi.org/10.2174/138955707781662645] [PMID: 17897079]
[15]
aBhale, P.S. Synthesis and antimicrobial screening of Mannich bases of imidazo [1, 2-a] pyridine, Golden Research Thoughts. 2013, 2, 1-6.
bBhale, P.S.; Dongare, SB. Synthesis and antimicrobial screening of Schiff’s bases of imidazo [1, 2-a] pyridine. Int. J. Chem. Sci, 2013, 11, 1563.
[16]
Clements-Jewery, S.; Danswan, G.; Gardner, C.R.; Matharu, S.S.; Murdoch, R.; Tully, W.R.; Westwood, R. (Imidazo[1,2-a]pyrimidin-2-yl)phenylmethanones and related compounds as potential nonsedative anxiolytics. J. Med. Chem., 1988, 31(6), 1220-1226.
[http://dx.doi.org/10.1021/jm00401a025] [PMID: 2897468]
[17]
Paengphua, P.; Chancharunee, S. Facile synthesis of imidazo [1, 2-a] pyridines promoted by room-temperature ionic liquids under ultrasound irradiation. Monatshefte für Chemie-Chemical Monthly, 2018, 149(10), 1835-1840.
[http://dx.doi.org/10.1007/s00706-018-2238-3]
[18]
Han, X.; Ma, C.; Wu, Z.; Huang, G. Zinc Iodide Catalyzed Synthesis of 3-Aminoimidazo [1, 2-a] pyridines from 2-Aminopyridines and α-Amino Carbonyl Compounds. Synthesis, 2016, 48(03), 351-356.
[19]
Wagare, D.S.; Shaikh, M.H.; Farooqui, M.; Durrani, A.N. Ultrasound promoted one-pot synthesis of imidazo [1, 2-a] pyridines in water. JMCDD, 2017, 3(2), 617-621.
[20]
Roslan, I.I.; Ng, K.H.; Wu, J.E.; Chuah, G.K.; Jaenicke, S. Synthesis of Disubstituted 3-Phenylimidazo[1,2-a]pyridines via a 2-Aminopyridine/CBrCl3 α-Bromination Shuttle. J. Org. Chem., 2016, 81(19), 9167-9174.
[http://dx.doi.org/10.1021/acs.joc.6b01714] [PMID: 27606896]
[21]
Ismail, M.A.; Brun, R.; Wenzler, T.; Tanious, F.A.; Wilson, W.D.; Boykin, D.W. Novel dicationic imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines as antiprotozoal agents. J. Med. Chem., 2004, 47(14), 3658-3664.
[http://dx.doi.org/10.1021/jm0400092] [PMID: 15214792]
[22]
Wagare, D.S.; Lingampalle, D.; Farooqui, M.; Ayesha, D. An Environmentally Benign One-Pot Synthesis of 3-Aryl-Furo [3, 2-c] Coumarins in PEG-400 and Water. Pharma Chem., 2016, 8(1), 408-411.
[23]
Wagare, D.S.; Shaikh, M.; Farooqui, M.; Durrani, A. PEG-1500 in water: A green, recyclable catalyst for the one-pot synthesis of imidazo [1, 2-a] pyrimidines under microwave irradiation. Chem. Biol. Interact., 2016, 6(6), 405-409.
[24]
Harris, A.R.; Nason, D.M.; Collantes, E.M.; Xu, W.; Chi, Y.; Wang, Z. Synthesis of 5-bromo-6-methyl imidazopyrazine, 5-bromo and 5-chloro-6-methyl imidazopyridine using electron density surface maps to guide synthetic strategy. Tetrahedron, 2011, 67(47), 9063-9066.
[http://dx.doi.org/10.1016/j.tet.2011.08.090]
[25]
Wagare, D.S.; Farooqui, M.; Keche, T.D.; Durrani, A. Efficient and green microwave-assisted one-pot synthesis of azaindolizines in PEG-400 and water. Synth. Commun., 2016, 46(21), 1741-1746.
[http://dx.doi.org/10.1080/00397911.2016.1223314]
[26]
Guan, X.Y.; Al-Misba’a, Z.; Huang, K.W. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave. Arab. J. Chem., 2015, 8(6), 892-896.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.024]
[27]
Vekariya, R.H.; Patel, K.D.; Patel, H.D. Fruit juice of Citrus limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3, 4-disubstituted isoxazol-5 (4H)-ones and dihydropyrano [2, 3-c]-pyrazole derivatives. Res. Chem. Intermed., 2016, 42(10), 7559-7579.
[http://dx.doi.org/10.1007/s11164-016-2553-4]
[28]
Gudmundsson, K.S.; Johns, B.A. Synthesis of novel imidazo[1,2-a]pyridines with potent activity against herpesviruses. Org. Lett., 2003, 5(8), 1369-1372.
[http://dx.doi.org/10.1021/ol0343616] [PMID: 12688761]
[29]
Zhu, D.J.; Chen, J.X.; Liu, M.C.; Ding, J.C.; Wu, H.Y. Catalyst: and solvent-free synthesis of imidazo [1, 2-a] pyridines. J. Braz. Chem. Soc., 2009, 20(3), 482-487.
[http://dx.doi.org/10.1590/S0103-50532009000300012]
[30]
aMase, T.; Arima, H.; Tomioka, K.; Yamada, T.; Murase, K. Imidazo[2,1-b]benzothiazoles. 2. New immunosuppressive agents. J. Med. Chem., 1986, 29(3), 386-394.
bTomoda, H.; Hirano, T.; Saito, S.; Mutai, T.; Araki, K. Substituent effects on fluorescent properties of imidazo [1, 2-a] pyridine-based compounds. Bull. Chem. Soc. Jpn., 1999, 72(6), 1327-1334.
[http://dx.doi.org/10.1021/jm00153a014] [PMID: 3512827] [http://dx.doi.org/10.1246/bcsj.72.1327]
[31]
Kondo, T.; Kotachi, S.; Ogino, S.I.; Watanabe, Y. Ruthenium complex-catalyzed novel and facile synthesis of imidazo [1, 2-a] pyridines from 2-aminopyridines and vicinal-diols. Chem. Lett., 1993, 22(8), 1317-1320.
[http://dx.doi.org/10.1246/cl.1993.1317]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy