Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Activation of Procarcinogens by CYP1A1/1B1 and Related Chemo-Preventive Agents: A Review

Author(s): Yubei Li, Jiahua Cui and Jinping Jia*

Volume 21, Issue 1, 2021

Published on: 06 October, 2020

Page: [21 - 54] Pages: 34

DOI: 10.2174/1568009620666201006143419

Price: $65

Abstract

CYP1A1 and CYP1B1 are extrahepatic P450 family members involved in the metabolism of procarcinogens, such as PAHs, heterocyclic amines and halogen-containing organic compounds. CYP1A1/1B1 also participate in the metabolism of endogenous 17-β-estradiol, producing estradiol hydroquinones, which are the intermediates of carcinogenic semiquinones and quinones. CYP1A1 and CYP1B1 proteins share approximately half amino acid sequence identity but differ in crystal structures. As a result, CYP1A1 and CYP1B1 have different substrate specificity to chemical procarcinogens. This review will introduce the general molecular biology knowledge of CYP1A1/1B1 and the metabolic processes of procarcinogens regulated by these two enzymes. Over the last four decades, a variety of natural products and synthetic compounds which interact with CYP1A1/1B1 have been identified as effective chemo-preventive agents against chemical carcinogenesis. These compounds are mainly classified as indirect or direct CYP1A1/1B1 inhibitors based on their distinct mechanisms. Indirect CYP1A1/1B1 inhibitors generally impede the transcription and translation of CYP1A1/1B1 genes or interfere with the translocation of aryl hydrocarbon receptor (AHR) from the cytosolic domain to the nucleus. On the other hand, direct inhibitors inhibit the catalytic activities of CYP1A1/1B1. Based on the structural features, the indirect inhibitors can be categorized into the following groups: flavonoids, alkaloids and synthetic aromatics, whereas the direct inhibitors can be categorized into flavonoids, coumarins, stilbenes, sulfur containing isothiocyanates and synthetic aromatics. This review will summarize the in vitro and in vivo activities of these chemo-preventive agents, their working mechanisms, and related SARs. This will provide a better understanding of the molecular mechanism of CYP1 mediated carcinogenesis and will also give great implications for the discovery of novel chemo-preventive agents in the near future.

Keywords: CYP1A1, CYP1B1, procarcinogens, AHR, cancer, chemo-preventive agents, natural products, structure-activity relationships.

Graphical Abstract
[1]
Omura, T. Forty years of cytochrome P450. Biochem. Biophys. Res. Commun., 1999, 266(3), 690-698.
[http://dx.doi.org/10.1006/bbrc.1999.1887] [PMID: 10603307]
[2]
Ding, X.; Kaminsky, L.S. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol., 2003, 43(1), 149-173.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140251] [PMID: 12171978]
[3]
Cui, J.; Li, S. Inhibitors and prodrugs targeting CYP1: A novel approach in cancer prevention and therapy. Curr. Med. Chem., 2014, 21(5), 519-552.
[http://dx.doi.org/10.2174/09298673113206660277] [PMID: 24083611]
[4]
Uppstad, H. CYP1A1 and CYP1B1 in human lung PAH-bioactivation capacity, sex differences and steroid receptor mediated regulation. 2016.
[5]
Murray, G.I.; Melvin, W.T.; Greenlee, W.F.; Burke, M.D. Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu. Rev. Pharmacol. Toxicol., 2001, 41(1), 297-316.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.297] [PMID: 11264459]
[6]
Wang, A.; Savas, U.; Stout, C.D.; Johnson, E.F. Structural characterization of the complex between α-naphthoflavone and human cytochrome P450 1B1. J. Biol. Chem., 2011, 286(7), 5736-5743.
[http://dx.doi.org/10.1074/jbc.M110.204420] [PMID: 21147782]
[7]
Walsh, A.A.; Szklarz, G.D.; Scott, E.E. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J. Biol. Chem., 2013, 288(18), 12932-12943.
[http://dx.doi.org/10.1074/jbc.M113.452953] [PMID: 23508959]
[8]
Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem., 2007, 282(19), 14348-14355.
[http://dx.doi.org/10.1074/jbc.M611692200] [PMID: 17311915]
[9]
Sissung, T.M.; Price, D.K.; Sparreboom, A.; Figg, W.D. Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol. Cancer Res., 2006, 4(3), 135-150.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0101] [PMID: 16547151]
[10]
Galijatovic, A.; Beaton, D.; Nguyen, N.; Chen, S.; Bonzo, J.; Johnson, R.; Maeda, S.; Karin, M.; Guengerich, F.P.; Tukey, R.H. The human CYP1A1 gene is regulated in a developmental and tissue-specific fashion in transgenic mice. J. Biol. Chem., 2004, 279(23), 23969-23976.
[http://dx.doi.org/10.1074/jbc.M400973200] [PMID: 15037607]
[11]
Itoh, T.; Takemura, H.; Shimoi, K.; Yamamoto, K. A 3D model of CYP1B1 explains the dominant 4-hydroxylation of estradiol. J. Chem. Inf. Model., 2010, 50(6), 1173-1178.
[http://dx.doi.org/10.1021/ci1000554] [PMID: 20462226]
[12]
Schweikl, H.; Taylor, J.A.; Kitareewan, S.; Linko, P.; Nagorney, D.; Goldstein, J.A. Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics, 1993, 3(5), 239-249.
[http://dx.doi.org/10.1097/00008571-199310000-00003] [PMID: 8287062]
[13]
Luan, Y.; Xing, G.; Ren, J.; Gu, J. Role of hepatic cytochrome P450 enzymes in the detoxication of aristolochic acid I; effects on DNA adduct, mutation, and tumor formation. Genes Environ., 2015, 37(1), 11.
[http://dx.doi.org/10.1186/s41021-015-0010-z] [PMID: 27350808]
[14]
Azab, E.; Kebeish, R.; Hegazy, A.K. Expression of the human gene CYP1A2 enhances tolerance and detoxification of the phenylurea herbicide linuron in Arabidopsis thaliana plants and Escherichia coli. Environ. Pollut., 2018, 238, 281-290.
[http://dx.doi.org/10.1016/j.envpol.2018.03.025] [PMID: 29573710]
[15]
Tsay, J.J.; Tchou-Wong, K-M.; Greenberg, A.K.; Pass, H.; Rom, W.N. Aryl hydrocarbon receptor and lung cancer. Anticancer Res., 2013, 33(4), 1247-1256.
[PMID: 23564762]
[16]
Esser, C.; Rannug, A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev., 2015, 67(2), 259-279.
[http://dx.doi.org/10.1124/pr.114.009001] [PMID: 25657351]
[17]
Larigot, L.; Juricek, L.; Dairou, J.; Coumoul, X. AhR signaling pathways and regulatory functions. Biochim Open, 2018, 7, 1-9.
[http://dx.doi.org/10.1016/j.biopen.2018.05.001] [PMID: 30003042]
[18]
Xu, L.; Liao, Y.; Tang, H.; Zhang, C.; Liu, Z. Advances of targeted therapy based on estrogen receptor signaling pathway in lung cancer. Zhongguo Fei Ai Za Zhi, 2011, 14(9), 727-732.
[PMID: 21924040]
[19]
Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer, 2009, 9, 187.
[http://dx.doi.org/10.1186/1471-2407-9-187] [PMID: 19531241]
[20]
Monostory, K.; Pascussi, J-M.; Kóbori, L.; Dvorak, Z. Hormonal regulation of CYP1A expression. Drug Metab. Rev., 2009, 41(4), 547-572.
[http://dx.doi.org/10.1080/03602530903112284] [PMID: 19627176]
[21]
Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.L. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin., 2015, 36(1), 3-23.
[http://dx.doi.org/10.1038/aps.2014.18] [PMID: 24909511]
[22]
Lin, T-M.; Ko, K.; Moore, R.W.; Simanainen, U.; Oberley, T.D.; Peterson, R.E. Effects of aryl hydrocarbon receptor null mutation and in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on prostate and seminal vesicle development in C57BL/6 mice. Toxicol. Sci., 2002, 68(2), 479-487.
[http://dx.doi.org/10.1093/toxsci/68.2.479] [PMID: 12151645]
[23]
BARNES-ELLERBE, S.J Mechanisms of aromatic hydrocarbon receptor-mediated disruption of androgen receptor function. 2004,
[24]
Ohtake, F.; Baba, A.; Fujii-Kuriyama, Y.; Kato, S. Intrinsic AhR function underlies cross-talk of dioxins with sex hormone signalings. Biochem. Biophys. Res. Commun., 2008, 370(4), 541-546.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.054] [PMID: 18358233]
[25]
Sanada, N.; Gotoh, Y.; Shimazawa, R.; Klinge, C.M.; Kizu, R. Repression of activated aryl hydrocarbon receptor-induced transcriptional activation by 5α-dihydrotestosterone in human prostate cancer LNCaP and human breast cancer T47D cells. J. Pharmacol. Sci., 2009, 109(3), 380-387.
[http://dx.doi.org/10.1254/jphs.08328FP] [PMID: 19270430]
[26]
Tang, Y.M.; Chen, G-F.; Thompson, P.A.; Lin, D-X.; Lang, N.P.; Kadlubar, F.F. Development of an antipeptide antibody that binds to the C-terminal region of human CYP1B1. Drug Metab. Dispos., 1999, 27(2), 274-280.
[PMID: 9929516]
[27]
Roberts, D.W.; Doerge, D.R.; Churchwell, M.I.; Gamboa da Costa, G.; Marques, M.M.; Tolleson, W.H. Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover). J. Agric. Food Chem., 2004, 52(21), 6623-6632.
[http://dx.doi.org/10.1021/jf049418x] [PMID: 15479032]
[28]
Hukkanen, J.; Pelkonen, O.; Hakkola, J.; Raunio, H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol., 2002, 32(5), 391-411.
[http://dx.doi.org/10.1080/20024091064273] [PMID: 12389869]
[29]
Dutour, R.; Poirier, D. Inhibitors of cytochrome P450 (CYP) 1B1. Eur. J. Med. Chem., 2017, 135, 296-306.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.042] [PMID: 28458135]
[30]
Sankhwar, M.; Sankhwar, S.N.; Abhishek, A.; Gupta, N.; Rajender, S. CYP1B1 gene polymorphisms correlate with an increased risk of urinary bladder cancer in India Urol. Oncol., 2016, 34(4), 161-168.
[http://dx.doi.org/10.1016/j.urolonc.2015.11.010]
[31]
Shimada, T.; Hayes, C.L.; Yamazaki, H.; Amin, S.; Hecht, S.S.; Guengerich, F.P.; Sutter, T.R. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res., 1996, 56(13), 2979-2984.
[PMID: 8674051]
[32]
Huel, G.; Campagna, D.; Girard, F.; Moreau, T.; Blot, P. Does selenium reduce the risk of threatened preterm delivery associated with placental cytochrome P450-1A1 activity? Environ. Res., 2000, 84(3), 228-233.
[http://dx.doi.org/10.1006/enrs.2000.4094] [PMID: 11097796]
[33]
Murray, G.I.; Taylor, M.C.; McFadyen, M.C.; McKay, J.A.; Greenlee, W.F.; Burke, M.D.; Melvin, W.T. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res., 1997, 57(14), 3026-3031.
[PMID: 9230218]
[34]
Luby, T.M.; Cole, G.; Baker, L.; Kornher, J.S.; Ramstedt, U.; Hedley, M.L. Repeated immunization with plasmid DNA formulated in poly(lactide-co-glycolide) microparticles is well tolerated and stimulates durable T cell responses to the tumor-associated antigen cytochrome P450 1B1. Clin. Immunol., 2004, 112(1), 45-53.
[http://dx.doi.org/10.1016/j.clim.2004.04.002] [PMID: 15207781]
[35]
Rochat, B.; Morsman, J.M.; Murray, G.I.; Figg, W.D.; McLeod, H.L. Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J. Pharmacol. Exp. Ther., 2001, 296(2), 537-541.
[PMID: 11160641]
[36]
Ryan, K.J. Biochemistry of aromatase: significance to female reproductive physiology. Cancer Res., 1982, 42(8)(Suppl.), 3342s-3344s.
[PMID: 7083198]
[37]
Yasuda, M.T.; Sakakibara, H.; Shimoi, K. Estrogen- and stress-induced DNA damage in breast cancer and chemoprevention with dietary flavonoid. Genes Environ., 2017, 39(1), 10.
[http://dx.doi.org/10.1186/s41021-016-0071-7] [PMID: 28163803]
[38]
Fernandez, S.V.; Russo, I.H.; Russo, J. Estradiol and its metabolites 4-hydroxyestradiol and 2-hydroxyestradiol induce mutations in human breast epithelial cells. Int. J. Cancer, 2006, 118(8), 1862-1868.
[http://dx.doi.org/10.1002/ijc.21590] [PMID: 16287077]
[39]
Chun, Y.J.; Kim, S. Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Med. Res. Rev., 2003, 23(6), 657-668.
[http://dx.doi.org/10.1002/med.10050] [PMID: 12939788]
[40]
Go, R.E.; Hwang, K.A.; Choi, K.C. Cytochrome P450 1 family and cancers. J. Steroid Biochem. Mol. Biol., 2015, 147, 24-30.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.003] [PMID: 25448748]
[41]
Gajjar, K.; Martin-Hirsch, P.L.; Martin, F.L. CYP1B1 and hormone-induced cancer. Cancer Lett., 2012, 324(1), 13-30.
[http://dx.doi.org/10.1016/j.canlet.2012.04.021] [PMID: 22561558]
[42]
Lee, S.R.; Lee, S.Y.; Kim, S.Y.; Ryu, S.Y.; Park, B.K.; Hong, E-J. Hydroxylation and sulfation of sex steroid hormones in inflammatory liver. J. Biomed. Res., 2017, 31(5), 437-444.
[PMID: 28866654]
[43]
Chun, Y.J.; Kim, D. Cancer activation and polymorphisms of human cytochrome P450 1B1. Toxicol. Res., 2016, 32(2), 89-93.
[http://dx.doi.org/10.5487/TR.2016.32.2.089] [PMID: 27123158]
[44]
Liu, F.; Luo, L.M.; Wei, Y.G.; Li, B.; Wang, W.T.; Wen, T.F.; Yang, J.Y.; Xu, M.Q.; Yan, L.N. Polymorphisms of the CYP1B1 gene and hepatocellular carcinoma risk in a Chinese population. Gene, 2015, 564(1), 14-20.
[http://dx.doi.org/10.1016/j.gene.2015.03.035] [PMID: 25796598]
[45]
Li, C.; Long, B.; Qin, X.; Li, W.; Zhou, Y. Cytochrome P1B1 (CYP1B1) polymorphisms and cancer risk: A meta-analysis of 52 studies. Toxicology, 2015, 327, 77-86.
[http://dx.doi.org/10.1016/j.tox.2014.11.007] [PMID: 25434509]
[46]
He, X.; Feng, S. Role of metabolic enzymes P450 (CYP) on activating procarcinogen and their polymorphisms on the risk of cancers. Curr. Drug Metab., 2015, 16(10), 850-863.
[http://dx.doi.org/10.2174/138920021610151210164501] [PMID: 26652254]
[47]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[48]
Poirier, M.C. Chemical-induced DNA damage and human cancer risk. Nat. Rev. Cancer, 2004, 4(8), 630-637.
[http://dx.doi.org/10.1038/nrc1410] [PMID: 15286742]
[49]
Amara, I.E.A.; Elshenawy, O.H.; Abdelrady, M.; El-Kadi, A.O.S. Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolites in C57Bl/6 mouse heart. Toxicol. Lett., 2014, 226(1), 53-62.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.025] [PMID: 24472606]
[50]
Xia, J.; Lin, J.; Li, X.N.; Zhang, C.; Li, N.; Du, Z.H.; Li, Y.H.; Li, J.L. Atrazine-induced environmental nephrosis was mitigated by lycopene via modulating nuclear xenobiotic receptors-mediated response. J. Nutr. Biochem., 2018, 51, 80-90.
[http://dx.doi.org/10.1016/j.jnutbio.2017.09.006] [PMID: 29107825]
[51]
Wang, S.; Zhang, Q.; Zheng, S.; Chen, M.; Zhao, F.; Xu, S. Atrazine exposure triggers common carp neutrophil apoptosis via the CYP450s/ROS pathway. Fish Shellfish Immunol., 2019, 84, 551-557.
[http://dx.doi.org/10.1016/j.fsi.2018.10.029] [PMID: 30308298]
[52]
Dong, M.; Xu, X.; Huang, Q.; Lei, H.; Xu, G.; Ma, J.; Hatzakis, E.; Wang, X.; Zhang, L. Dose-dependent effects of triclocarban exposure on lipid homeostasis in rats. Chem. Res. Toxicol., 2019, 32(11), 2320-2328.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00316] [PMID: 31576746]
[53]
Leijs, M.M.; Esser, A.; Amann, P.M.; Schettgen, T.; Heise, R.; Fietkau, K.; Gube, M.; Merk, H.F.; Kraus, T.; Baron, J.M. Expression of CYP1A1, CYP1B1 and IL-1β in PBMCs and skin samples of PCB exposed individuals. Sci. Total Environ., 2018, 642, 1429-1438.
[http://dx.doi.org/10.1016/j.scitotenv.2018.06.136] [PMID: 30045523]
[54]
Elshenawy, O.H.; El-Kadi, A.O.S. Modulation of aryl hydrocarbon receptor-regulated enzymes by trimethylarsine oxide in C57BL/6 mice: In vivo and in vitro studies. Toxicol. Lett., 2015, 238(1), 17-31.
[http://dx.doi.org/10.1016/j.toxlet.2015.06.1646] [PMID: 26144063]
[55]
Park, S.Y.; Byun, E.J.; Lee, J.D.; Kim, S.; Kim, H.S. Air pollution, autophagy, and skin aging: Impact of particulate matter (PM10) on human dermal fibroblasts. Int. J. Mol. Sci., 2018, 19(9), 15.
[http://dx.doi.org/10.3390/ijms19092727] [PMID: 30213068]
[56]
Abbas, I.; Saint-Georges, F.; Billet, S.; Verdin, A.; Mulliez, P.; Shirali, P.; Garçon, G. Air pollution particulate matter (PM2.5)-induced gene expression of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in an in vitro coculture lung model. Toxicol. In Vitro, 2009, 23(1), 37-46.
[http://dx.doi.org/10.1016/j.tiv.2008.09.020] [PMID: 18952161]
[57]
Borgie, M.; Ledoux, F.; Verdin, A.; Cazier, F.; Greige, H.; Shirali, P.; Courcot, D.; Dagher, Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. Environ. Res., 2015, 136, 352-362.
[http://dx.doi.org/10.1016/j.envres.2014.10.010] [PMID: 25460656]
[58]
Thompson, E.D.; Burwinkel, K.E.; Chava, A.K.; Notch, E.G.; Mayer, G.D. Activity of Phase I and Phase II enzymes of the benzo[a]pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2010, 152(3), 371-378.
[http://dx.doi.org/10.1016/j.cbpc.2010.06.004] [PMID: 20547244]
[59]
Zapletal, O.; Procházková, J.; Dubec, V.; Hofmanová, J.; Kozubík, A.; Vondráček, J. Butyrate interacts with benzo[a]pyrene to alter expression and activities of xenobiotic metabolizing enzymes involved in metabolism of carcinogens within colon epithelial cell models. Toxicology, 2019, 412, 1-11.
[http://dx.doi.org/10.1016/j.tox.2018.11.001] [PMID: 30439556]
[60]
Rodgman, A.; Perfetti, T. The composition of cigarette smoke: A catalogue of the polycyclic aromatic hydrocarbons. Beiträge zur Tabakforschung International/ Contributions to Tobacco Research, 2006, 22, 13-69.
[http://dx.doi.org/10.2478/cttr-2013-0817]
[61]
Gómez-Jeria, J-S.; Castro-Latorre, P. Electronic structure and carcinogenic activity of substituted Benz[a]anthracene derivatives. Pharma Chem., 2016, 8, 84-92.
[62]
Gupte, A.; Tripathi, A.; Patel, H.; Rudakiya, D.; Gupte, S. Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. Open Biotechnol. J., 2016, 10(1)
[http://dx.doi.org/10.2174/1874070701610010363]
[63]
Jerina, D.M. Lehr, R.E.Microsomes and drug oxidations; Elsevier, 1977, pp. 709-720.
[http://dx.doi.org/10.1016/B978-0-08-021523-5.50098-5]
[64]
Onyemauwa, F.; Rappaport, S.M.; Sobus, J.R.; Gajdosová, D.; Wu, R.; Waidyanatha, S. Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(11-12), 1117-1125.
[http://dx.doi.org/10.1016/j.jchromb.2009.02.067] [PMID: 19299209]
[65]
Baird, W.M.; Hooven, L.A.; Mahadevan, B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen., 2005, 45(2-3), 106-114.
[http://dx.doi.org/10.1002/em.20095] [PMID: 15688365]
[66]
Zhang, L.; Jin, Y.; Chen, M.; Huang, M.; Harvey, R.G.; Blair, I.A.; Penning, T.M. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols. J. Biol. Chem., 2011, 286(29), 25644-25654.
[http://dx.doi.org/10.1074/jbc.M111.240739] [PMID: 21622560]
[67]
Lehr, R.E.; Kumar, S.; Levin, W.; Wood, A.W.; Chang, R.L.; Conney, A.H.; Yagi, H.; Sayer, J.M.; Jerina, D.M.; Publications, ACS ACS Publications 1985.
[68]
Stiborová, M. A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches. 2015.
[69]
Gökmen, M.R.; Cosyns, J-P.; Arlt, V.M.; Stiborová, M.; Phillips, D.H.; Schmeiser, H.H.; Simmonds, M.S.; Cook, H.T.; Vanherweghem, J-L.; Nortier, J.L.; Lord, G.M. The epidemiology, diagnosis, and management of aristolochic acid nephropathy: a narrative review. Ann. Intern. Med., 2013, 158(6), 469-477.
[http://dx.doi.org/10.7326/0003-4819-158-6-201303190-00006] [PMID: 23552405]
[70]
Arlt, V.M.; Henderson, C.J.; Wolf, C.R.; Stiborová, M.; Phillips, D.H. The Hepatic Reductase Null. (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol. Res. (Camb.), 2015, 4(3), 548-562.
[http://dx.doi.org/10.1039/C4TX00116H]
[71]
Shimada, T.; Fujii-Kuriyama, Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci., 2004, 95(1), 1-6.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03162.x] [PMID: 14720319]
[72]
Zhang, L.; Huang, M.; Blair, I.A.; Penning, T.M. Interception of benzo[a]pyrene-7,8-dione by UDP glucuronosyltransferases (UGTs) in human lung cells. Chem. Res. Toxicol., 2013, 26(10), 1570-1578.
[http://dx.doi.org/10.1021/tx400268q] [PMID: 24047243]
[73]
Stiborová, M.; Indra, R.; Moserová, M.; Bořek-Dohalská, L.; Hodek, P.; Frei, E.; Kopka, K.; Schmeiser, H.H.; Arlt, V.M. Comparison of human cytochrome P450 1A1-catalysed oxidation of benzo[a]pyrene in prokaryotic and eukaryotic expression systems. Monatsh. Chem., 2017, 148(11), 1959-1969.
[http://dx.doi.org/10.1007/s00706-017-2002-0] [PMID: 29104317]
[74]
Patri, M.; Padmini, A.; Babu, P.P. Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: a brief perspective. Ann. Neurosci., 2010, 16(1), 22-30.
[http://dx.doi.org/10.5214/ans.0972.7531.2009.160109]
[75]
Reed, L.; Mrizova, I.; Barta, F.; Indra, R.; Moserova, M.; Kopka, K.; Schmeiser, H.H.; Wolf, C.R.; Henderson, C.J.; Stiborova, M.; Phillips, D.H.; Arlt, V.M. Cytochrome b 5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b 5 /P450 reductase null (HBRN) mice. Arch. Toxicol., 2018, 92(4), 1625-1638.
[http://dx.doi.org/10.1007/s00204-018-2162-7] [PMID: 29368147]
[76]
Luch, A.; Kishiyama, S.; Seidel, A.; Doehmer, J.; Greim, H.; Baird, W.M. The K-region trans-8,9-diol does not significantly contribute as an intermediate in the metabolic activation of dibenzo[a,l]pyrene to DNA-binding metabolites by human cytochrome P450 1A1 or 1B1. Cancer Res., 1999, 59(18), 4603-4609.
[PMID: 10493514]
[77]
Mahadevan, B.; Luch, A.; Atkin, J.; Haynes, M.; Nguyen, T.; Baird, W.M. Inhibition of human cytochrome p450 1b1 further clarifies its role in the activation of dibenzo[a,l]pyrene in cells in culture. J. Biochem. Mol. Toxicol., 2007, 21(3), 101-109.
[http://dx.doi.org/10.1002/jbt.20168] [PMID: 17623886]
[78]
Baird, W.M.; Hooven, L.A.; Mahadevan, B.J.E. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action 2005, 45(2-3), 106-114.
[79]
Zhong, Y.; Wang, J.; Carmella, S.G.; Hochalter, J.B.; Rauch, D.; Oliver, A.; Jensen, J.; Hatsukami, D.K.; Upadhyaya, P.; Zimmerman, C.J.J.o.P.; Therapeutics, E. Metabolism of [D10] phenanthrene to tetraols in smokers for potential lung cancer susceptibility assessment: comparison of oral and inhalation routes of administration 2011, 338(1), 353-361.
[80]
Hecht, S.S.; Chen, M.; Yoder, A.; Jensen, J.; Hatsukami, D.; Le, C.; Carmella, S.G. Longitudinal study of urinary phenanthrene metabolite ratios: effect of smoking on the diol epoxide pathway. Cancer Epidemiol. Biomarkers Prev., 2005, 14(12), 2969-2974.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0396] [PMID: 16365018]
[81]
Miyata, M.; Kudo, G.; Lee, Y-H.; Yang, T.J.; Gelboin, H.V.; Fernandez-Salguero, P.; Kimura, S.; Gonzalez, F.J. Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene. J. Biol. Chem., 1999, 274(34), 23963-23968.
[http://dx.doi.org/10.1074/jbc.274.34.23963] [PMID: 10446164]
[82]
Sobinoff, A.P.; McLaughlin, E.A.; Bernstein, I.R. All your eggs in one basket: mechanisms of xenobiotic induced female reproductive senescence; INTECH Open Access Publisher, 2012.
[83]
Song, M.K.; Kim, Y.J.; Song, M.; Choi, H.S.; Park, Y.K.; Ryu, J.C. Formation of a 3,4-diol-1,2-epoxide metabolite of benz[a]anthracene with cytotoxicity and genotoxicity in a human in vitro hepatocyte culture system. Environ. Toxicol. Pharmacol., 2012, 33(2), 212-225.
[http://dx.doi.org/10.1016/j.etap.2011.12.020] [PMID: 22236718]
[84]
Park, J-H.; Gopishetty, S.; Szewczuk, L.M.; Troxel, A.B.; Harvey, R.G.; Penning, T.M. Formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo) by PAH o-quinones: involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Chem. Res. Toxicol., 2005, 18(6), 1026-1037.
[http://dx.doi.org/10.1021/tx050001a] [PMID: 15962938]
[85]
Høie, A.H.; Svendsen, C.; Brunborg, G.; Glatt, H.; Alexander, J.; Meinl, W.; Husøy, T. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay. Environ. Mol. Mutagen., 2015, 56(8), 709-714.
[http://dx.doi.org/10.1002/em.21963] [PMID: 26270892]
[86]
Arlt, V.M.; Henderson, C.J.; Wolf, C.R.; Stiborová, M.; Phillips, D.H. The Hepatic Reductase Null. (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol. Res. (Camb.), 2014, 4(3), 548-562.
[http://dx.doi.org/10.1039/C4TX00116H]
[87]
Cheung, C.; Ma, X.; Krausz, K.W.; Kimura, S.; Feigenbaum, L.; Dalton, T.P.; Nebert, D.W.; Idle, J.R.; Gonzalez, F.J. Differential metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in mice humanized for CYP1A1 and CYP1A2. Chem. Res. Toxicol., 2005, 18(9), 1471-1478.
[http://dx.doi.org/10.1021/tx050136g] [PMID: 16167840]
[88]
Cheung, C.; Ma, X.; Krausz, K.W.; Kimura, S.; Feigenbaum, L.; Dalton, T.P.; Nebert, D.W.; Idle, J.R.; Gonzalez, F.J.J.C.r.i.t. Differential metabolism of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) in mice humanized for CYP1A1 and CYP1A2 2005, 18(9), 1471-1478.
[89]
Arlt, V.M.; Henderson, C.J.; Wolf, C.R.; Stiborová, M.; Phillips, D.H.J.T.R. The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants 2014, 4(3), 548-562.
[90]
Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens IARC. Monogr. Eval. Carcinog. Risks. Hum., 2012, 100(Pt E), 1-538.
[91]
Hecht, S.S. Lung carcinogenesis by tobacco smoke. Int. J. Cancer, 2012, 131(12), 2724-2732.
[http://dx.doi.org/10.1002/ijc.27816] [PMID: 22945513]
[92]
Stiborová, M.; Bárta, F.; Levová, K.; Hodek, P.; Schmeiser, H.H.; Arlt, V.M.; Martínek, V. A mechanism of O-demethylation of aristolochic acid I by cytochromes P450 and their contributions to this reaction in human and rat livers: experimental and theoretical approaches. Int. J. Mol. Sci., 2015, 16(11), 27561-27575.
[http://dx.doi.org/10.3390/ijms161126047] [PMID: 26593908]
[93]
Jiang, P.; Wang, J.; Sheng, N.; Wei, D.; Dai, J. Effects of pentachlorophenol on the quail (Coturnix japonica) liver detoxification pathway. Chemosphere, 2017, 177, 44-50.
[http://dx.doi.org/10.1016/j.chemosphere.2017.02.154] [PMID: 28284116]
[94]
Sai-Kato, K.; Umemura, T.; Takagi, A.; Hasegawa, R.; Tanimura, A.; Kurokawa, Y. Pentachlorophenol-induced oxidative DNA damage in mouse liver and protective effect of antioxidants. Food Chem. Toxicol., 1995, 33(10), 877-882.
[http://dx.doi.org/10.1016/0278-6915(95)00056-8] [PMID: 7590532]
[95]
Mehmood, Z.; Williamson, M.P.; Kelly, D.E.; Kelly, S.L. Metabolism of organochlorine pesticides: the role of human cytochrome P450 3A4. Chemosphere, 1996, 33(4), 759-769.
[http://dx.doi.org/10.1016/0045-6535(96)00212-3] [PMID: 8759309]
[96]
Yamazaki, H.; Hatanaka, N.; Kizu, R.; Hayakawa, K.; Shimada, N.; Guengerich, F.P.; Nakajima, M.; Yokoi, T. Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2, and 1B1. Mutat. Res., 2000, 472(1-2), 129-138.
[http://dx.doi.org/10.1016/S1383-5718(00)00138-8] [PMID: 11113705]
[97]
Shimada, T.; Watanabe, J.; Kawajiri, K.; Sutter, T.R.; Guengerich, F.P.; Gillam, E.M.; Inoue, K. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis, 1999, 20(8), 1607-1613.
[http://dx.doi.org/10.1093/carcin/20.8.1607] [PMID: 10426814]
[98]
Shimada, T.; Oda, Y.; Gillam, E.M.; Guengerich, F.P.; Inoue, K. Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab. Dispos., 2001, 29(9), 1176-1182.
[PMID: 11502724]
[99]
Riddell, N.; Jin, U.H.; Safe, S.; Cheng, Y.; Chittim, B.; Konstantinov, A.; Parette, R.; Pena-Abaurrea, M.; Reiner, E.J.; Poirier, D.; Stefanac, T.; McAlees, A.J.; McCrindle, R. Characterization and biological potency of mono- to tetra-halogenated carbazoles. Environ. Sci. Technol., 2015, 49(17), 10658-10666.
[http://dx.doi.org/10.1021/acs.est.5b02751] [PMID: 26226543]
[100]
Sulfikkarali, N.; Krishnakumar, N.; Manoharan, S.; Nirmal, R.M. Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol. Oncol. Res., 2013, 19(2), 287-296.
[http://dx.doi.org/10.1007/s12253-012-9581-1] [PMID: 23233294]
[101]
Silvan, S.; Manoharan, S.; Baskaran, N.; Anusuya, C.; Karthikeyan, S.; Prabhakar, M.M. Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur. J. Pharmacol., 2011, 670(2-3), 571-577.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.179] [PMID: 21970806]
[102]
Takemura, H.; Nagayoshi, H.; Matsuda, T.; Sakakibara, H.; Morita, M.; Matsui, A.; Ohura, T.; Shimoi, K. Inhibitory effects of chrysoeriol on DNA adduct formation with benzo[a]pyrene in MCF-7 breast cancer cells. Toxicology, 2010, 274(1-3), 42-48.
[http://dx.doi.org/10.1016/j.tox.2010.05.009] [PMID: 20553787]
[103]
Chang, T.K.; Chen, J.; Yang, G.; Yeung, E.Y. Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J. Pineal Res., 2010, 48(1), 55-64.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00724.x] [PMID: 19919601]
[104]
Kleiner, H.E.; Vulimiri, S.V.; Reed, M.J.; Uberecken, A.; DiGiovanni, J. Role of cytochrome P450 1a1 and 1b1 in the metabolic activation of 7,12-dimethylbenz[a]anthracene and the effects of naturally occurring furanocoumarins on skin tumor initiation. Chem. Res. Toxicol., 2002, 15(2), 226-235.
[http://dx.doi.org/10.1021/tx010151v] [PMID: 11849049]
[105]
Bose, P.; Siddique, M.U.M.; Acharya, R.; Jayaprakash, V.; Sinha, B.N.; Lapenna, A.; Pattanayak, S.P. Quinazolinone derivative BNUA-3 ameliorated [NDEA+ 2-AAF]-induced liver carcinogenesis in SD rats by modulating AhR-CYP1B1-Nrf2-Keap1 pathway. Clin. Exp. Pharmacol. Physiol., 2019, 47(1), 143-157.
[PMID: 31563143]
[106]
Lesca, P.; Mansuy, D. 9-Hydroxyellipticine: inhibitory effect on skin carcinogenesis induced in Swiss mice by 7,12-dimethylbenz[a]anthracene. Chem. Biol. Interact., 1980, 30(2), 181-187.
[http://dx.doi.org/10.1016/0009-2797(80)90124-6] [PMID: 6771025]
[107]
Kassie, F.; Anderson, L.B.; Scherber, R.; Yu, N.; Lahti, D.; Upadhyaya, P.; Hecht, S.S. Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res., 2007, 67(13), 6502-6511.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4438] [PMID: 17616712]
[108]
Horley, N.J.; Beresford, K.J.M.; Kaduskar, S.; Joshi, P.; McCann, G.J.P.; Ruparelia, K.C.; Williams, I.S.; Gatchie, L.; Sonawane, V.R.; Bharate, S.B.; Chaudhuri, B. (E)-3-(3,4,5-Trimethoxyphenyl)-1-(pyridin-4-yl)prop-2-en-1-one, a heterocyclic chalcone is a potent and selective CYP1A1 inhibitor and cancer chemopreventive agent. Bioorg. Med. Chem. Lett., 2017, 27(24), 5409-5414.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.009] [PMID: 29138024]
[109]
MacDonald, C.J.; Ciolino, H.P.; Yeh, G.C. Dibenzoylmethane modulates aryl hydrocarbon receptor function and expression of cytochromes P50 1A1, 1A2, and 1B1. Cancer Res., 2001, 61(10), 3919-3924.
[PMID: 11358806]
[110]
Yue, C.; Ji, C.; Zhang, H.; Zhang, L.W.; Tong, J.; Jiang, Y.; Chen, T. Protective effects of folic acid on PM2.5-induced cardiac developmental toxicity in zebrafish embryos by targeting AhR and Wnt/β-catenin signal pathways. Environ. Toxicol., 2017, 32(10), 2316-2322.
[http://dx.doi.org/10.1002/tox.22448] [PMID: 28722335]
[111]
Girolami, F.; Abbadessa, G.; Racca, S.; Spaccamiglio, A.; Piccione, F.; Dacasto, M.; Carletti, M.; Gardini, G.; Di Carlo, F.; Nebbia, C. Time-dependent acetylsalicylic acid effects on liver CYP1A and antioxidant enzymes in a rat model of 7,12-dimethylbenzanthracene (DMBA)-induced mammary carcinogenesis. Toxicol. Lett., 2008, 181(2), 87-92.
[http://dx.doi.org/10.1016/j.toxlet.2008.07.007] [PMID: 18678235]
[112]
Han, E.H.; Hwang, Y.P.; Jeong, T.C.; Lee, S.S.; Shin, J.G.; Jeong, H.G. Eugenol inhibit 7,12-dimethylbenz[a]anthracene-induced genotoxicity in MCF-7 cells: Bifunctional effects on CYP1 and NAD(P)H:quinone oxidoreductase. FEBS Lett., 2007, 581(4), 749-756.
[http://dx.doi.org/10.1016/j.febslet.2007.01.044] [PMID: 17275817]
[113]
Do, M.T.; Kim, H.G.; Tran, T.T.; Khanal, T.; Choi, J.H.; Chung, Y.C.; Jeong, T.C.; Jeong, H.G. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression. Toxicol. Appl. Pharmacol., 2014, 280(1), 138-148.
[http://dx.doi.org/10.1016/j.taap.2014.07.021] [PMID: 25110054]
[114]
Tylichová, Z.; Neča, J.; Topinka, J.; Milcová, A.; Hofmanová, J.; Kozubík, A.; Machala, M.; Vondráček, J. n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models. Food Chem. Toxicol., 2019, 124, 374-384.
[http://dx.doi.org/10.1016/j.fct.2018.12.021] [PMID: 30572064]
[115]
Leung, H.Y.; Yung, L.H.; Poon, C.H.; Shi, G.; Lu, A-L.; Leung, L.K. Genistein protects against polycyclic aromatic hydrocarbon-induced oxidative DNA damage in non-cancerous breast cells MCF-10A. Br. J. Nutr., 2009, 101(2), 257-262.
[http://dx.doi.org/10.1017/S0007114508998457] [PMID: 18570695]
[116]
Kiruthiga, P.V.; Karthikeyan, K.; Archunan, G.; Pandian, S.K.; Devi, K.P. Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes. Toxicol. Ind. Health, 2015, 31(6), 523-541.
[http://dx.doi.org/10.1177/0748233713475524] [PMID: 23406957]
[117]
Haque, M.W.; Pattanayak, S.P. Taxifolin Inhibits 7,12-Dimethylbenz(a)anthracene-induced Breast Carcinogenesis by Regulating AhR/CYP1A1 Signaling Pathway. Pharmacogn. Mag., 2018, 13(Suppl. 4), S749-S755.
[PMID: 29491628]
[118]
Surichan, S.; Arroo, R.R.; Tsatsakis, A.M.; Androutsopoulos, V.P. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1- mediated metabolism to the product 4′ hydroxy tangeretin. Toxicol. In Vitro, 2018, 50, 274-284.
[http://dx.doi.org/10.1016/j.tiv.2018.04.001] [PMID: 29626627]
[119]
Takemura, H.; Uchiyama, H.; Ohura, T.; Sakakibara, H.; Kuruto, R.; Amagai, T.; Shimoi, K. A methoxyflavonoid, chrysoeriol, selectively inhibits the formation of a carcinogenic estrogen metabolite in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol., 2010, 118(1-2), 70-76.
[http://dx.doi.org/10.1016/j.jsbmb.2009.10.002] [PMID: 19833205]
[120]
Androutsopoulos, V.; Wilsher, N.; Arroo, R.R.J.; Potter, G.A. Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450. Cancer Lett., 2009, 274(1), 54-60.
[http://dx.doi.org/10.1016/j.canlet.2008.08.032] [PMID: 18976853]
[121]
Cai, Y.; Bennett, D.; Nair, R.V.; Ceska, O.; Ashwood-Smith, M.J.; DiGiovanni, J. Inhibition and inactivation of murine hepatic ethoxy- and pentoxyresorufin O-dealkylase by naturally occurring coumarins. Chem. Res. Toxicol., 1993, 6(6), 872-879.
[http://dx.doi.org/10.1021/tx00036a018] [PMID: 8117927]
[122]
Cai, Y.; Baer-Dubowska, W.; Ashwood-Smith, M.; DiGiovanni, J. Inhibitory effects of naturally occurring coumarins on the metabolic activation of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured mouse keratinocytes. Carcinogenesis, 1997, 18(1), 215-222.
[http://dx.doi.org/10.1093/carcin/18.1.215] [PMID: 9054609]
[123]
Kasimsetty, S.G.; Bialonska, D.; Reddy, M.K.; Thornton, C.; Willett, K.L.; Ferreira, D. Effects of pomegranate chemical constituents/intestinal microbial metabolites on CYP1B1 in 22Rv1 prostate cancer cells. J. Agric. Food Chem., 2009, 57(22), 10636-10644.
[http://dx.doi.org/10.1021/jf902716r] [PMID: 19919114]
[124]
Abdull Razis, A.F.; Noor, N.M. Naturally-occurring glucosinolates, glucoraphanin and glucoerucin, are antagonists to aryl hydrocarbon receptor as their chemopreventive potency. Asian Pac. J. Cancer Prev., 2015, 16(14), 5801-5805.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5801] [PMID: 26320454]
[125]
Abdull Razis, A.F.; Konsue, N.; Ioannides, C. Isothiocyanates and Xenobiotic Detoxification. Mol. Nutr. Food Res., 2018, 62(18)e1700916
[http://dx.doi.org/10.1002/mnfr.201700916] [PMID: 29288567]
[126]
Boysen, G.; Kenney, P.M.; Upadhyaya, P.; Wang, M.; Hecht, S.S. Effects of benzyl isothiocyanate and 2-phenethyl isothiocyanate on benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism in F-344 rats. Carcinogenesis, 2003, 24(3), 517-525.
[http://dx.doi.org/10.1093/carcin/24.3.517] [PMID: 12663513]
[127]
Sharma, R.; Williams, I.S.; Gatchie, L.; Sonawane, V.R.; Chaudhuri, B.; Bharate, S.B. Khellinoflavanone, a semisynthetic derivative of khellin, overcomes benzo[a]pyrene toxicity in human normal and cancer cells that express CYP1A1. ACS Omega, 2018, 3(8), 8553-8566.
[http://dx.doi.org/10.1021/acsomega.8b01088] [PMID: 31458985]
[128]
Alworth, W.L.; Viaje, A.; Sandoval, A.; Warren, B.S.; Slaga, T.J. Potent inhibitory effects of suicide inhibitors of P450 isozyines on 7, 12-dimethylbenzא a אanthracene and benzoא a אpyrene initiated skin tumors. Carcinogenesis, 1991, 12(7), 1209-1215.
[http://dx.doi.org/10.1093/carcin/12.7.1209] [PMID: 1906378]
[129]
Mense, S.M.; Singh, B.; Remotti, F.; Liu, X.; Bhat, H.K. Vitamin C and alpha-naphthoflavone prevent estrogen-induced mammary tumors and decrease oxidative stress in female ACI rats. Carcinogenesis, 2009, 30(7), 1202-1208.
[http://dx.doi.org/10.1093/carcin/bgp093] [PMID: 19406931]
[130]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[131]
Chen, W.; Kexin, S.; Rongshou, Z.; Siwei, Z. zeng, H.-m.; Xiaonong, Z.; HeJie. Report of Cancer Incidence and Mortality in Different Areas of China, 2014. Chin. J. Cancer Res., 2018, 27(01), 1-14.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2018.01.01] [PMID: 25717219]
[132]
Birnbaum, L.S.; Fenton, S.E. Cancer and developmental exposure to endocrine disruptors. Environ. Health Perspect., 2003, 111(4), 389-394.
[http://dx.doi.org/10.1289/ehp.5686] [PMID: 12676588]
[133]
Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol. Sci., 2015, 145(1), 5-15.
[http://dx.doi.org/10.1093/toxsci/kfv040] [PMID: 25911656]
[134]
Shields, P.G.; Caporaso, N.E.; Falk, R.T.; Sugimura, H.; Trivers, G.E.; Trump, B.F.; Hoover, R.N.; Weston, A.; Harris, C.C. Lung cancer, race, and a CYP1A1 genetic polymorphism. Cancer Epidemiol. Biomarkers Prev., 1993, 2(5), 481-485.
[PMID: 8220094]
[135]
Moorthy, B.; Gastelum, G.; Veith, A.; Wang, L.; Zhou, G.; Jiang, W. Mechanistic role of cytochrome P450 (CYP) 1 enzymes in polycyclic aromatic hydrocarbon (PAH)-mediated carcinogenesis. FASEB J, 2019.
[136]
Han, T.; Yao, L.; Liu, L.; Xian, A.; Chen, H.; Dong, W.; Chen, J. Baosteel emission control significantly benefited air quality in Shanghai. J. Environ. Sci. (China), 2018, 71, 127-135.
[http://dx.doi.org/10.1016/j.jes.2018.01.014] [PMID: 30195671]
[137]
Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod., 2016, 112, 1519-1527.
[http://dx.doi.org/10.1016/j.jclepro.2015.04.092]
[138]
Huang, L.H.; Gui, B. In Advanced Materials Research. Trans. Tech. Publ., 2014, 1010, 839-842.
[139]
Chen, Y-C.; Tsai, P-J.; Mou, J-L. Reducing PAH emissions from the iron ore sintering process by optimizing its operation parameters. Environ. Sci. Technol., 2009, 43(12), 4459-4465.
[http://dx.doi.org/10.1021/es900362s] [PMID: 19603662]
[140]
Chen, Y-C.; Tsai, P-J.; Mou, J-L.; Kuo, Y-C.; Wang, S-M.; Young, L-H.; Wang, Y-F. A pilot study for determining the optimal operation condition for simultaneously controlling the emissions of PCDD/Fs and PAHs from the iron ore sintering process. Chemosphere, 2012, 88(11), 1324-1331.
[http://dx.doi.org/10.1016/j.chemosphere.2012.05.031] [PMID: 22704976]
[141]
Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A.M.; Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther., 2010, 126(1), 9-20.
[http://dx.doi.org/10.1016/j.pharmthera.2010.01.009] [PMID: 20153368]
[142]
Arroo, R.R.; Androutsopoulos, V.; Beresford, K.; Ruparelia, K.; Surichan, S.; Wilsher, N.; Potter, G.A. Phytoestrogens as natural prodrugs in cancer prevention: Dietary flavonoids. Phytochem. Rev., 2009, 8(2), 375-386.
[http://dx.doi.org/10.1007/s11101-009-9128-6]
[143]
Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro, 2006, 20(2), 187-210.
[http://dx.doi.org/10.1016/j.tiv.2005.06.048] [PMID: 16289744]
[144]
Cermak, R. Effect of dietary flavonoids on pathways involved in drug metabolism. Expert Opin. Drug Metab. Toxicol., 2008, 4(1), 17-35.
[http://dx.doi.org/10.1517/17425255.4.1.17] [PMID: 18370856]
[145]
Kim, S.; Ko, H.; Park, J.E.; Jung, S.; Lee, S.K.; Chun, Y-J. Design, synthesis, and discovery of novel trans-stilbene analogues as potent and selective human cytochrome P450 1B1 inhibitors. J. Med. Chem., 2002, 45(1), 160-164.
[http://dx.doi.org/10.1021/jm010298j] [PMID: 11754588]
[146]
Chun, Y-J.; Lim, C.; Ohk, S.O.; Lee, J.M.; Lee, J.H.; Choi, S.; Kim, S. trans-Stilbenoids: potent and selective inhibitors for human cytochrome P450 1B1. MedChemComm, 2011, 2(5), 402-405.
[http://dx.doi.org/10.1039/c0md00242a]
[147]
Mikstacka, R.; Sobiak, S.; Baer-Dubowska, W.; Dutkiewicz, Z. The Inhibitory Effect of Natural Stilbenes and Their Analogues on Catalytic Activity of Cytochromes P450 Family 1 in Comparison with Other Phenols-Structure and Activity Relationship; INTECH Open Access Publisher, 2012.
[http://dx.doi.org/10.5772/27660]
[148]
Korkina, L.G.; Pastore, S.; Dellambra, E.; De Luca, C. New molecular and cellular targets for chemoprevention and treatment of skin tumors by plant polyphenols: A critical review. Curr. Med. Chem., 2013, 20(7), 852-868.
[PMID: 23210776]
[149]
Baer-Dubowska, W.; Szaefer, H. Modulation of carcinogen-metabolizing cytochromes P450 by phytochemicals in humans. Expert Opin. Drug Metab. Toxicol., 2013, 9(8), 927-941.
[http://dx.doi.org/10.1517/17425255.2013.795219] [PMID: 23634851]
[150]
Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed., 2015, 5(3), 182-189.
[http://dx.doi.org/10.1016/S2221-1691(15)30003-4]
[151]
Diggs, D.L.; Huderson, A.C.; Harris, K.L.; Myers, J.N.; Banks, L.D.; Rekhadevi, P.V.; Niaz, M.S.; Ramesh, A. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2011, 29(4), 324-357.
[http://dx.doi.org/10.1080/10590501.2011.629974] [PMID: 22107166]
[152]
Mao, X.; Wang, J.; Wang, Q.; Yang, L.; Li, Y.; Lin, H.; Peng, Y.; Zheng, J. Nitidine chloride-induced CYP1 enzyme inhibition and alteration of estradiol metabolism. Drug Metab. Dispos., 2019, 47(8), 919-927.
[http://dx.doi.org/10.1124/dmd.119.086892] [PMID: 31147316]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy