Generic placeholder image

Current Catalysis


ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Role of Cadmium Addition in Promoting the Direct N2O Decomposition of Co3O4 Spinel

Author(s): B.M. Abu-Zied*, S.A. Soliman and S.E. Abdellah

Volume 9 , Issue 2 , 2020

Page: [152 - 162] Pages: 11

DOI: 10.2174/2211544709999201005165234

Price: $65


Background: Increased environmental protection concerns urge more effort to develop new catalysts for the abetment of greenhouse gases. N2O is known as a powerful greenhouse gas. The literature review revealed that various catalysts have been developed for the direct decomposition of N2O. Special attention was given to the cobalt-based spinel oxides. However, there is a lack of information about the performance of the cadmium promoted spinels for N2O abetment.

Objective: This paper addresses the nitrous oxide direct decomposition over a novel series of Cd- Co catalysts.

Method: These catalysts, with Cd/(Cd + Co) ratios 0.00-0.333, were prepared with the aid of the co-precipitation route, which is followed by calcination at 500 °C. Characterization of these catalysts was performed employing TGA-DTA, XRD, FTIR, N2 adsorption/desorption, and atomic absorption spectrophotometry.

Results: Phase analysis revealed the absence of a solid-state interaction between CdO and Co3O4. However, it was found that increasing the Cd/(Cd + Co) ratio is associated with continuous enhancement of the N2O decomposition activity. The activity was correlated with the presence of catalyst’s redox couples. Moreover, the role of the Cd presence in improving the activity was discussed. Finally, the activity performance change accompanying the calcination temperature raise was also investigated.

Conclusions: Presence of cadmium has a positive effect on the N2O decomposition performance of Co3O4. Activity increased continuously with Cd/(Cd + Co) ratio increase over the examined range 0.083–0.333 structural, textural, and electronic roles of cadmium were proposed.

Keywords: N2O decomposition, nitrous oxide, spinels, Cd promoted Co3O4, Cd-doping, calcination temperature.

Graphical Abstract
Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326(5949), 123-125.
[] [PMID: 19713491]
Wuebbles, D.J. Atmosphere. Nitrous oxide: no laughing matter. Science, 2009, 326(5949), 56-57.
[] [PMID: 19797649]
Konsolakis, M. Recent advances on nitrous oxide (N2O) decomposition over nonnoble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects. ACS Catal., 2015, 5(11), 6397-6421.
Pérez-Ramírez, J.; Kapteijn, F.; Schöffel, K.; Moulijn, J.A. Formation and control of N2O in nitric acid production Where do we stand today? Appl. Catal. B, 2003, 44(2), 117-151.
Yan, L.; Ren, T.; Wang, X.; Gao, Q.; Ji, D.; Suo, J. Excellent catalytic performance of ZnxCo1–xCo2O4 spinel catalysts for the decomposition of nitrous oxide. Catal. Commun., 2003, 4(10), 505-509.
Abu-Zied, B.M.; Soliman, S.A.; Abdellah, S.E. Pure and Ni‐substituted Co3O4 spinel catalysts for direct N2O decomposition. Chin. J. Catal., 2014, 35(7), 1105-1112.
Abu-Zied, B.M. Nitrous oxide decomposition over alkali-promoted magnesium cobaltite catalysts. Chin. J. Catal., 2011, 32(1–2), 264-272.
Ivanova, Y.A.; Sutormina, E.F.; Isupova, L.A.; Rogov, V.A. Effect of the composition of NixCo3–xO4 (x = 0–0.9) oxides on their catalytic activity in the low-temperature reaction of N2O decomposition. Kinet. Catal., 2018, 59(3), 357-362.
Franken, T.; Palkovits, R. Investigation of potassium doped mixed spinels CuxCo3−xO4 as catalysts for an efficient N2O decomposition in real reaction conditions. Appl. Catal. B, 2015, 176–177, 298-305.
Abu-Zied, B.M.; Soliman, S.A.; Abdellah, S.E. Enhanced direct N2O decomposition over CuxCo1–xCo2O4 (0.0 ≤ x ≤ 1.0) spinel-oxide catalysts. J. Ind. Eng. Chem., 2015, 21, 814-821.
Yan, L.; Ren, T.; Wang, X.; Ji, D.; Suo, J. Catalytic decomposition of N2O over MxCo1−xCo2O4 (M = Ni, Mg) spinel oxides. Appl. Catal. B, 2003, 45(2), 85-90.
Abu-Zied, B.M.; Soliman, S.A.; Abdellah, S.E. Effect of substitution degree and the calcination temperature on the N2O decomposition over zinc cobaltite catalysts. Mod. Res. Catal., 2017, 6(1), 47-64.
Abu-Zied, B.M.; Bawaked, S.M.; Kosa, S.A.; Ali, T.T.; Schwieger, W.; Aqlan, F.M. Effects of Nd-, Pr-, Tb- and Y-doping on the structural, textural, electrical and N2O decomposition activity of mesoporous NiO nanoparticles. Appl. Surf. Sci., 2017, 419, 399-408.
Tursun, M.; Wang, X.; Zhang, F.; Yu, H. Bi-Co3O4 catalyzing N2O decomposition with strong resistance to CO2. Catal. Commun., 2015, 65, 1-5.
Lykaki, M.; Papista, E.; Kaklidis, N.; Carabineiro, S.A.C.; Konsolakis, M. Ceria nanoparticles’ morphological effects on the N2O decomposition performance of Co3O4/CeO2 mixed oxides. Catalysts, 2019, 9(3), 233.
Yu, H.; Tursun, M.; Wang, X.; Wu, X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases. Appl. Catal. B, 2016, 185, 110-118.
Wang, Y.; Hu, X.; Zheng, K.; Wei, X.; Zhao, Y. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition. Catal. Commun., 2018, 111, 70-74.
Dou, Z.; Feng, M.; Xu, X. Catalytic decomposition of N2O over Au/Co3O4 and Au/ZnCo2O4 catalysts. J. Fuel Chem. Technol., 2013, 41, 1234-1240.
Sui, C.; Zhang, T.; Dong, Y.; Yuan, F.; Niu, X.; Zhu, Y. Interaction between Ru and Co3O4 for promoted catalytic decomposition of N2O over the Rux-Co3O4 catalysts. Mol. Catal., 2017, 435, 174-181.
Basahel, S.N.; Abd El-Maksod, I.H.; Abu-Zied, B.M.; Mokhtar, M. Effect of Zr4+ doping on the stabilization of ZnCo-mixed oxide spinel system and its catalytic activity towards N2O decomposition. J. Alloys Compd., 2010, 493(1–2), 630-635.
Chromćáková, Ž.; Obalová, L.; Kovanda, F.; Legut, D.; Titov, A.; Ritz, M.; Fridrichová, D.; Michalik, S.; Kuśtrowski, P.; Jirátová, K. Effect of precursor synthesis on catalytic activity of Co3O4 in N2O decomposition. Catal. Today, 2015, 257(1), 18-25.
Yu, H.; Wang, X.; Wu, X.; Chen, Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions. Chem. Eng. J., 2018, 334, 800-806.
Abu-Zied, B.M.; Soliman, S.A.; Asiri, A.M. Role of rubidium promotion on the nitrous oxide decomposition activity of nanocrystalline Co3O4-CeO2 catalyst. Appl. Surf. Sci., 2019, 479, 148-157.
Ma, Z.; Ren, Y.; Lu, Y.; Bruce, P.G. Catalytic decomposition of N2O on ordered crystalline metal oxides. J. Nanosci. Nanotechnol., 2013, 13(7), 5093-5103.
[] [PMID: 23901535]
Klyushina, A.; Pacultová, K.; Krejčová, S.; Słowik, G.; Jirátová, K.; Kovanda, F.; Ryczkowski, J.; Obalová, L. Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4. Catal. Today, 2015, 257(1), 2-10.
Ciura, K.; Grzybek, G.; Wójcik, S.; Indyka, P.; Kotarba, A.; Sojka, Z. Optimization of cesium and potassium promoter loading in alkali-doped Zn0.4Co2.6O4|Al2O3 catalysts for N2O abatement. React. Kinet. Mech. Catal., 2017, 121(2), 645-655.
Pasha, N.; Lingaiah, N.; Babu, N.S.; Reddy, P.S.S.; Sai Prasad, P.S. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam. Catal. Commun., 2008, 10(2), 132-136.
Stelmachowski, P.; Maniak, G.; Kotarba, A.; Sojka, Z. Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants. Catal. Commun., 2009, 10(7), 1062-1065.
Abu-Zied, B.M.; Bawaked, S.M.; Kosa, S.A.; Schwieger, W. Effect of Pr, Sm, and Tb doping on the morphology, crystallite size, and N2O decomposition activity of Co3O4 nanorods. J. Nanomater., 2015, 2015 Article ID 580582
Obalová, L.; Karásková, K.; Wach, A.; Kustrowski, P.; Mamulová-Kutláková, K.; Michalika, S.; Jirátová, K. Alkali metals as promoters in Co–Mn–Al mixed oxide for N2O decomposition. Appl. Catal. A, 2013, 462–463, 227-235.
Klyushina, A.; Pacultová, K.; Karásková, K.; Jirátová, K.; Ritz, M.; Fridrichová, D.; Volodarskaja, A.; Obalová, L. Effect of preparation method on catalytic properties of Co-Mn-Al mixed oxides for N2O decomposition. J. Mol. Catal. A, 2016, 425, 237-247.
Abu-Zied, B.M.; Soliman, S.A. Nitrous oxide decomposition over MCO3–Co3O4 (M = Ca, Sr, Ba) catalysts. Catal. Lett., 2009, 132, 299-310.
Amrousse, R.; Tsutsumi, A.; Bachar, A.; Lahcene, D. N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4 substrates. Appl. Catal. A, 2013, 450, 253-260.
Zhang, J.; Hu, H.; Xu, J.; Wu, G.; Zeng, Z.N. 2O decomposition over K/Na-promoted Mg/Zn-Ce-cobalt mixed oxides catalysts. J. Environ. Sci. (China), 2014, 26(7), 1437-1443.
[] [PMID: 25079992]
Karásková, K.; Obalová, L.; Jirátová, K.; Kovanda, F. Effect of promoters in Co–Mn–Al mixed oxide catalyst on N2O decomposition. Chem. Eng. J., 2010, 160(2), 480-487.
Klegova, A.; Inayat, A.; Indyka, P.; Gryboś, J.; Sojka, Z.; Pacultová, K.; Schwieger, W.; Volodarskaja, A.; Kuśtrowski, P.; Rokicińska, A.; Fridrichová, D.; Obalová, L. Cobalt mixed oxides deposited on the SiC open-cell foams for nitrous oxide decomposition. Appl. Catal. B, 2019.255117745
Xue, L.; Zhang, C.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B, 2007, 75(3–4), 167-174.
Asano, K.; Ohnishi, C.; Iwamoto, S.; Shioya, Y.; Inoue, M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl. Catal. B, 2008, 78(3–4), 242-249.
Abu-Zied, B.M.; Schwieger, W. Self oscillatory behaviour in N2O decomposition over Co-ZSM-5 catalysts. Appl. Catal. B, 2009, 85(3–4), 120-130.
Dziembaj, R.; Zaitz, M.M.; Rutkowska, M.; Molenda, M.; Chmielarz, L. Nanostructured Co–Ce-O systems for catalytic decomposition of N2O. Catal. Today, 2012, 191(1), 121-124.
Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface area and pore texture of catalysts. Catal. Today, 1998, 41(1–3), 207-219.
EI-Shobaky. G.A.; Ahmad, A.S.; AI-Noaimi, A.N. EI-Shobaky, H.G. Thermal decomposition of basic cobalt and copper carbonates: Thermal stability of the produced oxides as influenced by gamma-irradiation. J. Therm. Anal., 1996, 46(6), 1801-1808.
Khayati, G.R.; Shahcheraghi, S.H.; Lotfi, V.; Darezereshki, E. Reaction pathway and kinetics of CdO nanoparticles prepared from CdCO3 precursor using thermal decomposition method. Trans. Nonferrous Met. Soc. China, 2016, 26(4), 1138-1145.
Khayati, G.R.; Dalvand, H.; Darezereshki, E.; Irannejad, A. A facile method to synthesis of CdO nanoparticles from spent Ni–Cd batteries. Mater. Lett., 2014, 115, 272-274.
Vogt, C.; Knowles, G.P.; Chaffee, A.L. Multiple sorption cycles evaluation of cadmium oxide–alkali metal halide mixtures for pre-combustion CO2 capture. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 4299-4308.
Askarinejad, A.; Morsali, A. Synthesis of cadmium(II) hydroxide, cadmium(II) carbonate and cadmium(II) oxide nanoparticles; investigation of intermediate products. Chem. Eng. J., 2009, 150(2–3), 569-571.
Yu, H.; Wang, D.; Han, M-Y. Top-down solid-phase fabrication of nanoporous cadmium oxide architectures. J. Am. Chem. Soc., 2007, 129(8), 2333-2337.
[] [PMID: 17274616]
Pan, L.; Xu, M.; Zhang, Z.D. A general synthesis and electrocatalytic activity of low-dimensional MO and M–Co (M = Cu, Ni, Zn and Cd) composite oxides. Mater. Chem. Phys., 2010, 123(1), 293-299.
Haq, I.U.; Akhtar, K. Preparation and characterization of uniform coated particles (Cobalt compounds on cadmium compounds). J. Mater. Sci., 2000, 35(10), 2565-2571.
Abu-Zied, B.M.; Bawaked, S.M.; Kosa, S.A.; Schwieger, W. Effect of microwave power on the thermal genesis of Co3O4 nanoparticles from cobalt oxalate micro-rods. Appl. Surf. Sci., 2015, 351, 600-609.
Abu-Zied, B.M.; Bawaked, S.M.; Kosa, S.A.; Schwieger, W. Impact of Gd-, La-, Nd- and Y-doping on the textural, electrical conductivity and N2O decomposition activity of CuO catalyst. Int. J. Electrochem. Sci., 2016, 11, 2230-2246.
Abu‐Zied, B.M.; Asiri, A.M. The role of alkali promoters in enhancing the direct N2O decomposition reactivity over NiO catalysts. Chin. J. Catal., 2015, 36(11), 1837-1845.
Rozik, R.; Trnková, L. Cadmium reduction process on paraffin impregnated graphite electrode studied by elimination voltammetry with linear scan. J. Electroanal. Chem. (Lausanne Switz.), 2006, 593(1–2), 247-257.
Kaviyarasu, K.; Manikandan, E.; Paulraj, P.; Mohamed, S.B.; Kennedy, J. One dimensional well-aligned CdO nanocrystal by solvothermal method. J. Alloys Compd., 2014, 593, 67-70.
Shen, Y.; Xu, B.; Zhu, S.; Zhang, F.; Zhao, Q.; Li, X. Enhanced photocatalytic reduction of cadmium on calcium ferrite-based nanocomposites by simulated solar radiation. Mater. Lett., 2018, 211, 142-145.
Małecka, B. Thermal decomposition of Cd(CH3COO)2.2H2O studied by a coupled TG-DTA-MS method. J. Therm. Anal. Calorim., 2004, 78(2), 535-544.
Małecka, B.; Łącz, A. Thermal decomposition of cadmium formate in inert and oxidative atmosphere. Thermochim. Acta, 2008, 479(1–2), 12-16.
Małecka, B.; Łącz, A.; Małecki, A. TG/DTA/MS/IR study on decomposition of cadmium malonate hydrates in inert and oxidative atmosphere. J. Anal. Appl. Pyrolysis, 2007, 80(1), 126-133.
Fatemi, N.S.; Dollimore, D.; Heal, G.R. Thermal decomposition of oxalates. Part 16. Thermal decomposition studies on cadmium oxalate. Thermochim. Acta, 1982, 54(1–2), 167-180.
Abu-Zied, B.M.; Schwieger, W.; Unger, A. Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method. Appl. Catal. B, 2008, 84(1–2), 277-288.
Tang, X.; Gao, F.; Xiang, Y.; Yi, H.; Zhao, S. Low temperature catalytic oxidation of nitric oxide over the Mn–CoOx catalyst modified by nonthermal plasma. Catal. Commun., 2015, 64, 12-17.
Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Cu–Mn mixed oxides for low temperature NO reduction with NH3. Catal. Today, 2006, 111(3–4), 236-241.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy