Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article (Mini-Review)

Cyclotriphosphazene-based Derivatives for Antibacterial Applications: An Update on Recent Advances

Author(s): Xiqi Su, Le Wang*, JingHua Xie, XiaoHui Liu and Helena Tomás

Volume 25 , Issue 2 , 2021

Published on: 01 October, 2020

Page: [301 - 314] Pages: 14

DOI: 10.2174/1385272824999201001154127

Price: $65

Abstract

As a phosphorus scaffold, hexachlorocyclotriphosphazene (HCCP) is widely used for the synthesis of varieties of derivatives, including metal-binding complexes and several unique organometallic compounds, which exhibit potential catalytic, flame retardant and biological activities. Some metal-binding HCCP derivatives have shown antibacterial activities as free ligands and metal complexes. These derivatives can also serve as building blocks for the formation of antibacterial metal-containing polymers. This mini-review is focused on the design and development of HCCP derivatives as potential antibacterial agents with representative examples as well as antibacterial mechanisms from recent years.

Keywords: Hexachlorocyclotriphosphazene(HCCP), antibacterial, antibacterial mechanism, metal, ligand, polymer.

Graphical Abstract
[1]
Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of antibiotic resistance in helicobacter pylori: a systematic review and meta-analysis in World health organization regions. Gastroenterology, 2018, 155(5), 1372-1382.
[http://dx.doi.org/10.1053/j.gastro.2018.07.007] [PMID: 29990487]
[2]
Wang, Y.; Gong, J.; Li, J.; Xin, Y.; Hao, Z.; Chen, C.; Li, H.; Wang, B.; Ding, M.; Li, W.; Zhang, Z.; Xu, P.; Xu, T.; Ding, G.C.; Li, J. Insights into bacterial diversity in compost: core microbiome and prevalence of potential pathogenic bacteria. Sci. Total Environ., 2020, 718137304
[http://dx.doi.org/10.1016/j.scitotenv.2020.137304] [PMID: 32087588]
[3]
Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: history, methods and perspectives. Int. J. Antimicrob. Agents, 2019, 53(4), 371-382.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.11.010] [PMID: 30472287]
[4]
Ruch, Y.; Hansmann, Y.; Riegel, P.; Lefebvre, N.; Mazzucotelli, J.P.; Douiri, N.; Martin, A.; Argemi, X. Virulence of beta-hemolytic streptococci in infective endocarditis. Infection, 2020, 48(1), 91-97.
[http://dx.doi.org/10.1007/s15010-019-01358-7] [PMID: 31520396]
[5]
Teh, Y.E.; Lim, C.P.; Teo, L.L.Y.; Soon, J.L.; Chao, V.T.T.; Neo, C.L.; Tan, J.L.L.; Kerk, K.L.; Sim, D.K.L.; Tan, T.E.; Tan, B.H.; Cumaraswamy, S.; Tan, T.T. Staphylococcal driveline infections are the predominant type of left ventricular assist device associated infections in Singapore. Infect. Dis. (Lond.), 2019, 51(6), 417-424.
[http://dx.doi.org/10.1080/23744235.2019.1592216] [PMID: 30985233]
[6]
Shuai, C.; Xu, Y.; Feng, P.; Wang, G.; Xiong, S.; Peng, S. Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver. Chem. Eng. J., 2019, 374, 304-315.
[http://dx.doi.org/10.1016/j.cej.2019.03.273]
[7]
Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol., 2010, 8(6), 423-435.
[http://dx.doi.org/10.1038/nrmicro2333] [PMID: 20440275]
[8]
Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360(6390), 739-742.
[http://dx.doi.org/10.1126/science.aap7999] [PMID: 29773744]
[9]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[10]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO pathogens priority list working group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[11]
Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol., 2019, 27(4), 323-338.
[http://dx.doi.org/10.1016/j.tim.2018.12.010] [PMID: 30683453]
[12]
Goutam, C.; Devaleena, M.; Singha, R.A.; Soroj, C.; Indranil, B. Phytoextracts as antibacterials - a review. Curr. Drug Discov. Technol., 2019, 16, 1-11.
[http://dx.doi.org/10.2174/1570163816666191106103730]
[13]
Chung, P.Y. Current technology in the discovery and development of novel antibacterials. Curr. Drug Targets, 2018, 19(7), 832-840.
[http://dx.doi.org/10.2174/1389450118666170911114604] [PMID: 28891454]
[14]
Donlan, R.M.; Costerton, J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev., 2002, 15(2), 167-193.
[http://dx.doi.org/10.1128/CMR.15.2.167-193.2002] [PMID: 11932229]
[15]
Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes, 2018, 4, 1-13.
[http://dx.doi.org/10.1038/s41522-018-0053-6] [PMID: 29707229]
[16]
Kang, J.; Jin, W.; Wang, J.; Sun, Y.; Wu, X.; Liu, L. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. Lwt., 2019, 101, 639-645.
[http://dx.doi.org/10.1016/j.lwt.2018.11.093]
[17]
Gates, D.P. Chemistry and applications of polyphosphazenes. Von Harry R. Allcock. Angew. Chem., 2003, 115(38), 4717-4718.
[http://dx.doi.org/10.1002/ange.200385981]
[18]
Tümer, Y.; Yuksektepe, C.; Bati, H.; Caliskan, N.; Buyukgungor, O. Preparation and characterization of hexakis 2-methoxy-4-(2,3-dimethylphenylimino)phenylato cyclotriphosphazene. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(12), 2449-2454.
[http://dx.doi.org/10.1080/10426501003692078]
[19]
Allcock, H.R. The expanding field of polyphosphazene high polymers. Dalton Trans., 2016, 45(5), 1856-1862.
[http://dx.doi.org/10.1039/C5DT03887A] [PMID: 26575268]
[20]
Nseir, S.; Di Pompeo, C.; Cavestri, B.; Jozefowicz, E.; Nyunga, M.; Soubrier, S.; Roussel-Delvallez, M.; Saulnier, F.; Mathieu, D.; Durocher, A. Multiple-drug-resistant bacteria in patients with severe acute exacerbation of chronic obstructive pulmonary disease: prevalence, risk factors, and outcome. Crit. Care Med., 2006, 34(12), 2959-2966.
[http://dx.doi.org/10.1097/01.CCM.0000245666.28867.C6] [PMID: 17012911]
[21]
Qian, L.J.; Ye, L.J.; Qiu, Y.; Qu, S.R. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer (Guildf.), 2011, 52(24), 5486-5493.
[http://dx.doi.org/10.1016/j.polymer.2011.09.053]
[22]
Qian, L.J.; Feng, F.F.; Tang, S. Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite. Polymer (Guildf.), 2014, 55(1), 95-101.
[http://dx.doi.org/10.1016/j.polymer.2013.12.015]
[23]
Yang, G.; Wu, W.H.; Wang, Y.H.; Jiao, Y.H.; Lu, L.Y.; Qu, H.Q.; Qin, X.Y. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of epoxy resin. J. Hazard. Mater., 2019, 366, 78-87.
[http://dx.doi.org/10.1016/j.jhazmat.2018.11.093] [PMID: 30502575]
[24]
Wei, W.; Lu, R.J.; Tang, S.Y.; Liu, X.Y. Highly cross-linked fluorescent poly(cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(8), 4604-4611.
[http://dx.doi.org/10.1039/C4TA06828A]
[25]
Ali, S.; Zuhra, Z.; Butler, I.S.; Dar, S.U.; Hameed, M.U.; Wu, D.Z.; Zhang, L.Q.; Wu, Z.P. High-throughput synthesis of cross-linked poly(cyclotriphos-phazeneco-bis(aminomethyl)ferrocene) microspheres and their performance as a superparamagnetic, electrochemical, fluorescent and adsorbent material. Chem. Eng. J., 2017, 315, 448-458.
[http://dx.doi.org/10.1016/j.cej.2017.01.049]
[26]
Jiménez, J.; Laguna, A.; Molter, A.M.; Serrano, J.L.; Barberá, J.; Oriol, L. Supermolecular liquid crystals with a six-armed cyclotriphosphazene core: from columnar to cubic phases. Chemistry, 2011, 17(3), 1029-1039.
[http://dx.doi.org/10.1002/chem.201002114] [PMID: 21226121]
[27]
Mutlu, G.; Elmas, G.; Kılıç, Z.; Hökelek, T.; Koç, L.Y.; Türk, M.; Açık, L.; Aydın, B.; Dal, H. Phosphorus-nitrogen compounds: part 31. Syntheses, structural and stereogenic properties, in vitro cytotoxic and antimicrobial activities, and DNA interactions of bicyclotetraphosphazenes containing bulky side group. Inorg. Chim. Acta, 2015, 436, 69-81.
[http://dx.doi.org/10.1016/j.ica.2015.07.027]
[28]
Tümer, Y.; Asmafiliz, N.; Kılıç, Z.; Hökelek, T.; Yasemin Koç, L.; Açık, L.; Yola, M.L.; Solak, A.O.; Öner, Y.; Dündar, D.; Yavuz, M. Phosphorus–nitrogen compounds: part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups. J. Mol. Struct., 2013, 1049, 112-124.
[http://dx.doi.org/10.1016/j.molstruc.2013.06.036]
[29]
Wang, L.; Yang, Y-X.; Shi, X.; Mignani, S.; Caminade, A-M.; Majoral, J-P. Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(6), 884-895.
[http://dx.doi.org/10.1039/C7TB03081A] [PMID: 32254368]
[30]
Sourdon, A.; Gary-Bobo, M.; Maynadier, M.; Garcia, M.; Majoral, J.P.; Caminade, A.M.; Mongin, O.; Blanchard-Desce, M. Dendrimeric nanoparticles for two-photon photodynamic therapy and imaging: synthesis, photophysical properties, innocuousness in daylight and cytotoxicity under two-photon irradiation in the NIR. Chemistry, 2019, 25(14), 3637-3649.
[http://dx.doi.org/10.1002/chem.201805617] [PMID: 30620107]
[31]
Sharma, R.; Singla, N.; Mehta, S.; Gaba, T.; Rawal, R.K.; Rao, H.S.; Bhardwaj, T.R. Recent advances in polymer drug conjugates. Mini Rev. Med. Chem., 2015, 15(9), 751-761.
[http://dx.doi.org/10.2174/1389557515666150519104507] [PMID: 25985952]
[32]
Li, X.; Jiang, F.; Chen, L.; Wu, M.; Chen, Q.; Bu, Y.; Hong, M. Three novel 3D coordination polymers based on a flexible multisite cyclotetraphosphazene ligand. Dalton Trans., 2012, 41(46), 14038-14041.
[http://dx.doi.org/10.1039/c2dt31852k] [PMID: 23070363]
[33]
Veronese, F.M.; Marsilio, F.; Lora, S.; Caliceti, P.; Passi, P.; Orsolini, P. Polyphosphazene membranes and microspheres in periodontal diseases and implant surgery. Biomaterials, 1999, 20(1), 91-98.
[http://dx.doi.org/10.1016/S0142-9612(97)00104-X] [PMID: 9916776]
[34]
Karakurt, A.; Dalkara, S.; Ozalp, M.; Ozbey, S.; Kendi, E.; Stables, J.P. Synthesis of some 1-(2-naphthyl)-2-(imidazole-1-yl)ethanone oxime and oxime ether derivatives and their anticonvulsant and antimicrobial activities. Eur. J. Med. Chem., 2001, 36(5), 421-433.
[http://dx.doi.org/10.1016/S0223-5234(01)01223-5] [PMID: 11451531]
[35]
Chohan, Z.H.; Praveen, M. Synthesis, characterization, coordination and antibacterial properties of novel asymmetric 1,1′-disubstituted ferrocene-derived Schiff-base ligands and their Co(II), Cu(II) Ni(II) and Zn(II) complexes. Appl. Organomet. Chem., 2001, 15(7), 617-625.
[http://dx.doi.org/10.1002/aoc.179]
[36]
Zhang, X.H.; Huang, L.H.; Chen, S.; Qi, G.R. Improvement of thermal properties and flame retardancy of epoxy-amine thermosets by introducing bisphenol containing azomethine moiety. eXPRESS Polym. Lett., 2007, 1(5), 326-332.
[http://dx.doi.org/10.3144/expresspolymlett.2007.46]
[37]
Koran, K.; Ozkaya, A.; Ozen, F.; Cil, E.; Arslan, M. Synthesis, characterization, and biological evaluation of new oxime-phosphazenes. Res. Chem. Intermed., 2012, 39(3), 1109-1124.
[http://dx.doi.org/10.1007/s11164-012-0670-2]
[38]
Cil, E.; Tanyildizi, M.A.; Ozen, F.; Boybay, M.; Arslan, M.; Gorgulu, A.O. Synthesis, characterization, and biological-pharmacological evaluation of new phosphazenes bearing dioxybiphenyl and schiff base groups. Arch. Pharm. (Weinheim), 2012, 345(6), 476-485.
[http://dx.doi.org/10.1002/ardp.201100412] [PMID: 22415712]
[39]
Ahamad, T.; Nishat, N. New antimicrobial epoxy-resin-bearing Schiff-base metal complexes. J. Appl. Polym. Sci., 2008, 107(4), 2280-2288.
[http://dx.doi.org/10.1002/app.27234]
[40]
Lakshmikandhan, T.; Sethuraman, K.; Chandramohan, A.; Alagar, M. Development of phosphazene imine-modified epoxy composites for low dielectric, antibacterial activity, and UV shielding applications. Polym. Compos., 2017, 38, e24-e33.
[http://dx.doi.org/10.1002/pc.23846]
[41]
Wang, Y.; Qin, Y.; Zhang, Y.; Wu, R.; Li, P. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes. Food Control, 2019, 97, 87-93.
[http://dx.doi.org/10.1016/j.foodcont.2018.10.025]
[42]
Su, Y.; Zhang, C.; Wang, Y.; Li, P. Antibacterial property and mechanism of a novel Pu-erh tea nanofibrous membrane. Appl. Microbiol. Biotechnol., 2012, 93(4), 1663-1671.
[http://dx.doi.org/10.1007/s00253-011-3501-2] [PMID: 21858494]
[43]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[44]
Caruso, E.; Banfi, S.; Barbieri, P.; Leva, B.; Orlandi, V.T. Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers. J. Photochem. Photobiol. B, 2012, 114, 44-51.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.05.007] [PMID: 22682365]
[45]
Peveler, W.J.; Noimark, S.; Al-Azawi, H.; Hwang, G.B.; Crick, C.R.; Allan, E.; Edel, J.B.; Ivanov, A.P.; MacRobert, A.J.; Parkin, I.P. Covalently attached antimicrobial surfaces using BODIPY: improving efficiency and effectiveness. ACS Appl. Mater. Interfaces, 2018, 10(1), 98-104.
[http://dx.doi.org/10.1021/acsami.7b13273] [PMID: 29210273]
[46]
Zhang, Y.Y.; Zhou, C.H. Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2011, 21(14), 4349-4352.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.042] [PMID: 21669530]
[47]
Şenkuytu, E.; Öztürk, E.; Aydınoğlu, F.; Tanrıverdi Eçik, E.; Okutan, E. Cyclotriphosphazene cored naphthalimide-BODIPY dendrimeric systems: synthesis, photophysical and antimicrobial properties. Inorg. Chim. Acta, 2020, 502119386
[http://dx.doi.org/10.1016/j.ica.2019.119386]
[48]
Şenkuytu, E.; Eçik, E.T. Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 182, 26-31.
[http://dx.doi.org/10.1016/j.saa.2017.03.065] [PMID: 28390249]
[49]
Basterzi, N.S.; Koçak, S.B.; Okumus, A.; Kılıç, Z. HÖkelek, T.; Çelik, Ö.; Türk, M.; Koç, L. Y.; Açıke, L.; Aydın, B. Syntheses, structural characterization and biological activities of spiro-ansa-spirocyclotriphosphazenes. New J. Chem., 2015, 39, 8825-8839.
[http://dx.doi.org/10.1039/C5NJ01530H]
[50]
Okumuş, A.; Bilge, S.; Kiliç, Z.; Oztürk, A.; Hökelek, T.; Yilmaz, F. Phosphorus-nitrogen compounds. Part 20: fully substituted spiro-cyclotriphosphazenic lariat (PNP-pivot) ether derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(3-4), 401-409.
[http://dx.doi.org/10.1016/j.saa.2010.04.007] [PMID: 20444643]
[51]
Yıldıza, M.; Kılıc¸, Z.; Hökelekb, T. Phosphorus–nitrogen compounds: Part IV. New podand and lariat ether-type macrocycles with cyclophosphazenes. Structure of 2,2′-[triethyleneglycolbis(phenylether-2-amino)]2,2′,4,4,4′,4′,6,6, 6′,6′-decachlorobicyclo-2λ5,2‘λ5,4λ5,4’λ5, 6λ5,6'λ5-triphosphazatriene. J. Mol. Struct., 1999, 510, 227-235.
[http://dx.doi.org/10.1016/S0022-2860(99)00098-8]
[52]
Akbaş, H.; Okumuş, A.; Kılıç, Z.; Hökelek, T.; Süzen, Y.; Koç, L.Y.; Açık, L.; Celik, Z.B. Phosphorus-nitrogen compounds part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. Eur. J. Med. Chem., 2013, 70, 294-307.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.046] [PMID: 24161706]
[53]
Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem., 2011, 46(8), 3179-3189.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.013] [PMID: 21620536]
[54]
Asmafiliz, N.; Kılıç, Z.; Civan, M.; Avcı, O.; Gönder, L.Y.; Açık, L.; Aydın, B.; Türk, M.; Hökelek, T. Phosphorus-nitrogen compounds. Part 36. Syntheses, Langmuir-Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New J. Chem., 2016, 40, 9609-9626.
[http://dx.doi.org/10.1039/C6NJ02052F]
[55]
Yıldırım, T.; Şenkuytu, E.; Ergene, E.; Bilgin, K.; Uludağ, Y.; Çiftçi, G.Y. Biological activity of new cyclophosphazene derivatives including fluorenylidene-bridged cyclophosphazenes. ChemistrySelect, 2018, 3(34), 9933-9939.
[http://dx.doi.org/10.1002/slct.201801766]
[56]
Abd-El-Aziz, A.S.; Agatemor, C.; Etkin, N.; Overy, D.P.; Lanteigne, M.; McQuillan, K.; Kerr, R.G. Antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant bacteria. Biomacromolecules, 2015, 16(11), 3694-3703.
[http://dx.doi.org/10.1021/acs.biomac.5b01207] [PMID: 26452022]
[57]
Ainscough, E.W.; Brodie, A.M.; Depree, C.V.; Jameson, G.B.; Otter, C.A. Polymer building blocks: self-assembly of silver(I) cyclotriphosphazene cationic columns. Inorg. Chem., 2005, 44(21), 7325-7327.
[http://dx.doi.org/10.1021/ic051334y] [PMID: 16212358]
[58]
Rodríguez-González, V.; Obregón, S.; Patrón-Soberano, O.A.; Terashima, C.; Fujishima, A. An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Appl. Catal. B, 2020, 270118853
[http://dx.doi.org/10.1016/j.apcatb.2020.118853] [PMID: 32292243]
[59]
Guo, Z.; Chen, Y.; Wang, Y.; Jiang, H.; Wang, X. Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4764-4777.
[http://dx.doi.org/10.1039/D0TB00099J] [PMID: 32207511]
[60]
Misirlic-Dencic, S.; Poljarevic, J.; Isakovic, A.M.; Sabo, T.; Markovic, I.; Trajkovic, V. Current development of metal complexes with diamine ligands as potential anticancer agents. Curr. Med. Chem., 2020, 27(3), 380-410.
[http://dx.doi.org/10.2174/0929867325666181031114306] [PMID: 30378486]
[61]
Mânzu, D.; Negreanu-Pîrjol, T.; Dumitru, F.; Alexie, M.; Guran, C. Synthesis, characterization and biological activity of some Cr(III), Fe(III), Cu(II), Mn(II)-complexes of N,O-aminoethanol tetrachlorocyclotriphosphazene. UPB Sci. Bull. Series B, 2009, 71, 2.
[62]
Jani, D.H.; Patel, H.S.; Keharia, H.; Modi, C.K. Novel drug-based Fe(III) heterochelates: synthetic, spectroscopic, thermal and in-vitro antibacterial significance. Appl. Organomet. Chem., 2010, 24, 99-111.
[http://dx.doi.org/10.1002/aoc.1581]
[63]
Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem., 2020, 185111791
[http://dx.doi.org/10.1016/j.ejmech.2019.111791] [PMID: 31669852]
[64]
Asmafiliz, N.; Kiliç, Z.; Oztürk, A.; Hökelek, T.; Koç, L.Y.; Açik, L.; Kisa, O.; Albay, A.; Ustündağ, Z.; Solak, A.O. Phosphorus-nitrogen compounds. 18. Syntheses, stereogenic properties, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic mono- and bisferrocenylphosphazene derivatives. Inorg. Chem., 2009, 48(21), 10102-10116.
[http://dx.doi.org/10.1021/ic901039k] [PMID: 19813722]
[65]
Tümer, Y.; Asmafiliz, N.; Zeyrek, C.T.; Kılıç, Z.; Açık, L.; Çelik, S.P.; Türk, M.; Çağdaş Tunalı, B.; Ünver, H.; Hökelek, T. Syntheses, spectroscopic and crystallographic characterizations of cis- and trans-dispirocyclic ferrocenylphosphazenes: molecular dockings, cytotoxic and antimicrobial activities. New J. Chem., 2018, 42(3), 1740-1756.
[http://dx.doi.org/10.1039/C7NJ03643D]
[66]
Biot, C.; Castro, W.; Botté, C.Y.; Navarro, M. The therapeutic potential of metal-based antimalarial agents: implications for the mechanism of action. Dalton Trans., 2012, 41(21), 6335-6349.
[http://dx.doi.org/10.1039/c2dt12247b] [PMID: 22362072]
[67]
Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 2013, 11(6), 371-384.
[http://dx.doi.org/10.1038/nrmicro3028] [PMID: 23669886]
[68]
Çıralı, D.E.; Dayan, O.; Özdemir, N.; Hacıoglu, N. A new phosphazene derivative, spiro-N3P3[(O2C12H8)2(OC6H6N-3)2], and its Ru(II) complex: syntheses, crystal structure, catalytic activity and antimicrobial activity studies. Polyhedron, 2015, 88, 170-175.
[http://dx.doi.org/10.1016/j.poly.2014.12.040]
[69]
Memon, S.; Chandio, A.A.; Memon, A.A.; Panhwar, Q.K.; Nizamani, S.M.; Bhatti, A.A.; Brohi, N.A. Synthesis, characterization, and exploration of antimicrobial activity of copper complex of diamide derivative of p-tert-butylcalix[4]arene. Polycycl. Aromat. Compd., 2017, 37, 362-374.
[http://dx.doi.org/10.1080/10406638.2015.1125375]
[70]
Anjaneyulu, Y.; Rao, R.P. Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu(II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met.-Org. Chem., 1986, 16(2), 257-272.
[http://dx.doi.org/10.1080/00945718608057530]
[71]
Çıralı, D.E.; Uyar, Z.; Koyuncu, İ.; Hacıoğlu, N. Synthesis, characterization and catalytic, cytotoxic and antimicrobial activities of two novel cyclotriphosphazene-based multisite ligands and their Ru(II) complexes. Appl. Organomet. Chem., 2015, 29(8), 536-542.
[http://dx.doi.org/10.1002/aoc.3328]
[72]
Melaiye, A.; Youngs, W.J. Silver and its application as an antimicrobial agent. Expert Opin. Ther. Pat., 2005, 15, 125-130.
[http://dx.doi.org/10.1517/13543776.15.2.125]
[73]
Dallas, P.; Zboril, R.; Bourlinos, A.B.; Jancik, D.; Niarchos, D.; Panacek, A.; Petridis, D. Cornet-like phosphotriazine/diamine polymers as reductant and matrix for the synthesis of silver nanocomposites with antimicrobial activity. Macromol. Mater. Eng., 2010, 295(2), 108-114.
[http://dx.doi.org/10.1002/mame.200900258]
[74]
Gascón, E.; Maisanaba, S.; Otal, I.; Valero, E.; Repetto, G.; Jones, P.G.; Jiménez, J. (Amino)cyclophosphazenes as multisite ligands for the synthesis of antitumoral and antibacterial silver(I) complexes. Inorg. Chem., 2020, 59(4), 2464-2483.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03334] [PMID: 31984738]
[75]
Yilmaz, V.T.; Icsel, C.; Batur, J.; Aydinlik, S.; Sahinturk, P.; Aygun, M. Structures and biochemical evaluation of silver(I) 5,5-diethylbarbiturate complexes with bis(diphenylphosphino)alkanes as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2017, 139, 901-916.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.062] [PMID: 28881285]
[76]
Batarseh, K.I. Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J. Antimicrob. Chemother., 2004, 54(2), 546-548.
[http://dx.doi.org/10.1093/jac/dkh349] [PMID: 15243026]
[77]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[78]
Sambhy, V.; MacBride, M.M.; Peterson, B.R.; Sen, A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J. Am. Chem. Soc., 2006, 128(30), 9798-9808.
[http://dx.doi.org/10.1021/ja061442z] [PMID: 16866536]
[79]
Abd-El-Aziz, A.S.; Abdelghani, A.A.; Mishra, A.K. Optical and biological properties of metal-containing macromolecules. J. Inorg. Organomet. Polym. Mater., 2019, 30(1), 3-41.
[http://dx.doi.org/10.1007/s10904-019-01293-y]
[80]
Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(5), 709-729.
[http://dx.doi.org/10.1039/C8TB02491J] [PMID: 32254845]
[81]
Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J. Med. Chem., 2020, 63(1), 1-22.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00803] [PMID: 31502840]
[82]
Krishnadevi, K.; Selvaraj, V.; Prasanna, D. Thermal, mechanical and antibacterial properties of cyclophosphazene incorporated benzoxazine blended bismaleimide composites. RSC Adv, 2015, 5(2), 913-921.
[http://dx.doi.org/10.1039/C4RA10564H]
[83]
Naik, P.N.; Chimatadar, S.A.; Nandibewoor, S.T. Study on the interaction between antibacterial drug and bovine serum albumin: a spectroscopic approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 73(5), 841-845.
[http://dx.doi.org/10.1016/j.saa.2009.04.018] [PMID: 19467922]
[84]
Krishnadevi, K.; Selvaraj, V. Cyclotriphosphazene and TiO2 reinforced nanocomposite coated on mild steel plates for antibacterial and corrosion resistance applications. Appl. Surf. Sci., 2016, 366, 148-157.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.018]
[85]
Villatte, G.; Massard, C.; Descamps, S.; Sibaud, Y.; Forestier, C.; Awitor, K.O. Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application. Int. J. Nanomedicine, 2015, 10, 3367-3375.
[http://dx.doi.org/10.2147/IJN.S81518] [PMID: 26005347]
[86]
Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol., 1998, 32, 726-728.
[http://dx.doi.org/10.1021/es970860o]
[87]
Revathi, R.; Prabunathan, P.; Alagar, M. Synthesis and studies on phosphazene core-based POSS-reinforced polyimide nanocomposites. Polym. Bull., 2018, 76(1), 387-407.
[http://dx.doi.org/10.1007/s00289-018-2391-1]
[88]
Kim, G.H.; Ramesh, S.; Kim, J.H.; Jung, D.; Kim, H.S. Cellulose-silica/gold nanomaterials for electronic applications. J. Nanosci. Nanotechnol., 2014, 14(10), 7495-7501.
[http://dx.doi.org/10.1166/jnn.2014.9551] [PMID: 25942815]
[89]
Dong, A.; Huang, J.; Lan, S.; Wang, T.; Xiao, L.; Wang, W.; Zhao, T.; Zheng, X.; Liu, F.; Gao, G.; Chen, Y. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity. Nanotechnology, 2011, 22(29)295602
[http://dx.doi.org/10.1088/0957-4484/22/29/295602] [PMID: 21673388]
[90]
You, M.; Li, W.; Pan, Y.; Fei, P.; Wang, H.; Zhang, W.; Zhi, L.; Meng, J. Preparation and characterization of antibacterial polyamine-based cyclophosphazene nanofiltration membranes. J. Membr. Sci., 2019, 592117371
[http://dx.doi.org/10.1016/j.memsci.2019.117371]
[91]
Gibney, K.A.; Sovadinova, I.; Lopez, A.I.; Urban, M.; Ridgway, Z.; Caputo, G.A.; Kuroda, K. Poly(ethylene imine)s as antimicrobial agents with selective activity. Macromol. Biosci., 2012, 12(9), 1279-1289.
[http://dx.doi.org/10.1002/mabi.201200052] [PMID: 22865776]
[92]
Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Koski, P. Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology (Reading), 1997, 143(Pt 10), 3193-3199.
[http://dx.doi.org/10.1099/00221287-143-10-3193] [PMID: 9353921]
[93]
Liu, M.; Li, J.; Li, B. Mannose-modificated polyethylenimine: a specific and effective antibacterial agent against Escherichia coli. Langmuir, 2018, 34(4), 1574-1580.
[http://dx.doi.org/10.1021/acs.langmuir.7b03556] [PMID: 29304546]
[94]
Yang, Y.F.; Hu, H.Q.; Li, Y.; Wan, L.S.; Xu, Z.K. Membrane surface with antibacterial property by grafting polycation. J. Membr. Sci., 2011, 376(1-2), 132-141.
[http://dx.doi.org/10.1016/j.memsci.2011.04.012]
[95]
Allcock, H.R.; Pucher, S.R.; Fitzpatrick, R.J.; Rashid, K. Antibacterial activity and mutagenicity studies of water-soluble phosphazene high polymers. Biomaterials, 1992, 13(12), 857-862.
[http://dx.doi.org/10.1016/0142-9612(92)90179-R] [PMID: 1457679]
[96]
Li, M.; Li, L.; Su, K.; Liu, X.; Zhang, T.; Liang, Y.; Jing, D.; Yang, X.; Zheng, D.; Cui, Z.; Li, Z.; Zhu, S.; Yeung, K.W.K.; Zheng, Y.; Wang, X.; Wu, S. Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv. Sci. (Weinh.), 2019, 6(17)1900599
[http://dx.doi.org/10.1002/advs.201900599] [PMID: 31508278]
[97]
Ozay, H.; Ilgin, P.; Ozay, O. Novel hydrogels based on crosslinked chitosan with formyl-phosphazene using Schiff- base reaction. Int. J. Polym. Mater. Polym. Biomater., 2019, 2019, 1-10.
[http://dx.doi.org/10.1080/00914037.2019.1706514]
[98]
Ni, Z.; Yu, H.; Wang, L.; Shen, D.; Elshaarani, T.; Fahad, S.; Khan, A.; Haq, F.; Teng, L. Recent research progress on polyphosphazene-based drug delivery systems. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(8), 1555-1575.
[http://dx.doi.org/10.1039/C9TB02517K] [PMID: 32025683]
[99]
Lutzke, A.; Tapia, J.B.; Neufeld, M.J.; Reynolds, M.M. Sustained nitric oxide release from a tertiary S-nitrosothiol-based polyphosphazene coating. ACS Appl. Mater. Interfaces, 2017, 9(3), 2104-2113.
[http://dx.doi.org/10.1021/acsami.6b12888] [PMID: 28068065]
[100]
Cho, J.K.; Hong, J.M.; Han, T.; Yang, H.K.; Song, S.C. Injectable and biodegradable poly(organophosphazene) hydrogel as a delivery system of docetaxel for cancer treatment. J. Drug Target., 2013, 21(6), 564-573.
[http://dx.doi.org/10.3109/1061186X.2013.776055] [PMID: 23594096]
[101]
Allcock, H.R.; Kugel, R.L.; Valan, K.J. Phosphonitrilic compounds. VI. High molecular weight poly(alkoxy- and aryloxyphosphazenes). Inorg. Chem., 1966, 5, 1709-1715.
[http://dx.doi.org/10.1021/ic50044a016]
[102]
Allcock, H.R. Generation of structural diversity in polyphosphazenes. Appl. Organomet. Chem., 2013, 27(11), 620-629.
[http://dx.doi.org/10.1002/aoc.2981]
[103]
Liu, X.; Zhang, H.; Tian, Z.; Sen, A.; Allcock, H.R. Preparation of quaternized organic–inorganic hybrid brush polyphosphazene-co-poly[2-(dimethylamino)ethyl methacrylate] electrospun fibers and their antibacterial properties. Polym. Chem., 2012, 3(8), 2082-2091.
[http://dx.doi.org/10.1039/c2py20170d]
[104]
Xu, L.C.; Li, Z.; Tian, Z.; Chen, C.; Allcock, H.R.; Siedlecki, C.A. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses. Acta Biomater., 2018, 67, 87-98.
[http://dx.doi.org/10.1016/j.actbio.2017.11.056] [PMID: 29229544]
[105]
Tian, Z.; Zhang, Y.; Liu, X.; Chen, C.; Guiltinan, M.J.; Allcock, H.R. Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polym. Chem., 2013, 4(6), 1826-1835.
[http://dx.doi.org/10.1039/c2py21064a]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy