Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Updated Understanding of Platelets in Thrombosis and Hemostasis: The Roles of Integrin PSI Domains and their Potential as Therapeutic Targets

Author(s): Daniel T. MacKeigan, Tiffany Ni, Chuanbin Shen, Tyler W. Stratton, Wenjing Ma, Guangheng Zhu, Preeti Bhoria and Heyu Ni*

Volume 20, Issue 4, 2020

Page: [260 - 273] Pages: 14

DOI: 10.2174/1871529X20666201001144541

Price: $65

Abstract

Platelets are small blood cells known primarily for their ability to adhere and aggregate at injured vessels to arrest bleeding. However, when triggered under pathological conditions, the same adaptive mechanism of platelet adhesion and aggregation may cause thrombosis, a primary cause of heart attack and stroke. Over recent decades, research has made considerable progress in uncovering the intricate and dynamic interactions that regulate these processes. Integrins are heterodimeric cell surface receptors expressed on all metazoan cells that facilitate cell adhesion, movement, and signaling, to drive biological and pathological processes such as thrombosis and hemostasis. Recently, our group discovered that the plexin-semaphorin-integrin (PSI) domains of the integrin β subunits exert endogenous thiol isomerase activity derived from their two highly conserved CXXC active site motifs. Given the importance of redox reactions in integrin activation and its location in the knee region, this PSI domain activity may be critically involved in facilitating the interconversions between integrin conformations. Our monoclonal antibodies against the β3 PSI domain inhibited its thiol isomerase activity and proportionally attenuated fibrinogen binding and platelet aggregation. Notably, these antibodies inhibited thrombosis without significantly impairing hemostasis or causing platelet clearance. In this review, we will update mechanisms of thrombosis and hemostasis, including platelet versatilities and immune-mediated thrombocytopenia, discuss critical contributions of the newly discovered PSI domain thiol isomerase activity, and its potential as a novel target for anti-thrombotic therapies and beyond.

Keywords: Thrombosis and hemostasis, platelets, integrins, immune thrombocytopenia, thiol isomerase activity, cardiovascular disease, therapies.

Graphical Abstract
[1]
Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; Lavalle, C.; McKeown, T.; Marshall, A.H.; Ni, H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci., 2016, 53(6), 409-430.
[http://dx.doi.org/10.1080/10408363.2016.1200008] [PMID: 27282765]
[2]
Junt, T.; Schulze, H.; Chen, Z.; Massberg, S.; Goerge, T.; Krueger, A.; Wagner, D.D.; Graf, T.; Italiano, J.E., Jr; Shivdasani, R.A.; von Andrian, U.H. Dynamic visualization of thrombopoiesis within bone marrow. Science, 2007, 317(5845), 1767-1770.
[http://dx.doi.org/10.1126/science.1146304] [PMID: 17885137]
[3]
Lefrançais, E.; Ortiz-Muñoz, G.; Caudrillier, A.; Mallavia, B.; Liu, F.; Sayah, D.M.; Thornton, E.E.; Headley, M.B.; David, T.; Coughlin, S.R.; Krummel, M.F.; Leavitt, A.D.; Passegué, E.; Looney, M.R. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 2017, 544(7648), 105-109.
[http://dx.doi.org/10.1038/nature21706] [PMID: 28329764]
[4]
Wang, Y.; Hayes, V.; Jarocha, D.; Sim, X.; Harper, D.C.; Fuentes, R.; Sullivan, S.K.; Gadue, P.; Chou, S.T.; Torok-Storb, B.J.; Marks, M.S.; French, D.L.; Poncz, M. Comparative analysis of human ex vivo-generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale. Blood, 2015, 125(23), 3627-3636.
[http://dx.doi.org/10.1182/blood-2014-08-593053] [PMID: 25852052]
[5]
Fuentes, R.; Wang, Y.; Hirsch, J.; Wang, C.; Rauova, L.; Worthen, G.S.; Kowalska, M.A.; Poncz, M. Infusion of mature megakaryocytes into mice yields functional platelets. J. Clin. Invest., 2010, 120(11), 3917-3922.
[http://dx.doi.org/10.1172/JCI43326] [PMID: 20972336]
[6]
Borges, I.; Sena, I.; Azevedo, P.; Andreotti, J.; Almeida, V.; Paiva, A.; Santos, G.; Guerra, D.; Prazeres, P.; Mesquita, L.L.; Silva, L.S.B.; Leonel, C.; Mintz, A.; Birbrair, A. Lung as a Niche for Hematopoietic Progenitors. Stem Cell Rev Rep, 2017, 13(5), 567-574.
[http://dx.doi.org/10.1007/s12015-017-9747-z] [PMID: 28669077]
[7]
Smyth, S.S.; McEver, R.P.; Weyrich, A.S.; Morrell, C.N.; Hoffman, M.R.; Arepally, G.M.; French, P.A.; Dauerman, H.L.; Becker, R.C. 2009 Platelet Colloquium, P. Platelet colloquium participants. platelet functions beyond hemostasis. J. Thromb. Haemost., 2009, 7(11), 1759-1766.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03586.x] [PMID: 19691483]
[8]
Xu, X.R.; Wang, Y.; Adili, R.; Ju, L.; Spring, C.M.; Jin, J.W.; Yang, H.; Neves, M.A.D.; Chen, P.; Yang, Y.; Lei, X.; Chen, Y.; Gallant, R.C.; Xu, M.; Zhang, H.; Song, J.; Ke, P.; Zhang, D.; Carrim, N.; Yu, S.Y.; Zhu, G.; She, Y.M.; Cyr, T.; Fu, W.; Liu, G.; Connelly, P.W.; Rand, M.L.; Adeli, K.; Freedman, J.; Lee, J.E.; Tso, P.; Marchese, P.; Davidson, W.S.; Jackson, S.P.; Zhu, C.; Ruggeri, Z.M.; Ni, H. Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nat. Commun., 2018, 9(1), 3608.
[http://dx.doi.org/10.1038/s41467-018-05806-0] [PMID: 30190457]
[9]
Ruggeri, Z.M. Platelets in atherothrombosis. Nat. Med., 2002, 8(11), 1227-1234.
[http://dx.doi.org/10.1038/nm1102-1227] [PMID: 12411949]
[10]
Jackson, S.P. Arterial thrombosis--insidious, unpredictable and deadly. Nat. Med., 2011, 17(11), 1423-1436.
[http://dx.doi.org/10.1038/nm.2515] [PMID: 22064432]
[11]
McFadyen, J.D.; Schaff, M.; Peter, K. Current and future antiplatelet therapies: Emphasis on preserving haemostasis. Nat. Rev. Cardiol., 2018, 15(3), 181-191.
[http://dx.doi.org/10.1038/nrcardio.2017.206] [PMID: 29297508]
[12]
Xu, X.R.; Carrim, N.; Neves, M.A.; McKeown, T.; Stratton, T.W.; Coelho, R.M.; Lei, X.; Chen, P.; Xu, J.; Dai, X.; Li, B.X.; Ni, H. Platelets and platelet adhesion molecules: Novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J., 2016, 14(1), 29.
[http://dx.doi.org/10.1186/s12959-016-0100-6] [PMID: 27766055]
[13]
Adair, B.D.; Alonso, J.L.; van Agthoven, J.; Hayes, V.; Ahn, H.S.; Yu, I.S.; Lin, S.W.; Xiong, J.P.; Poncz, M.; Arnaout, M.A. Structure-guided design of pure orthosteric inhibitors of αIIbβ3 that prevent thrombosis but preserve hemostasis. Nat. Commun., 2020, 11(1), 398.
[http://dx.doi.org/10.1038/s41467-019-13928-2] [PMID: 31964886]
[14]
Chen, Z.Y.; Oswald, B.E.; Sullivan, J.A.; Dahmani, F.Z.; Pasman, Y.; Liu, Z.; Chen, P.; Ni, H. Platelet physiology and immunology: Pathogenesis and treatment of classical and non-classical fetal and neonatal alloimmune thrombocytopenia. Ann. Blood, 2019, 4, 29-29.
[http://dx.doi.org/10.21037/aob.2019.12.04]
[15]
Semple, J.W.; Italiano, J.E., Jr; Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol., 2011, 11(4), 264-274.
[http://dx.doi.org/10.1038/nri2956] [PMID: 21436837]
[16]
Li, C.; Li, J.; Ni, H. Crosstalk between platelets and microbial pathogens. Front. Immunol., 1962, 2020, 11.
[PMID: 32849656]
[17]
Elzey, B.D.; Tian, J.; Jensen, R.J.; Swanson, A.K.; Lees, J.R.; Lentz, S.R.; Stein, C.S.; Nieswandt, B.; Wang, Y.; Davidson, B.L.; Ratliff, T.L. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity, 2003, 19(1), 9-19.
[http://dx.doi.org/10.1016/S1074-7613(03)00177-8] [PMID: 12871635]
[18]
Elzey, B.D.; Grant, J.F.; Sinn, H.W.; Nieswandt, B.; Waldschmidt, T.J.; Ratliff, T.L. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J. Leukoc. Biol., 2005, 78(1), 80-84.
[http://dx.doi.org/10.1189/jlb.1104669] [PMID: 15899982]
[19]
Chapman, L.M.; Aggrey, A.A.; Field, D.J.; Srivastava, K.; Ture, S.; Yui, K.; Topham, D.J.; Baldwin, W.M., III; Morrell, C.N. Platelets present antigen in the context of MHC class I. J. Immunol., 2012, 189(2), 916-923.
[http://dx.doi.org/10.4049/jimmunol.1200580] [PMID: 22706078]
[20]
Denis, M.M.; Tolley, N.D.; Bunting, M.; Schwertz, H.; Jiang, H.; Lindemann, S.; Yost, C.C.; Rubner, F.J.; Albertine, K.H.; Swoboda, K.J.; Fratto, C.M.; Tolley, E.; Kraiss, L.W.; McIntyre, T.M.; Zimmerman, G.A.; Weyrich, A.S. Escaping the nuclear confines: Signal-dependent pre-mRNA splicing in anucleate platelets. Cell, 2005, 122(3), 379-391.
[http://dx.doi.org/10.1016/j.cell.2005.06.015] [PMID: 16096058]
[21]
Yang, H.; Lang, S.; Zhai, Z.; Li, L.; Kahr, W.H.; Chen, P.; Brkić, J.; Spring, C.M.; Flick, M.J.; Degen, J.L.; Freedman, J.; Ni, H. Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood, 2009, 114(2), 425-436.
[http://dx.doi.org/10.1182/blood-2008-03-145821] [PMID: 19332769]
[22]
Hamzeh-Cognasse, H.; Damien, P.; Chabert, A.; Pozzetto, B.; Cognasse, F.; Garraud, O. Platelets and infections - complex interactions with bacteria. Front. Immunol., 2015, 6, 82.
[http://dx.doi.org/10.3389/fimmu.2015.00082] [PMID: 25767472]
[23]
Yeaman, M.R. Platelets in defense against bacterial pathogens. Cell. Mol. Life Sci., 2010, 67(4), 525-544.
[http://dx.doi.org/10.1007/s00018-009-0210-4] [PMID: 20013024]
[24]
Iannacone, M.; Sitia, G.; Isogawa, M.; Marchese, P.; Castro, M.G.; Lowenstein, P.R.; Chisari, F.V.; Ruggeri, Z.M.; Guidotti, L.G. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat. Med., 2005, 11(11), 1167-1169.
[http://dx.doi.org/10.1038/nm1317] [PMID: 16258538]
[25]
McMorran, B.J.; Marshall, V.M.; de Graaf, C.; Drysdale, K.E.; Shabbar, M.; Smyth, G.K.; Corbin, J.E.; Alexander, W.S.; Foote, S.J. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science, 2009, 323(5915), 797-800.
[http://dx.doi.org/10.1126/science.1166296] [PMID: 19197068]
[26]
Koenen, R.R.; von Hundelshausen, P.; Nesmelova, I.V.; Zernecke, A.; Liehn, E.A.; Sarabi, A.; Kramp, B.K.; Piccinini, A.M.; Paludan, S.R.; Kowalska, M.A.; Kungl, A.J.; Hackeng, T.M.; Mayo, K.H.; Weber, C. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med., 2009, 15(1), 97-103.
[http://dx.doi.org/10.1038/nm.1898] [PMID: 19122657]
[27]
Siegel-Axel, D.; Daub, K.; Seizer, P.; Lindemann, S.; Gawaz, M. Platelet lipoprotein interplay: Trigger of foam cell formation and driver of atherosclerosis. Cardiovasc. Res., 2008, 78(1), 8-17.
[http://dx.doi.org/10.1093/cvr/cvn015] [PMID: 18218686]
[28]
Wang, N.; Tall, A.R. Cholesterol in platelet biogenesis and activation. Blood, 2016, 127(16), 1949-1953.
[http://dx.doi.org/10.1182/blood-2016-01-631259] [PMID: 26929273]
[29]
Italiano, J.E., Jr; Lecine, P.; Shivdasani, R.A.; Hartwig, J.H. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J. Cell Biol., 1999, 147(6), 1299-1312.
[http://dx.doi.org/10.1083/jcb.147.6.1299] [PMID: 10601342]
[30]
Chatterjee, M.; Huang, Z.; Zhang, W.; Jiang, L.; Hultenby, K.; Zhu, L.; Hu, H.; Nilsson, G.P.; Li, N. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood, 2011, 117(14), 3907-3911.
[http://dx.doi.org/10.1182/blood-2010-12-327007] [PMID: 21330475]
[31]
Xu, X.R.; Yousef, G.M.; Ni, H. Cancer and platelet crosstalk: Opportunities and challenges for aspirin and other antiplatelet agents. Blood, 2018, 131(16), 1777-1789.
[http://dx.doi.org/10.1182/blood-2017-05-743187] [PMID: 29519806]
[32]
Labelle, M.; Begum, S.; Hynes, R.O. Platelets guide the formation of early metastatic niches. Proc. Natl. Acad. Sci. USA, 2014, 111(30), E3053-E3061.
[http://dx.doi.org/10.1073/pnas.1411082111] [PMID: 25024172]
[33]
Schlesinger, M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol., 2018, 11(1), 125.
[http://dx.doi.org/10.1186/s13045-018-0669-2] [PMID: 30305116]
[34]
Hess, P.R.; Rawnsley, D.R.; Jakus, Z.; Yang, Y.; Sweet, D.T.; Fu, J.; Herzog, B.; Lu, M.; Nieswandt, B.; Oliver, G.; Makinen, T.; Xia, L.; Kahn, M.L. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J. Clin. Invest., 2014, 124(1), 273-284.
[http://dx.doi.org/10.1172/JCI70422] [PMID: 24292710]
[35]
Osada, M.; Inoue, O.; Ding, G.; Shirai, T.; Ichise, H.; Hirayama, K.; Takano, K.; Yatomi, Y.; Hirashima, M.; Fujii, H.; Suzuki-Inoue, K.; Ozaki, Y. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J. Biol. Chem., 2012, 287(26), 22241-22252.
[http://dx.doi.org/10.1074/jbc.M111.329987] [PMID: 22556408]
[36]
Lesurtel, M.; Graf, R.; Aleil, B.; Walther, D.J.; Tian, Y.; Jochum, W.; Gachet, C.; Bader, M.; Clavien, P.A. Platelet-derived serotonin mediates liver regeneration. Science, 2006, 312(5770), 104-107.
[http://dx.doi.org/10.1126/science.1123842] [PMID: 16601191]
[37]
Lisman, T. Fibrin fixes fibrosis. Blood, 2016, 127(22), 2662-2664.
[http://dx.doi.org/10.1182/blood-2016-03-703223] [PMID: 27257179]
[38]
Li, J.; Sullivan, J.A.; Ni, H. Pathophysiology of immune thrombocytopenia. Curr. Opin. Hematol., 2018, 25(5), 373-381.
[http://dx.doi.org/10.1097/MOH.0000000000000447] [PMID: 30015642]
[39]
Zeng, Q.; Zhu, L.; Tao, L.; Bao, J.; Yang, M.; Simpson, E.K.; Li, C.; van der Wal, D.E.; Chen, P.; Spring, C.M.; Wang, M.; Zhang, L.; Ruan, C.; Hou, M.; Xia, R.; Ni, H. Relative efficacy of steroid therapy in immune thrombocytopenia mediated by anti-platelet GPIIbIIIa versus GPIbα antibodies. Am. J. Hematol., 2012, 87(2), 206-208.
[http://dx.doi.org/10.1002/ajh.22211] [PMID: 22139961]
[40]
Cines, D.B.; Cuker, A.; Semple, J.W. Pathogenesis of immune thrombocytopenia. Presse Med., 2014, 43(4 Pt 2), e49-e59.
[http://dx.doi.org/10.1016/j.lpm.2014.01.010] [PMID: 24630266]
[41]
Miltiadous, O.; Hou, M.; Bussel, J.B. Identifying and treating refractory ITP: Difficulty in diagnosis and role of combination treatment. Blood, 2020, 135(7), 472-490.
[http://dx.doi.org/10.1182/blood.2019003599] [PMID: 31756253]
[42]
Khan, R.; Menard, M.; Jen, C.C.; Chen, X.; Norris, P.A.A.; Lazarus, A.H. Inhibition of platelet phagocytosis as an in vitro predictor for therapeutic potential of RBC antibodies in murine ITP. Blood, 2020, 135(26), 2420-2424.
[http://dx.doi.org/10.1182/blood.2019003646] [PMID: 32374819]
[43]
Crow, A.R.; Lazarus, A.H. Mechanistic properties of intravenous immunoglobulin in murine immune thrombocytopenia: Support for FcγRIIB falls by the wayside. Semin. Hematol., 2016, 53(Suppl. 1), S20-S22.
[http://dx.doi.org/10.1053/j.seminhematol.2016.04.007] [PMID: 27312158]
[44]
Aster, R.H.; Curtis, B.R.; McFarland, J.G.; Bougie, D.W. Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J. Thromb. Haemost., 2009, 7(6), 911-918.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03360.x] [PMID: 19344362]
[45]
Arepally, G.M. Heparin-induced thrombocytopenia. Blood, 2017, 129(21), 2864-2872.
[http://dx.doi.org/10.1182/blood-2016-11-709873] [PMID: 28416511]
[46]
Joly, B.S.; Coppo, P.; Veyradier, A. Thrombotic thrombocytopenic purpura. Blood, 2017, 129(21), 2836-2846.
[http://dx.doi.org/10.1182/blood-2016-10-709857] [PMID: 28416507]
[47]
Saha, M.; McDaniel, J.K.; Zheng, X.L. Thrombotic thrombocytopenic purpura: Pathogenesis, diagnosis and potential novel therapeutics. J. Thromb. Haemost., 2017, 15(10), 1889-1900.
[http://dx.doi.org/10.1111/jth.13764] [PMID: 28662310]
[48]
Adili, R.; Holinstat, M. Formation and resolution of pial microvascular thrombosis in a mouse model of thrombotic thrombocytopenic purpura. Arterioscler. Thromb. Vasc. Biol., 2019, 39(9), 1817-1830.
[http://dx.doi.org/10.1161/ATVBAHA.119.312848] [PMID: 31340669]
[49]
Roose, E.; Veyradier, A.; Vanhoorelbeke, K. Insights into ADAMTS13 structure: Impact on thrombotic thrombocytopenic purpura diagnosis and management. Curr. Opin. Hematol., 2020, 27(5), 320-326.
[http://dx.doi.org/10.1097/MOH.0000000000000602] [PMID: 32740038]
[50]
Kaplan, C.; Bertrand, G.; Ni, H. Platelets; Fourth Edi ed.; Michelson, A. D., Ed; Academic Press, 2019.
[51]
Ni, H.; Chen, P.; Spring, C.M.; Sayeh, E.; Semple, J.W.; Lazarus, A.H.; Hynes, R.O.; Freedman, J. A novel murine model of fetal and neonatal alloimmune thrombocytopenia: Response to intravenous IgG therapy. Blood, 2006, 107(7), 2976-2983.
[http://dx.doi.org/10.1182/blood-2005-06-2562] [PMID: 16317099]
[52]
Li, C.; Piran, S.; Chen, P.; Lang, S.; Zarpellon, A.; Jin, J.W.; Zhu, G.; Reheman, A.; van der Wal, D.E.; Simpson, E.K.; Ni, R.; Gross, P.L.; Ware, J.; Ruggeri, Z.M.; Freedman, J.; Ni, H. The maternal immune response to fetal platelet GPIbα causes frequent miscarriage in mice that can be prevented by intravenous IgG and anti-FcRn therapies. J. Clin. Invest., 2011, 121(11), 4537-4547.
[http://dx.doi.org/10.1172/JCI57850] [PMID: 22019589]
[53]
Chen, P.; Li, C.; Lang, S.; Zhu, G.; Reheman, A.; Spring, C.M.; Freedman, J.; Ni, H. Animal model of fetal and neonatal immune thrombocytopenia: Role of neonatal Fc receptor in the pathogenesis and therapy. Blood, 2010, 116(18), 3660-3668.
[http://dx.doi.org/10.1182/blood-2010-05-284919] [PMID: 20647570]
[54]
Li, C.; Chen, P.; Vadasz, B.; Ma, L.; Zhou, H.; Lang, S.; Freedman, J.; Ni, H. Co-stimulation with LPS or Poly I:C markedly enhances the anti-platelet immune response and severity of fetal and neonatal alloimmune thrombocytopenia. Thromb. Haemost., 2013, 110(6), 1250-1258.
[http://dx.doi.org/10.1160/TH13-04-0354] [PMID: 24067944]
[55]
Tiller, H.; Killie, M.K.; Husebekk, A.; Skogen, B.; Ni, H.; Kjeldsen-Kragh, J.; Øian, P. Platelet antibodies and fetal growth: Maternal antibodies against fetal platelet antigen 1a are strongly associated with reduced birthweight in boys. Acta Obstet. Gynecol. Scand., 2012, 91(1), 79-86.
[http://dx.doi.org/10.1111/j.1600-0412.2011.01269.x] [PMID: 21895612]
[56]
Hawkins, J.; Aster, R.H.; Curtis, B.R. Post-Transfusion Purpura: Current Perspectives. J. Blood Med., 2019, 10, 405-415.
[http://dx.doi.org/10.2147/JBM.S189176] [PMID: 31849555]
[57]
Lotta, L.A.; Garagiola, I.; Palla, R.; Cairo, A.; Peyvandi, F. ADAMTS13 mutations and polymorphisms in congenital thrombotic thrombocytopenic purpura. Hum. Mutat., 2010, 31(1), 11-19.
[http://dx.doi.org/10.1002/humu.21143] [PMID: 19847791]
[58]
Webster, M.L.; Sayeh, E.; Crow, M.; Chen, P.; Nieswandt, B.; Freedman, J.; Ni, H. Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by antiplatelet GPIIbIIIa versus GPIbalpha antibodies. Blood, 2006, 108(3), 943-946.
[http://dx.doi.org/10.1182/blood-2005-06-009761] [PMID: 16861348]
[59]
McMillan, R. Antiplatelet antibodies in chronic immune thrombocytopenia and their role in platelet destruction and defective platelet production. Hematol. Oncol. Clin. North Am., 2009, 23(6), 1163-1175.
[http://dx.doi.org/10.1016/j.hoc.2009.08.008] [PMID: 19932426]
[60]
Li, J.; van der Wal, D.E.; Zhu, G.; Xu, M.; Yougbare, I.; Ma, L.; Vadasz, B.; Carrim, N.; Grozovsky, R.; Ruan, M.; Zhu, L.; Zeng, Q.; Tao, L.; Zhai, Z.M.; Peng, J.; Hou, M.; Leytin, V.; Freedman, J.; Hoffmeister, K.M.; Ni, H. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat. Commun., 2015, 6, 7737.
[http://dx.doi.org/10.1038/ncomms8737] [PMID: 26185093]
[61]
Li, J.; Callum, J.L.; Lin, Y.; Zhou, Y.; Zhu, G.; Ni, H. Severe platelet desialylation in a patient with glycoprotein Ib/IX antibody-mediated immune thrombocytopenia and fatal pulmonary hemorrhage. Haematologica, 2014, 99(4), e61-e63.
[http://dx.doi.org/10.3324/haematol.2013.102897] [PMID: 24532041]
[62]
Shao, L.; Wu, Y.; Zhou, H.; Qin, P.; Ni, H.; Peng, J.; Hou, M. Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets, 2015, 26(5), 495-497.
[http://dx.doi.org/10.3109/09537104.2014.948838] [PMID: 25166956]
[63]
Tao, L.; Zeng, Q.; Li, J.; Xu, M.; Wang, J.; Pan, Y.; Wang, H.; Tao, Q.; Chen, Y.; Peng, J.; Hou, M.; Jansen, A.J.; Ni, H.; Zhai, Z. Platelet desialylation correlates with efficacy of first-line therapies for immune thrombocytopenia. J. Hematol. Oncol., 2017, 10(1), 46.
[http://dx.doi.org/10.1186/s13045-017-0413-3] [PMID: 28179000]
[64]
Yougbaré, I.; Lang, S.; Yang, H.; Chen, P.; Zhao, X.; Tai, W.S.; Zdravic, D.; Vadasz, B.; Li, C.; Piran, S.; Marshall, A.; Zhu, G.; Tiller, H.; Killie, M.K.; Boyd, S.; Leong-Poi, H.; Wen, X.Y.; Skogen, B.; Adamson, S.L.; Freedman, J.; Ni, H. Maternal anti- platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage. J. Clin. Invest., 2015, 125(4), 1545-1556.
[http://dx.doi.org/10.1172/JCI77820] [PMID: 25774504]
[65]
Yougbaré, I.; Tai, W.S.; Zdravic, D.; Oswald, B.E.; Lang, S.; Zhu, G.; Leong-Poi, H.; Qu, D.; Yu, L.; Dunk, C.; Zhang, J.; Sled, J.G.; Lye, S.J.; Brkić, J.; Peng, C.; Höglund, P.; Croy, B.A.; Adamson, S.L.; Wen, X.Y.; Stewart, D.J.; Freedman, J.; Ni, H. Activated NK cells cause placental dysfunction and miscarriages in fetal alloimmune thrombocytopenia. Nat. Commun., 2017, 8(1), 224.
[http://dx.doi.org/10.1038/s41467-017-00269-1] [PMID: 28794456]
[66]
Santoso, S.; Wihadmadyatami, H.; Bakchoul, T.; Werth, S.; Al- Fakhri, N.; Bein, G.; Kiefel, V.; Zhu, J.; Newman, P.J.; Bayat, B.; Sachs, U.J. Antiendothelial αvβ3 antibodies are a major cause of intracranial bleeding in fetal/neonatal alloimmune thrombocytopenia. Arterioscler. Thromb. Vasc. Biol., 2016, 36(8), 1517-1524.
[http://dx.doi.org/10.1161/ATVBAHA.116.307281] [PMID: 27283740]
[67]
Wang, Y.; Gallant, R.C.; Ni, H. Extracellular matrix proteins in the regulation of thrombus formation. Curr. Opin. Hematol., 2016, 23(3), 280-287.
[http://dx.doi.org/10.1097/MOH.0000000000000237] [PMID: 26871252]
[68]
Reddy, E.C.; Rand, M.L. Procoagulant phosphatidylserine-exposing platelets Front. Cardiovasc. Med., 2020, 7, 15.
[http://dx.doi.org/10.3389/fcvm.2020.00015] [PMID: 32195268]
[69]
Roberts, H.R.; Hoffman, M.; Monroe, D.M. A cell-based model of thrombin generation. Semin. Thromb. Hemost., 2006, 32(Suppl. 1), 32-38.
[http://dx.doi.org/10.1055/s-2006-939552] [PMID: 16673264]
[70]
Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Büller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, T.L.; Konstantinides, S.V.; McCumber, M.; Ozaki, Y.; Wendelboe, A.; Weitz, J.I. ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to global disease burden. Semin. Thromb. Hemost., 2014, 40(7), 724-735.
[http://dx.doi.org/10.1055/s-0034-1390325] [PMID: 25302681]
[71]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. heart disease and stroke statistics-2019 update: A report from the American heart association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[72]
Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 9265-9269.
[http://dx.doi.org/10.1073/pnas.84.24.9265] [PMID: 2827174]
[73]
Moncada, S.; Vane, J.R. The role of prostacyclin in vascular tissue. Fed. Proc., 1979, 38(1), 66-71.
[PMID: 215463]
[74]
Marcus, A.J.; Broekman, M.J.; Drosopoulos, J.H.; Islam, N.; Alyonycheva, T.N.; Safier, L.B.; Hajjar, K.A.; Posnett, D.N.; Schoenborn, M.A.; Schooley, K.A.; Gayle, R.B.; Maliszewski, C.R. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J. Clin. Invest., 1997, 99(6), 1351-1360.
[http://dx.doi.org/10.1172/JCI119294] [PMID: 9077545]
[75]
Ruggeri, Z.M. Mechanisms initiating platelet thrombus formation. Thromb. Haemost., 1997, 78(1), 611-616.
[http://dx.doi.org/10.1055/s-0038-1657598] [PMID: 9198225]
[76]
Ni, H.; Denis, C.V.; Subbarao, S.; Degen, J.L.; Sato, T.N.; Hynes, R.O.; Wagner, D.D. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J. Clin. Invest., 2000, 106(3), 385-392.
[http://dx.doi.org/10.1172/JCI9896] [PMID: 10930441]
[77]
André, P.; Denis, C.V.; Ware, J.; Saffaripour, S.; Hynes, R.O.; Ruggeri, Z.M.; Wagner, D.D. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood, 2000, 96(10), 3322-3328.
[http://dx.doi.org/10.1182/blood.V96.10.3322] [PMID: 11071623]
[78]
Lei, X.; Reheman, A.; Hou, Y.; Zhou, H.; Wang, Y.; Marshall, A.H.; Liang, C.; Dai, X.; Li, B.X.; Vanhoorelbeke, K.; Ni, H. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb. Haemost., 2014, 111(2), 279-289.
[http://dx.doi.org/10.1160/TH13-06-0490] [PMID: 24172860]
[79]
Flood, V.H.; Schlauderaff, A.C.; Haberichter, S.L.; Slobodianuk, T.L.; Jacobi, P.M.; Bellissimo, D.B.; Christopherson, P.A.; Friedman, K.D.; Gill, J.C.; Hoffmann, R.G.; Montgomery, R.R. Zimmerman Program Investigators. Crucial role for the VWF A1 domain in binding to type IV collagen. Blood, 2015, 125(14), 2297-2304.
[http://dx.doi.org/10.1182/blood-2014-11-610824] [PMID: 25662333]
[80]
Hoylaerts, M.F.; Yamamoto, H.; Nuyts, K.; Vreys, I.; Deckmyn, H.; Vermylen, J. von Willebrand factor binds to native collagen VI primarily via its A1 domain. Biochem. J., 1997, 324(Pt 1), 185-191.
[http://dx.doi.org/10.1042/bj3240185] [PMID: 9164855]
[81]
Kalafatis, M.; Takahashi, Y.; Girma, J.P.; Meyer, D. Localization of a collagen-interactive domain of human von Willebrand factor between amino acid residues Gly 911 and Glu 1,365. Blood, 1987, 70(5), 1577-1583.
[http://dx.doi.org/10.1182/blood.V70.5.1577.1577] [PMID: 2889486]
[82]
Cruz, M.A.; Yuan, H.; Lee, J.R.; Wise, R.J.; Handin, R.I. Interaction of the von Willebrand factor (vWF) with collagen. Localization of the primary collagen-binding site by analysis of recombinant vWF a domain polypeptides. J. Biol. Chem., 1995, 270(18), 10822-10827.
[http://dx.doi.org/10.1074/jbc.270.18.10822] [PMID: 7738019]
[83]
Berndt, M.C.; Shen, Y.; Dopheide, S.M.; Gardiner, E.E.; Andrews, R.K. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb. Haemost., 2001, 86(1), 178-188.
[PMID: 11487006]
[84]
Sporn, L.A.; Marder, V.J.; Wagner, D.D. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell, 1986, 46(2), 185-190.
[http://dx.doi.org/10.1016/0092-8674(86)90735-X] [PMID: 3087627]
[85]
Schmugge, M.; Rand, M.L.; Freedman, J. Platelets and von Willebrand factor. Transfus. Apheresis Sci., 2003, 28(3), 269-277.
[http://dx.doi.org/10.1016/S1473-0502(03)00046-6] [PMID: 12725954]
[86]
Morales, L.D.; Martin, C.; Cruz, M.A. The interaction of von Willebrand factor-A1 domain with collagen: Mutation G1324S (type 2M von Willebrand disease) impairs the conformational change in A1 domain induced by collagen. J. Thromb. Haemost., 2006, 4(2), 417-425.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01742.x] [PMID: 16420575]
[87]
Ruggeri, Z.M.; Mendolicchio, G.L. Adhesion mechanisms in platelet function. Circ. Res., 2007, 100(12), 1673-1685.
[http://dx.doi.org/10.1161/01.RES.0000267878.97021.ab] [PMID: 17585075]
[88]
Denis, C.V.; Wagner, D.D. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler. Thromb. Vasc. Biol., 2007, 27(4), 728-739.
[http://dx.doi.org/10.1161/01.ATV.0000259359.52265.62] [PMID: 17272754]
[89]
Savage, B.; Almus-Jacobs, F.; Ruggeri, Z.M. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell, 1998, 94(5), 657-666.
[http://dx.doi.org/10.1016/S0092-8674(00)81607-4] [PMID: 9741630]
[90]
Savage, B.; Saldívar, E.; Ruggeri, Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell, 1996, 84(2), 289-297.
[http://dx.doi.org/10.1016/S0092-8674(00)80983-6] [PMID: 8565074]
[91]
Wang, Y.; Reheman, A.; Spring, C.M.; Kalantari, J.; Marshall, A.H.; Wolberg, A.S.; Gross, P.L.; Weitz, J.I.; Rand, M.L.; Mosher, D.F.; Freedman, J.; Ni, H. Plasma fibronectin supports hemostasis and regulates thrombosis. J. Clin. Invest., 2014, 124(10), 4281-4293.
[http://dx.doi.org/10.1172/JCI74630] [PMID: 25180602]
[92]
Reheman, A.; Gross, P.; Yang, H.; Chen, P.; Allen, D.; Leytin, V.; Freedman, J.; Ni, H. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J. Thromb. Haemost., 2005, 3(5), 875-883.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01217.x] [PMID: 15733060]
[93]
Reheman, A.; Tasneem, S.; Ni, H.; Hayward, C.P. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1. Thromb. Res., 2010, 125(5), e177-e183.
[http://dx.doi.org/10.1016/j.thromres.2010.01.009] [PMID: 20138333]
[94]
Li, Z.; Delaney, M.K.; O’Brien, K.A.; Du, X. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2341-2349.
[http://dx.doi.org/10.1161/ATVBAHA.110.207522] [PMID: 21071698]
[95]
Inoue, O.; Suzuki-Inoue, K.; Dean, W.L.; Frampton, J.; Watson, S.P. Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J. Cell Biol., 2003, 160(5), 769-780.
[http://dx.doi.org/10.1083/jcb.200208043] [PMID: 12615912]
[96]
Yao, Y.; Chen, Y.; Adili, R.; McKeown, T.; Chen, P.; Zhu, G.; Li, D.; Ling, W.; Ni, H.; Yang, Y. Plant-based food cyanidin-3-glucoside modulates human platelet glycoprotein vi signaling and inhibits platelet activation and thrombus formation. J. Nutr., 2017, 147(10), 1917-1925.
[http://dx.doi.org/10.3945/jn.116.245944] [PMID: 28855423]
[97]
Nieswandt, B.; Watson, S.P. Platelet-collagen interaction: is GPVI the central receptor? Blood, 2003, 102(2), 449-461.
[http://dx.doi.org/10.1182/blood-2002-12-3882] [PMID: 12649139]
[98]
Nieswandt, B.; Brakebusch, C.; Bergmeier, W.; Schulte, V.; Bouvard, D.; Mokhtari-Nejad, R.; Lindhout, T.; Heemskerk, J.W.; Zirngibl, H.; Fässler, R. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J., 2001, 20(9), 2120-2130.
[http://dx.doi.org/10.1093/emboj/20.9.2120] [PMID: 11331578]
[99]
Hynes, R.O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell, 1992, 69(1), 11-25.
[http://dx.doi.org/10.1016/0092-8674(92)90115-S] [PMID: 1555235]
[100]
Durrant, T.N.; van den Bosch, M.T.; Hers, I. Integrin αIIbβ3 outside-in signaling. Blood, 2017, 130(14), 1607-1619.
[http://dx.doi.org/10.1182/blood-2017-03-773614] [PMID: 28794070]
[101]
Shattil, S.J.; Newman, P.J. Integrins: Dynamic scaffolds for adhesion and signaling in platelets. Blood, 2004, 104(6), 1606-1615.
[http://dx.doi.org/10.1182/blood-2004-04-1257] [PMID: 15205259]
[102]
Mangin, P.H.; Onselaer, M.B.; Receveur, N.; Le Lay, N.; Hardy, A.T.; Wilson, C.; Sanchez, X.; Loyau, S.; Dupuis, A.; Babar, A.K.; Miller, J.L.; Philippou, H.; Hughes, C.E.; Herr, A.B.; Ariëns, R.A.; Mezzano, D.; Jandrot-Perrus, M.; Gachet, C.; Watson, S.P. Immobilized fibrinogen activates human platelets through glycoprotein VI. Haematologica, 2018, 103(5), 898-907.
[http://dx.doi.org/10.3324/haematol.2017.182972] [PMID: 29472360]
[103]
Cameron-Vendrig, A.; Reheman, A.; Siraj, M.A.; Xu, X.R.; Wang, Y.; Lei, X.; Afroze, T.; Shikatani, E.; El-Mounayri, O.; Noyan, H.; Weissleder, R.; Ni, H.; Husain, M. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes, 2016, 65(6), 1714-1723.
[http://dx.doi.org/10.2337/db15-1141] [PMID: 26936963]
[104]
Yang, Y.; Shi, Z.; Reheman, A.; Jin, J.W.; Li, C.; Wang, Y.; Andrews, M.C.; Chen, P.; Zhu, G.; Ling, W.; Ni, H. Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: Novel protective roles against cardiovascular diseases. PLoS One, 2012, 7(5)e37323
[http://dx.doi.org/10.1371/journal.pone.0037323] [PMID: 22624015]
[105]
Cho, J.; Mosher, D.F. Role of fibronectin assembly in platelet thrombus formation. J. Thromb. Haemost., 2006, 4(7), 1461-1469.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01943.x] [PMID: 16839338]
[106]
Cho, J.; Mosher, D.F. Impact of fibronectin assembly on platelet thrombus formation in response to type I collagen and von Willebrand factor. Blood, 2006, 108(7), 2229-2236.
[http://dx.doi.org/10.1182/blood-2006-02-002063] [PMID: 16735600]
[107]
Cosemans, J.M.; Schols, S.E.; Stefanini, L.; de Witt, S.; Feijge, M.A.; Hamulyák, K.; Deckmyn, H.; Bergmeier, W.; Heemskerk, J.W. Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow. Blood, 2011, 117(2), 651-660.
[http://dx.doi.org/10.1182/blood-2010-01-262683] [PMID: 21037087]
[108]
Gilbert, J.C.; DeFeo-Fraulini, T.; Hutabarat, R.M.; Horvath, C.J.; Merlino, P.G.; Marsh, H.N.; Healy, J.M.; Boufakhreddine, S.; Holohan, T.V.; Schaub, R.G. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation, 2007, 116(23), 2678-2686.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.724864] [PMID: 18025536]
[109]
Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knöbl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Callewaert, F.; Biswas, D.; De Winter, H.; Zeldin, R.K. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med., 2019, 380(4), 335-346.
[http://dx.doi.org/10.1056/NEJMoa1806311] [PMID: 30625070]
[110]
Pickens, B.; Mao, Y.; Li, D.; Siegel, D.L.; Poncz, M.; Cines, D.B.; Zheng, X.L. Platelet-delivered ADAMTS13 inhibits arterial thrombosis and prevents thrombotic thrombocytopenic purpura in murine models. Blood, 2015, 125(21), 3326-3334.
[http://dx.doi.org/10.1182/blood-2014-07-587139] [PMID: 25800050]
[111]
Bynagari-Settipalli, Y.S.; Cornelissen, I.; Palmer, D.; Duong, D.; Concengco, C.; Ware, J.; Coughlin, S.R. Redundancy and interaction of thrombin- and collagen-mediated platelet activation in tail bleeding and carotid thrombosis in mice. Arterioscler. Thromb. Vasc. Biol., 2014, 34(12), 2563-2569.
[http://dx.doi.org/10.1161/ATVBAHA.114.304244] [PMID: 25278288]
[112]
Shen, J.; Sampietro, S.; Wu, J.; Tang, J.; Gupta, S.; Matzko, C.N.; Tang, C.; Yu, Y.; Brass, L.F.; Zhu, L.; Stalker, T.J. Coordination of platelet agonist signaling during the hemostatic response in vivo. Blood Adv., 2017, 1(27), 2767-2775.
[http://dx.doi.org/10.1182/bloodadvances.2017009498] [PMID: 29296928]
[113]
Lagarrigue, F.; Paul, D.S.; Gingras, A.R.; Valadez, A.J.; Sun, H.; Lin, J.; Cuevas, M.N.; Ablack, J.N.G.; Lopez-Ramirez, M.A.; Bergmeier, W.; Ginsberg, M.H. Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood, 2020, 136(10), 1180-1190.
[http://dx.doi.org/10.1182/blood.2020005348] [PMID: 32518959]
[114]
Cornelissen, I.; Palmer, D.; David, T.; Wilsbacher, L.; Concengco, C.; Conley, P.; Pandey, A.; Coughlin, S.R. Roles and interactions among protease-activated receptors and P2ry12 in hemostasis and thrombosis. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18605-18610.
[http://dx.doi.org/10.1073/pnas.1013309107] [PMID: 20930120]
[115]
Yang, H.; Reheman, A.; Chen, P.; Zhu, G.; Hynes, R.O.; Freedman, J.; Wagner, D.D.; Ni, H. Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo. J. Thromb. Haemost., 2006, 4(10), 2230-2237.
[http://dx.doi.org/10.1111/j.1538-7836.2006.02116.x] [PMID: 16824188]
[116]
Burk, C.D.; Newman, P.J.; Lyman, S.; Gill, J.; Coller, B.S.; Poncz, M. A deletion in the gene for glycoprotein IIb associated with Glanzmann’s thrombasthenia. J. Clin. Invest., 1991, 87(1), 270-276.
[http://dx.doi.org/10.1172/JCI114982] [PMID: 1702098]
[117]
Hodivala-Dilke, K.M.; McHugh, K.P.; Tsakiris, D.A.; Rayburn, H.; Crowley, D.; Ullman-Culleré, M.; Ross, F.P.; Coller, B.S.; Teitelbaum, S.; Hynes, R.O. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest., 1999, 103(2), 229-238.
[http://dx.doi.org/10.1172/JCI5487] [PMID: 9916135]
[118]
Ikeda, Y.; Handa, M.; Kawano, K.; Kamata, T.; Murata, M.; Araki, Y.; Anbo, H.; Kawai, Y.; Watanabe, K.; Itagaki, I. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J. Clin. Invest., 1991, 87(4), 1234-1240.
[http://dx.doi.org/10.1172/JCI115124] [PMID: 2010539]
[119]
Moake, J.L.; Turner, N.A.; Stathopoulos, N.A.; Nolasco, L.H.; Hellums, J.D. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J. Clin. Invest., 1986, 78(6), 1456-1461.
[http://dx.doi.org/10.1172/JCI112736] [PMID: 3491092]
[120]
Goto, S.; Ikeda, Y.; Saldívar, E.; Ruggeri, Z.M. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J. Clin. Invest., 1998, 101(2), 479-486.
[http://dx.doi.org/10.1172/JCI973] [PMID: 9435321]
[121]
Jackson, S.P. The growing complexity of platelet aggregation. Blood, 2007, 109(12), 5087-5095.
[http://dx.doi.org/10.1182/blood-2006-12-027698] [PMID: 17311994]
[122]
Ni, H.; Papalia, J.M.; Degen, J.L.; Wagner, D.D. Control of thrombus embolization and fibronectin internalization by integrin alpha IIb beta 3 engagement of the fibrinogen gamma chain. Blood, 2003, 102(10), 3609-3614.
[http://dx.doi.org/10.1182/blood-2003-03-0850] [PMID: 12855554]
[123]
Zhai, Z.; Wu, J.; Xu, X.; Ding, K.; Ni, R.; Hu, W.; Sun, Z.; Ni, H. Fibrinogen controls human platelet fibronectin internalization and cell-surface retention. J. Thromb. Haemost., 2007, 5(8), 1740-1746.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02625.x] [PMID: 17596138]
[124]
Reheman, A.; Yang, H.; Zhu, G.; Jin, W.; He, F.; Spring, C.M.; Bai, X.; Gross, P.L.; Freedman, J.; Ni, H. Plasma fibronectin depletion enhances platelet aggregation and thrombus formation in mice lacking fibrinogen and von Willebrand factor. Blood, 2009, 113(8), 1809-1817.
[http://dx.doi.org/10.1182/blood-2008-04-148361] [PMID: 19036705]
[125]
Kulkarni, S.; Dopheide, S.M.; Yap, C.L.; Ravanat, C.; Freund, M.; Mangin, P.; Heel, K.A.; Street, A.; Harper, I.S.; Lanza, F.; Jackson, S.P. A revised model of platelet aggregation. J. Clin. Invest., 2000, 105(6), 783-791.
[http://dx.doi.org/10.1172/JCI7569] [PMID: 10727447]
[126]
Dunne, E.; Spring, C.M.; Reheman, A.; Jin, W.; Berndt, M.C.; Newman, D.K.; Newman, P.J.; Ni, H.; Kenny, D. Cadherin 6 has a functional role in platelet aggregation and thrombus formation. Arterioscler. Thromb. Vasc. Biol., 2012, 32(7), 1724-1731.
[http://dx.doi.org/10.1161/ATVBAHA.112.250464] [PMID: 22539596]
[127]
Chauhan, A.K.; Kisucka, J.; Cozzi, M.R.; Walsh, M.T.; Moretti, F.A.; Battiston, M.; Mazzucato, M.; De Marco, L.; Baralle, F.E.; Wagner, D.D.; Muro, A.F. Prothrombotic effects of fibronectin isoforms containing the EDA domain. Arterioscler. Thromb. Vasc. Biol., 2008, 28(2), 296-301.
[http://dx.doi.org/10.1161/ATVBAHA.107.149146] [PMID: 17991876]
[128]
Asch, A.S.; Silbiger, S.; Heimer, E.; Nachman, R.L. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem. Biophys. Res. Commun., 1992, 182(3), 1208-1217.
[http://dx.doi.org/10.1016/0006-291X(92)91860-S] [PMID: 1371676]
[129]
Romo, G.M.; Dong, J.F.; Schade, A.J.; Gardiner, E.E.; Kansas, G.S.; Li, C.Q.; McIntire, L.V.; Berndt, M.C.; López, J.A. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J. Exp. Med., 1999, 190(6), 803-814.
[http://dx.doi.org/10.1084/jem.190.6.803] [PMID: 10499919]
[130]
Merten, M.; Thiagarajan, P. Role for sulfatides in platelet aggregation. Circulation, 2001, 104(24), 2955-2960.
[http://dx.doi.org/10.1161/hc4901.100383] [PMID: 11739312]
[131]
Falati, S.; Gross, P.; Merrill-Skoloff, G.; Furie, B.C.; Furie, B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med., 2002, 8(10), 1175-1181.
[http://dx.doi.org/10.1038/nm782] [PMID: 12244306]
[132]
Eltringham-Smith, L.J.; Lei, X.; Reheman, A.; Lambourne, M.D.; Pryzdial, E.L.; Ni, H.; Sheffield, W.P. The fibrinogen but not the Factor VIII content of transfused plasma determines its effectiveness at reducing bleeding in coagulopathic mice. Transfusion, 2015, 55(5), 1040-1050.
[http://dx.doi.org/10.1111/trf.12931] [PMID: 25403994]
[133]
Monroe, D.M.; Hoffman, M.; Roberts, H.R. Platelets and thrombin generation. Arterioscler. Thromb. Vasc. Biol., 2002, 22(9), 1381-1389.
[http://dx.doi.org/10.1161/01.ATV.0000031340.68494.34] [PMID: 12231555]
[134]
Hoffman, M. A cell-based model of coagulation and the role of factor VIIa. Blood Rev., 2003, 17(1), S1-S5.
[http://dx.doi.org/10.1016/S0268-960X(03)90000-2] [PMID: 14697207]
[135]
Rand, M.L.; Wang, H.; Bang, K.W.; Packham, M.A.; Freedman, J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J. Thromb. Haemost., 2006, 4(7), 1621-1623.
[http://dx.doi.org/10.1111/j.1538-7836.2006.02011.x] [PMID: 16839364]
[136]
Mitchell, J.L.; Lionikiene, A.S.; Fraser, S.R.; Whyte, C.S.; Booth, N.A.; Mutch, N.J. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood, 2014, 124(26), 3982-3990.
[http://dx.doi.org/10.1182/blood-2014-06-583070] [PMID: 25331118]
[137]
Heemskerk, J.W.; Bevers, E.M.; Lindhout, T. Platelet activation and blood coagulation. Thromb. Haemost., 2002, 88(2), 186-193.
[PMID: 12195687]
[138]
Mammadova-Bach, E.; Ollivier, V.; Loyau, S.; Schaff, M.; Dumont, B.; Favier, R.; Freyburger, G.; Latger-Cannard, V.; Nieswandt, B.; Gachet, C.; Mangin, P.H.; Jandrot-Perrus, M. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood, 2015, 126(5), 683-691.
[http://dx.doi.org/10.1182/blood-2015-02-629717] [PMID: 25977585]
[139]
Mattheij, N.J.; Swieringa, F.; Mastenbroek, T.G.; Berny-Lang, M.A.; May, F.; Baaten, C.C.; van der Meijden, P.E.; Henskens, Y.M.; Beckers, E.A.; Suylen, D.P.; Nolte, M.W.; Hackeng, T.M.; McCarty, O.J.; Heemskerk, J.W.; Cosemans, J.M. Coated platelets function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII. Haematologica, 2016, 101(4), 427-436.
[http://dx.doi.org/10.3324/haematol.2015.131441] [PMID: 26721892]
[140]
Xue, M.; Fenton, J.W., II; Shen, G.X. Hirulog-1 reduces expression of platelet-derived growth factor in neointima of rat carotid artery induced by balloon catheter injury. J. Vasc. Res., 2000, 37(2), 82-92.
[http://dx.doi.org/10.1159/000025719] [PMID: 10754393]
[141]
Shen, G.X. Inhibition of thrombin: Relevance to anti-thrombosis strategy. Front. Biosci., 2006, 11, 113-120.
[http://dx.doi.org/10.2741/1783] [PMID: 16146717]
[142]
Ni, R.; Neves, M.A.D.; Wu, C.; Cerroni, S.E.; Flick, M.J.; Ni, H.; Weitz, J.I.; Gross, P.L.; Kim, P.Y. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrin-dependent plasmin generation on thrombin-activated platelets. J. Thromb. Haemost., 2020, 18(9), 2364-2376.
[http://dx.doi.org/10.1111/jth.14950] [PMID: 32506822]
[143]
von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; Byrne, R.A.; Laitinen, I.; Walch, A.; Brill, A.; Pfeiler, S.; Manukyan, D.; Braun, S.; Lange, P.; Riegger, J.; Ware, J.; Eckart, A.; Haidari, S.; Rudelius, M.; Schulz, C.; Echtler, K.; Brinkmann, V.; Schwaiger, M.; Preissner, K.T.; Wagner, D.D.; Mackman, N.; Engelmann, B.; Massberg, S. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med., 2012, 209(4), 819-835.
[http://dx.doi.org/10.1084/jem.20112322] [PMID: 22451716]
[144]
Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost., 2012, 10(1), 136-144.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04544.x] [PMID: 22044575]
[145]
Heestermans, M.; Salloum-Asfar, S.; Streef, T.; Laghmani, E.H.; Salvatori, D.; Luken, B.M.; Zeerleder, S.S.; Spronk, H.M.H.; Korporaal, S.J.; Kirchhofer, D.; Wagenaar, G.T.M.; Versteeg, H.H.; Reitsma, P.H.; Renné, T.; van Vlijmen, B.J.M. Mouse venous thrombosis upon silencing of anticoagulants depends on tissue factor and platelets, not FXII or neutrophils. Blood, 2019, 133(19), 2090-2099.
[http://dx.doi.org/10.1182/blood-2018-06-853762] [PMID: 30898865]
[146]
Stark, K.; Philippi, V.; Stockhausen, S.; Busse, J.; Antonelli, A.; Miller, M.; Schubert, I.; Hoseinpour, P.; Chandraratne, S.; von Brühl, M.L.; Gaertner, F.; Lorenz, M.; Agresti, A.; Coletti, R.; Antoine, D.J.; Heermann, R.; Jung, K.; Reese, S.; Laitinen, I.; Schwaiger, M.; Walch, A.; Sperandio, M.; Nawroth, P.P.; Reinhardt, C.; Jäckel, S.; Bianchi, M.E.; Massberg, S. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood, 2016, 128(20), 2435-2449.
[http://dx.doi.org/10.1182/blood-2016-04-710632] [PMID: 27574188]
[147]
Maugeri, N.; Campana, L.; Gavina, M.; Covino, C.; De Metrio, M.; Panciroli, C.; Maiuri, L.; Maseri, A.; D’Angelo, A.; Bianchi, M.E.; Rovere-Querini, P.; Manfredi, A.A. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost., 2014, 12(12), 2074-2088.
[http://dx.doi.org/10.1111/jth.12710] [PMID: 25163512]
[148]
Galligan, J.J.; Petersen, D.R. The human protein disulfide isomerase gene family. Hum. Genomics, 2012, 6, 6.
[http://dx.doi.org/10.1186/1479-7364-6-6] [PMID: 23245351]
[149]
Zwicker, J.I.; Schlechter, B.L.; Stopa, J.D.; Liebman, H.A.; Aggarwal, A.; Puligandla, M.; Caughey, T.; Bauer, K.A.; Kuemmerle, N.; Wong, E.; Wun, T.; McLaughlin, M.; Hidalgo, M.; Neuberg, D.; Furie, B.; Flaumenhaft, R. CATIQ Investigators11. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight, 2019, 4(4): 125851
[http://dx.doi.org/10.1172/jci.insight.125851] [PMID: 30652973]
[150]
Wu, Y.; Essex, D.W. Vascular thiol isomerases in thrombosis: The yin and yang. J. Thromb. Haemost., 2020.
[http://dx.doi.org/10.1111/jth.15019] [PMID: 32702157]
[151]
Flaumenhaft, R. Advances in vascular thiol isomerase function. Curr. Opin. Hematol., 2017, 24(5), 439-445.
[http://dx.doi.org/10.1097/MOH.0000000000000362] [PMID: 28598864]
[152]
Sharda, A.; Furie, B. Regulatory role of thiol isomerases in thrombus formation. Expert Rev. Hematol., 2018, 11(5), 437-448.
[http://dx.doi.org/10.1080/17474086.2018.1452612] [PMID: 29542339]
[153]
Essex, D.W.; Wu, Y. Multiple protein disulfide isomerases support thrombosis. Curr. Opin. Hematol., 2018, 25(5), 395-402.
[http://dx.doi.org/10.1097/MOH.0000000000000449] [PMID: 29994898]
[154]
Zhao, Z.; Wu, Y.; Zhou, J.; Chen, F.; Yang, A.; Essex, D.W. The transmembrane protein disulfide isomerase TMX1 negatively regulates platelet responses. Blood, 2019, 133(3), 246-251.
[http://dx.doi.org/10.1182/blood-2018-04-844480] [PMID: 30425049]
[155]
Butera, D.; Cook, K.M.; Chiu, J.; Wong, J.W.; Hogg, P.J. Control of blood proteins by functional disulfide bonds. Blood, 2014, 123(13), 2000-2007.
[http://dx.doi.org/10.1182/blood-2014-01-549816] [PMID: 24523239]
[156]
Rosenberg, N.; Mor-Cohen, R.; Sheptovitsky, V.H.; Romanenco, O.; Hess, O.; Lahav, J. Integrin-mediated cell adhesion requires extracellular disulfide exchange regulated by protein disulfide isomerase. Exp. Cell Res., 2019, 381(1), 77-85.
[http://dx.doi.org/10.1016/j.yexcr.2019.04.017] [PMID: 31042499]
[157]
Holbrook, L.M.; Watkins, N.A.; Simmonds, A.D.; Jones, C.I.; Ouwehand, W.H.; Gibbins, J.M. Platelets release novel thiol isomerase enzymes which are recruited to the cell surface following activation. Br. J. Haematol., 2010, 148(4), 627-637.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07994.x] [PMID: 19995400]
[158]
Zhou, J.; Wu, Y.; Chen, F.; Wang, L.; Rauova, L.; Hayes, V.M.; Poncz, M.; Li, H.; Liu, T.; Liu, J.; Essex, D.W. The disulfide isomerase ERp72 supports arterial thrombosis in mice. Blood, 2017, 130(6), 817-828.
[http://dx.doi.org/10.1182/blood-2016-12-755587] [PMID: 28576878]
[159]
Jasuja, R.; Furie, B.; Furie, B.C. Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood, 2010, 116(22), 4665-4674.
[http://dx.doi.org/10.1182/blood-2010-04-278184] [PMID: 20668226]
[160]
Passam, F.H.; Lin, L.; Gopal, S.; Stopa, J.D.; Bellido-Martin, L.; Huang, M.; Furie, B.C.; Furie, B. Both platelet- and endothelial cell-derived ERp5 support thrombus formation in a laser-induced mouse model of thrombosis. Blood, 2015, 125(14), 2276-2285.
[http://dx.doi.org/10.1182/blood-2013-12-547208] [PMID: 25624318]
[161]
Furie, B.; Flaumenhaft, R. Thiol isomerases in thrombus formation. Circ. Res., 2014, 114(7), 1162-1173.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301808] [PMID: 24677236]
[162]
Mou, Y.; Ni, H.; Wilkins, J.A. The selective inhibition of beta 1 and beta 7 integrin-mediated lymphocyte adhesion by bacitracin. J. Immunol., 1998, 161(11), 6323-6329.
[PMID: 9834122]
[163]
Robinson, A.; O’Neill, S.; Kiernan, A.; O’Donoghue, N.; Moran, N. Bacitracin reveals a role for multiple thiol isomerases in platelet function. Br. J. Haematol., 2006, 132(3), 339-348.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05878.x] [PMID: 16409299]
[164]
Kim, K.; Hahm, E.; Li, J.; Holbrook, L.M.; Sasikumar, P.; Stanley, R.G.; Ushio-Fukai, M.; Gibbins, J.M.; Cho, J. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood, 2013, 122(6), 1052-1061.
[http://dx.doi.org/10.1182/blood-2013-03-492504] [PMID: 23788140]
[165]
Swiatkowska, M.; Szymański, J.; Padula, G.; Cierniewski, C.S. Interaction and functional association of protein disulfide isomerase with alphaVbeta3 integrin on endothelial cells. FEBS J., 2008, 275(8), 1813-1823.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06339.x] [PMID: 18331351]
[166]
Li, J.; Kim, K.; Jeong, S.Y.; Chiu, J.; Xiong, B.; Petukhov, P.A.; Dai, X.; Li, X.; Andrews, R.K.; Du, X.; Hogg, P.J.; Cho, J. Protein disulfide isomerase promotes glycoprotein ibα-mediated platelet-neutrophil interactions under thromboinflammatory conditions. Circulation, 2019, 139(10), 1300-1319.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036323] [PMID: 30586735]
[167]
Lahav, J.; Wijnen, E.M.; Hess, O.; Hamaia, S.W.; Griffiths, D.; Makris, M.; Knight, C.G.; Essex, D.W.; Farndale, R.W. Enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integrin alpha2beta1. Blood, 2003, 102(6), 2085-2092.
[http://dx.doi.org/10.1182/blood-2002-06-1646] [PMID: 12791669]
[168]
Flaumenhaft, R.; Furie, B. Vascular thiol isomerases. Blood, 2016, 128(7), 893-901.
[http://dx.doi.org/10.1182/blood-2016-04-636456] [PMID: 27357699]
[169]
Hotchkiss, K.A.; Chesterman, C.N.; Hogg, P.J. Catalysis of disulfide isomerization in thrombospondin 1 by protein disulfide isomerase. Biochemistry, 1996, 35(30), 9761-9767.
[http://dx.doi.org/10.1021/bi9603938] [PMID: 8703948]
[170]
Ahamed, J.; Versteeg, H.H.; Kerver, M.; Chen, V.M.; Mueller, B.M.; Hogg, P.J.; Ruf, W. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc. Natl. Acad. Sci. USA, 2006, 103(38), 13932-13937.
[http://dx.doi.org/10.1073/pnas.0606411103] [PMID: 16959886]
[171]
Essex, D.W.; Miller, A.; Swiatkowska, M.; Feinman, R.D. Protein disulfide isomerase catalyzes the formation of disulfide-linked complexes of vitronectin with thrombin-antithrombin. Biochemistry, 1999, 38(32), 10398-10405.
[http://dx.doi.org/10.1021/bi990694s] [PMID: 10441134]
[172]
Lippok, S.; Kolšek, K.; Löf, A.; Eggert, D.; Vanderlinden, W.; Müller, J.P.; König, G.; Obser, T.; Röhrs, K.; Schneppenheim, S.; Budde, U.; Baldauf, C.; Aponte-Santamaría, C.; Gräter, F.; Schneppenheim, R.; Rädler, J.O.; Brehm, M.A. von Willebrand factor is dimerized by protein disulfide isomerase. Blood, 2016, 127(9), 1183-1191.
[http://dx.doi.org/10.1182/blood-2015-04-641902] [PMID: 26670633]
[173]
Sousa, H.R.; Gaspar, R.S.; Sena, E.M.; da Silva, S.A.; Fontelles, J.L.; AraUjo, T.L.; Mastrogiovanni, M.; Fries, D.M.; Azevedo-Santos, A.P.; Laurindo, F.R.; Trostchansky, A.; Paes, A.M. Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: evidence of covalent binding to the C-terminal CGHC redox motif. J. Thromb. Haemost., 2017, 15(4), 774-784.
[http://dx.doi.org/10.1111/jth.13633] [PMID: 28109047]
[174]
Xiong, B.; Jha, V.; Min, J.K.; Cho, J. Protein disulfide isomerase in cardiovascular disease. Exp. Mol. Med., 2020, 52(3), 390-399.
[http://dx.doi.org/10.1038/s12276-020-0401-5] [PMID: 32203104]
[175]
Wilkinson, B.; Gilbert, H.F. Protein disulfide isomerase. Biochim. Biophys. Acta, 2004, 1699(1-2), 35-44.
[http://dx.doi.org/10.1016/S1570-9639(04)00063-9] [PMID: 15158710]
[176]
Luo, B.H.; Carman, C.V.; Springer, T.A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol., 2007, 25, 619-647.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141618] [PMID: 17201681]
[177]
Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell, 2002, 110(6), 673-687.
[http://dx.doi.org/10.1016/S0092-8674(02)00971-6] [PMID: 12297042]
[178]
Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 2011, 3(3)a004994
[http://dx.doi.org/10.1101/cshperspect.a004994] [PMID: 21421922]
[179]
Takagi, J.; Petre, B.M.; Walz, T.; Springer, T.A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell, 2002, 110(5), 599-11.
[http://dx.doi.org/10.1016/S0092-8674(02)00935-2] [PMID: 12230977]
[180]
Puklin-Faucher, E.; Gao, M.; Schulten, K.; Vogel, V. How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation. J. Cell Biol., 2006, 175(2), 349-360.
[http://dx.doi.org/10.1083/jcb.200602071] [PMID: 17060501]
[181]
Mould, A.P.; Symonds, E.J.; Buckley, P.A.; Grossmann, J.G.; McEwan, P.A.; Barton, S.J.; Askari, J.A.; Craig, S.E.; Bella, J.; Humphries, M.J. Structure of an integrin-ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. J. Biol. Chem., 2003, 278(41), 39993-39999.
[http://dx.doi.org/10.1074/jbc.M304627200] [PMID: 12871973]
[182]
Xiao, T.; Takagi, J.; Coller, B.S.; Wang, J.H.; Springer, T.A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature, 2004, 432(7013), 59-67.
[http://dx.doi.org/10.1038/nature02976] [PMID: 15378069]
[183]
Zhu, J.; Zhu, J.; Springer, T.A. Complete integrin headpiece opening in eight steps. J. Cell Biol., 2013, 201(7), 1053-1068.
[http://dx.doi.org/10.1083/jcb.201212037] [PMID: 23798730]
[184]
Shen, C.; Liu, M.; Xu, R.; Wang, G.; Li, J.; Chen, P.; Ma, W.; Mwangi, J.; Lu, Q.; Duan, Z.; Zhang, Z.; Dahmani, F.Z.; Mackeigan, D.T.; Ni, H.; Lai, R. The 14-3-3ζ-c-Src-integrin-β3 complex is vital for platelet activation. Blood, 2020, 136(8), 974-988.
[http://dx.doi.org/10.1182/blood.2019002314] [PMID: 32584951]
[185]
Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; Zhou, Y.; Mao, J.; Long, Z.; Ma, Z.; Ye, W.; Pan, J.; Xi, X.; Jin, J. Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol., 2019, 12(1), 26.
[http://dx.doi.org/10.1186/s13045-019-0709-6] [PMID: 30845955]
[186]
Ni, H.; Li, A.; Simonsen, N.; Wilkins, J.A. Integrin activation by dithiothreitol or Mn2+ induces a ligand-occupied conformation and exposure of a novel NH2-terminal regulatory site on the beta1 integrin chain. J. Biol. Chem., 1998, 273(14), 7981-7987.
[http://dx.doi.org/10.1074/jbc.273.14.7981] [PMID: 9525896]
[187]
Yan, B.; Smith, J.W. Mechanism of integrin activation by disulfide bond reduction. Biochemistry, 2001, 40(30), 8861-8867.
[http://dx.doi.org/10.1021/bi002902i] [PMID: 11467947]
[188]
Kamata, T.; Ambo, H.; Puzon-McLaughlin, W.; Tieu, K.K.; Handa, M.; Ikeda, Y.; Takada, Y. Critical cysteine residues for regulation of integrin alphaIIbbeta3 are clustered in the epidermal growth factor domains of the beta3 subunit. Biochem. J., 2004, 378(Pt 3), 1079-1082.
[http://dx.doi.org/10.1042/bj20031701] [PMID: 14690453]
[189]
Mor-Cohen, R.; Rosenberg, N.; Landau, M.; Lahav, J.; Seligsohn, U. Specific cysteines in beta3 are involved in disulfide bond exchange-dependent and -independent activation of alphaIIbbeta3. J. Biol. Chem., 2008, 283(28), 19235-19244.
[http://dx.doi.org/10.1074/jbc.M802399200] [PMID: 18458089]
[190]
Sun, Q.H.; Liu, C.Y.; Wang, R.; Paddock, C.; Newman, P.J. Disruption of the long-range GPIIIa Cys(5)-Cys(435) disulfide bond results in the production of constitutively active GPIIb-IIIa (alpha(IIb)beta(3)) integrin complexes. Blood, 2002, 100(6), 2094-2101.
[http://dx.doi.org/10.1182/blood-2002-02-0418] [PMID: 12200372]
[191]
Wan, S.W.; Lin, C.F.; Lu, Y.T.; Lei, H.Y.; Anderson, R.; Lin, Y.S. Endothelial cell surface expression of protein disulfide isomerase activates β1 and β3 integrins and facilitates dengue virus infection. J. Cell. Biochem., 2012, 113(5), 1681-1691.
[PMID: 22422622]
[192]
Basile, J.R.; Holmbeck, K.; Bugge, T.H.; Gutkind, J.S. MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J. Biol. Chem., 2007, 282(9), 6899-6905.
[http://dx.doi.org/10.1074/jbc.M609570200] [PMID: 17204469]
[193]
Love, C.A.; Harlos, K.; Mavaddat, N.; Davis, S.J.; Stuart, D.I.; Jones, E.Y.; Esnouf, R.M. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat. Struct. Biol., 2003, 10(10), 843-848.
[http://dx.doi.org/10.1038/nsb977] [PMID: 12958590]
[194]
Kozlov, G.; Perreault, A.; Schrag, J.D.; Park, M.; Cygler, M.; Gehring, K.; Ekiel, I. Insights into function of PSI domains from structure of the Met receptor PSI domain. Biochem. Biophys. Res. Commun., 2004, 321(1), 234-240.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.132] [PMID: 15358240]
[195]
Zhu, G.; Zhang, Q.; Reddy, E.C.; Carrim, N.; Chen, Y.; Xu, X.R.; Xu, M.; Wang, Y.; Hou, Y.; Ma, L.; Li, Y.; Rui, M.; Petruzziello-Pellegrini, T.N.; Lavalle, C.; Stratton, T.W.; Lei, X.; Adili, R.; Chen, P.; Zhu, C.; Wilkins, J.A.; Hynes, R.O.; Freedman, J.; Ni, H. The integrin PSI domain has an endogenous thiol isomerase function and is a novel target for antiplatelet therapy. Blood, 2017, 129(13), 1840-1854.
[http://dx.doi.org/10.1182/blood-2016-07-729400] [PMID: 28122739]
[196]
Weiss, E.J.; Bray, P.F.; Tayback, M.; Schulman, S.P.; Kickler, T.S.; Becker, L.C.; Weiss, J.L.; Gerstenblith, G.; Goldschmidt- Clermont, P.J. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N. Engl. J. Med., 1996, 334(17), 1090-1094.
[http://dx.doi.org/10.1056/NEJM199604253341703] [PMID: 8598867]
[197]
Vijayan, K.V.; Liu, Y.; Sun, W.; Ito, M.; Bray, P.F. The Pro33 isoform of integrin beta3 enhances outside-in signaling in human platelets by regulating the activation of serine/threonine phosphatases. J. Biol. Chem., 2005, 280(23), 21756-21762.
[http://dx.doi.org/10.1074/jbc.M500872200] [PMID: 15826939]
[198]
Vijayan, K.V.; Goldschmidt-Clermont, P.J.; Roos, C.; Bray, P.F. The Pl(A2) polymorphism of integrin beta(3) enhances outside-in signaling and adhesive functions. J. Clin. Invest., 2000, 105(6), 793-802.
[http://dx.doi.org/10.1172/JCI6982] [PMID: 10727448]
[199]
Michelson, A.D.; Furman, M.I.; Goldschmidt-Clermont, P.; Mascelli, M.A.; Hendrix, C.; Coleman, L.; Hamlington, J.; Barnard, M.R.; Kickler, T.; Christie, D.J.; Kundu, S.; Bray, P.F. Platelet GP IIIa Pl(A) polymorphisms display different sensitivities to agonists. Circulation, 2000, 101(9), 1013-1018.
[http://dx.doi.org/10.1161/01.CIR.101.9.1013] [PMID: 10704169]
[200]
Stratton, T.W.; Neves, M.; Zhu, G.; Wang, Y.; Chen, P.; Gallant, R.C.; Norris, P.A.A.; Freedman, J.; Ni, H. Two birds, one stone: Anti-β3 integrin PSI domain antibodies inhibit both platelet aggregation and blood coagulation. Intern. Soc. Thromb. Haemost., 2019, 3(51), 164.
[201]
Podoplelova, N.A.; Sveshnikova, A.N.; Kotova, Y.N.; Eckly, A.; Receveur, N.; Nechipurenko, D.Y.; Obydennyi, S.I.; Kireev, I.I.; Gachet, C.; Ataullakhanov, F.I.; Mangin, P.H.; Panteleev, M.A. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood, 2016, 128(13), 1745-1755.
[http://dx.doi.org/10.1182/blood-2016-02-696898] [PMID: 27432876]
[202]
Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ, 2002, 324(7329), 71-86.
[http://dx.doi.org/10.1136/bmj.324.7329.71] [PMID: 11786451]
[203]
Bakchoul, T.; Marini, I. Drug-associated thrombocytopenia. Hematology (Am. Soc. Hematol. Educ. Program), 2018, 2018(1), 576-583.
[http://dx.doi.org/10.1182/asheducation-2018.1.576] [PMID: 30504360]
[204]
George, J. N.; Aster, R. H. Drug-induced thrombocytopenia: Pathogenesis, evaluation, and management. Hematology Am. Soc. Hematol. Educ. Program., 2009, 153-158.
[http://dx.doi.org/10.1182/asheducation-2009.1.153]
[205]
Aster, R.H.; Bougie, D.W. Drug-induced immune thrombocytopenia. N. Engl. J. Med., 2007, 357(6), 580-587.
[http://dx.doi.org/10.1056/NEJMra066469] [PMID: 17687133]
[206]
Ley, K.; Rivera-Nieves, J.; Sandborn, W.J.; Shattil, S. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat. Rev. Drug Discov., 2016, 15(3), 173-183.
[http://dx.doi.org/10.1038/nrd.2015.10] [PMID: 26822833]
[207]
Chen, Z.; Wang, S.; Chen, Y.; Shao, Z.; Yu, Z.; Mei, S.; Li, Q. Integrin β3 modulates TLR4-mediated inflammation by regulation of CD14 expression in macrophages in septic condition. Shock, 2020, 53(3), 335-343.
[http://dx.doi.org/10.1097/SHK.0000000000001383] [PMID: 31135705]
[208]
Middleton, E.A.; Rowley, J.W.; Campbell, R.A.; Grissom, C.K.; Brown, S.M.; Beesley, S.J.; Schwertz, H.; Kosaka, Y.; Manne, B.K.; Krauel, K.; Tolley, N.D.; Eustes, A.S.; Guo, L.; Paine, R., III; Harris, E.S.; Zimmerman, G.A.; Weyrich, A.S.; Rondina, M.T. Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood, 2019, 134(12), 911-923.
[http://dx.doi.org/10.1182/blood.2019000067] [PMID: 31366617]
[209]
Tong, X.M.; Feng, L.; Suthe, S.R.; Weng, T.H.; Hu, C.Y.; Liu, Y.Z.; Wu, Z.G.; Wang, M.H.; Yao, H.P. Therapeutic efficacy of a novel humanized antibody-drug conjugate recognizing plexin-semaphorin-integrin domain in the RON receptor for targeted cancer therapy. J. Immunother. Cancer, 2019, 7(1), 250.
[http://dx.doi.org/10.1186/s40425-019-0732-8] [PMID: 31519211]
[210]
Park, H.; Kim, D.; Kim, E.; Sa, J.K.; Lee, H.W.; Yu, S.; Oh, J.; Kim, S.H.; Yoon, Y.; Nam, D.H. Tumor inhibitory effect of IRCR201, a novel cross-reactive c-Met antibody targeting the PSI domain. Int. J. Mol. Sci., 2017, 18(9):E1968
[http://dx.doi.org/10.3390/ijms18091968] [PMID: 28902178]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy