Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis of 1H-1,2,3-Triazole-Linked Quinoline-Isatin Molecular Hybrids as Anti-Breast Cancer and Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Agents

Author(s): Paul Awolade, Nosipho Cele, Oluwakemi Ebenezer, Nagaraju Kerru, Lalitha Gummidi, Liang Gu, Gabriella Palma, Mandeep Kaur and Parvesh Singh*

Volume 21 , Issue 10 , 2021

Published on: 29 September, 2020

Page: [1228 - 1239] Pages: 12

DOI: 10.2174/1871520620666200929153138

Price: $65

Abstract

Background: The persistence of breast cancer as the leading cause of mortality among women, coupled with drug resistance to tamoxifen, the standard endocrine therapy for the disease, exacts continuous attention. To this effect, molecular hybridisation offers an attractive route to drugs with improved bioactivity profiles.

Objective: The primary goal of this study was to examine the potential of 1H-1,2,3-triazole linked quinolineisatin molecular hybrids as drug candidates against breast cancer and Methicillin-Resistant Staphylococcus aureus (MRSA) cells.

Methods: The quinoline-isatin hybrids were synthesised via click chemistry-mediated molecular hybridisation strategy. Anti-breast cancer activity was determined in 3-(4,5-dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using Estrogen-Responsive (ER+) MCF-7 and MDA-MB-231 (Triple-Negative Breast Cancer -TNBC) cells, while antimicrobial efficacy was established via the broth dilution method. Also, the toxicity profile of potent compounds to non-cancerous cells was determined using human embryonic kidney cells (HEK293) and human Red Blood Cells (hRBCs). In silico techniques were employed to predict the druglike properties of potent compounds and understand their binding modes with Estrogen Receptor alpha (ERα).

Results: Compounds 7g-i exhibited the strongest cytotoxicity to MCF-7 cells with IC50 values of 23.54, 23.66, and 32.50μM, respectively. Interestingly, compound 7h also emerged as the best drug candidate against MDAMB- 231 and MRSA cells with IC50=71.40μM and MIC80=27.34μM, respectively. Structure-activity relationship analysis revealed that quinoline-2-carbaldehyde and 5,7-disubstituted isatin moieties confer desirable potency. These compounds showed no significant cytotoxic or haemolytic effects on HEK293 or hRBCs in vitro at their active concentrations; hence, eliciting their selectivity for cancer cells. In silico studies also presented the drugability of potent compounds and the likely structural features interacting with amino acid residues at the ligandbinding domain of ERα.

Conclusion: These results suggest that the identified 1H-1,2,3-triazole-linked quinoline-isatin hybrids are viable chemotypes that can be adopted as templates for the development of new anti-breast cancer and anti-MRSA agents.

Keywords: Breast cancer, molecular hybridisation, isatin, quinoline, methicillin-resistant Staphylococcus aureus, in silico.

Graphical Abstract

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy