General Review Article

The Regulatory Role of Rho GTPases and their Substrates in Osteoclastogenesis

Author(s): Lin Gao, Lingbo Kong and Yuanting Zhao*

Volume 22, Issue 9, 2021

Published on: 25 September, 2020

Page: [1064 - 1070] Pages: 7

DOI: 10.2174/1389450121666200925150446

Price: $65

Abstract

Pathological bone loss diseases (osteolysis, Paget’s diseases) are commonly caused by the excessive differentiation and activity of osteoclasts. The Rho GTPases family members Rac1/2 (Rac1 and Rac2) have been reported for their special role in exerting multiple cellular functions during osteoclastic differentiation, which includes the most prominent function on dynamic actin cytoskeleton rearranging. Besides that, the increasing studies demonstrated that the regulating effects of Rac1/2 on the osteoclastic cytoskeletal organization are through the GEFs member Dock5. Although the amount of relevant studies on this topic is still limited, several excellent studies have been reported that extensively explored the molecular mechanisms involved in Rac1/2 and Dock5 during the osteoclastogenesis regulation, as well as their role as the therapeutic target in bone loss diseases. Herein, in this review, we aim to focus on recent advances studies for extensively understanding the role of Rho GTPases Rac1/2 and Dock5 in osteoclastogenesis, as well as their role as a potential therapeutic target in regulating osteoclastogenesis.

Keywords: Rac1, Rac2, Dock5, osteoclastogenesis, bone homeostasis, molecules.

Graphical Abstract
[1]
Castillo AB, Leucht P. Bone homeostasis and repair: Forced into shape. Curr Rheumatol Rep 2015; 17(9): 58.
[http://dx.doi.org/10.1007/s11926-015-0537-9] [PMID: 26233599]
[2]
Abe E, Mocharla H, Yamate T, Taguchi Y, Manolagas SC. Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif Tissue Int 1999; 64(6): 508-15.
[http://dx.doi.org/10.1007/s002239900641] [PMID: 10341023]
[3]
Agas D, Marchetti L, Douni E, Sabbieti MG. The unbearable lightness of bone marrow homeostasis. Cytokine Growth Factor Rev 2015; 26(3): 347-59.
[http://dx.doi.org/10.1016/j.cytogfr.2014.12.004] [PMID: 25563564]
[4]
Furlan F, Galbiati C, Jorgensen NR, et al. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. J Bone Miner Res 2007; 22(9): 1387-96.
[http://dx.doi.org/10.1359/jbmr.070516] [PMID: 17539736]
[5]
Feng W, Xia W, Ye Q, Wu W. Osteoclastogenesis and osteoimmunology. Front Biosci 2014; 19: 758-67.
[http://dx.doi.org/10.2741/4242] [PMID: 24389219]
[6]
Kukita T, Kukita A, Watanabe T, Iijima T. Osteoclast differentiation antigen, distinct from receptor activator of nuclear factor kappa B, is involved in osteoclastogenesis under calcitonin-regulated conditions. J Endocrinol 2001; 170(1): 175-83.
[http://dx.doi.org/10.1677/joe.0.1700175] [PMID: 11431150]
[7]
Baud’huin M, Lamoureux F, Duplomb L, Rédini F, Heymann D. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci 2007; 64(18): 2334-50.
[http://dx.doi.org/10.1007/s00018-007-7104-0] [PMID: 17530461]
[8]
Crotti TN, Dharmapatni AA, Alias E, Haynes DR. Osteoimmunology: Major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. J Immunol Res 2015; 2015: 281287.
[http://dx.doi.org/10.1155/2015/281287] [PMID: 26064999]
[9]
Cappariello A, Maurizi A, Veeriah V, Teti A. The Great Beauty of the osteoclast. Arch Biochem Biophys 2014; 558: 70-8.
[http://dx.doi.org/10.1016/j.abb.2014.06.017] [PMID: 24976175]
[10]
Hirvonen MJ, Mulari MT, Büki KG, Vihko P, Härkönen PL, Väänänen HK. Rab13 is upregulated during osteoclast differentiation and associates with small vesicles revealing polarized distribution in resorbing cells. J Histochem Cytochem 2012; 60(7): 537-49.
[http://dx.doi.org/10.1369/0022155412448069] [PMID: 22562557]
[11]
Lakkakorpi PT, Nakamura I, Nagy RM, Parsons JT, Rodan GA, Duong LT. Stable association of PYK2 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. J Biol Chem 1999; 274(8): 4900-7.
[http://dx.doi.org/10.1074/jbc.274.8.4900] [PMID: 9988732]
[12]
Mulari M, Vääräniemi J, Väänänen HK. Intracellular membrane trafficking in bone resorbing osteoclasts. Microsc Res Tech 2003; 61(6): 496-503.
[http://dx.doi.org/10.1002/jemt.10371] [PMID: 12879417]
[13]
Ng PY, Brigitte Patricia Ribet A, Pavlos NJ. Membrane trafficking in osteoclasts and implications for osteoporosis. Biochem Soc Trans 2019; 47(2): 639-50.
[http://dx.doi.org/10.1042/BST20180445] [PMID: 30837319]
[14]
Hu S, Planus E, Georgess D, et al. Podosome rings generate forces that drive saltatory osteoclast migration. Mol Biol Cell 2011; 22(17): 3120-6.
[http://dx.doi.org/10.1091/mbc.e11-01-0086] [PMID: 21737683]
[15]
Luxenburg C, Addadi L, Geiger B. The molecular dynamics of osteoclast adhesions. Eur J Cell Biol 2006; 85(3-4): 203-11.
[http://dx.doi.org/10.1016/j.ejcb.2005.11.002] [PMID: 16360241]
[16]
Jurdic P, Saltel F, Chabadel A, Destaing O. Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 2006; 85(3-4): 195-202.
[http://dx.doi.org/10.1016/j.ejcb.2005.09.008] [PMID: 16546562]
[17]
Babb SG, Matsudaira P, Sato M, Correia I, Lim SS. Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil Cytoskeleton 1997; 37(4): 308-25.
[http://dx.doi.org/10.1002/(SICI)1097-0169(1997)37:4<308::AID-CM3>3.0.CO;2-0] [PMID: 9258504]
[18]
Destaing O, Saltel F, Géminard JC, Jurdic P, Bard F. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 2003; 14(2): 407-16.
[http://dx.doi.org/10.1091/mbc.e02-07-0389] [PMID: 12589043]
[19]
Bernhardt A, Thieme S, Domaschke H, Springer A, Rösen-Wolff A, Gelinsky M. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen--towards an in vitro model for bone remodeling. J Biomed Mater Res A 2010; 95(3): 848-56.
[http://dx.doi.org/10.1002/jbm.a.32856] [PMID: 20824694]
[20]
Brazier H, Pawlak G, Vives V, Blangy A. The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol 2009; 41(6): 1391-401.
[http://dx.doi.org/10.1016/j.biocel.2008.12.007] [PMID: 19135548]
[21]
Brazier H, Stephens S, Ory S, Fort P, Morrison N, Blangy A. Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res 2006; 21(9): 1387-98.
[http://dx.doi.org/10.1359/jbmr.060613] [PMID: 16939397]
[22]
Touaitahuata H, Blangy A, Vives V. Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Small GTPases 2014; 5: e28119.
[http://dx.doi.org/10.4161/sgtp.28119] [PMID: 24614674]
[23]
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116: 101-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.008] [PMID: 29330095]
[24]
Wang Y, Belsham DD, Glogauer M. Rac1 and Rac2 in osteoclastogenesis: a cell immortalization model. Calcif Tissue Int 2009; 85(3): 257-66.
[http://dx.doi.org/10.1007/s00223-009-9274-2] [PMID: 19649754]
[25]
Xiu Y, Zhang H, Wang S, et al. cDNA cloning, characterization, and expression analysis of the Rac1 and Rac2 genes from Cynoglossus semilaevis. Fish Shellfish Immunol 2019; 84: 998-1006.
[http://dx.doi.org/10.1016/j.fsi.2018.11.006] [PMID: 30399403]
[26]
Joshi S, Singh AR, Zulcic M, et al. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo. PLoS One 2014; 9(4): e95893.
[http://dx.doi.org/10.1371/journal.pone.0095893] [PMID: 24770346]
[27]
He D, Xu L, Wu Y, et al. Rac3, but not Rac1, promotes ox-LDL induced endothelial dysfunction by downregulating autophagy. J Cell Physiol 2020; 235(2): 1531-42.
[http://dx.doi.org/10.1002/jcp.29072] [PMID: 31332791]
[28]
Gerasimcik N, Westerberg LS, Severinson E. Methods to study the role of cdc42, rac1, and rac2 in b-cell cytoskeletal responses. Methods Mol Biol 2018; 1821: 235-46.
[http://dx.doi.org/10.1007/978-1-4939-8612-5_16] [PMID: 30062416]
[29]
Razzouk S, Lieberherr M, Cournot G. Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol 1999; 78(4): 249-55.
[http://dx.doi.org/10.1016/S0171-9335(99)80058-2] [PMID: 10350213]
[30]
Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 2008; 23(2): 260-70.
[http://dx.doi.org/10.1359/jbmr.071013] [PMID: 17922611]
[31]
Croke M, Ross FP, Korhonen M, Williams DA, Zou W, Teitelbaum SL. Rac deletion in osteoclasts causes severe osteopetrosis. J Cell Sci 2011; 124(Pt 22): 3811-21.
[http://dx.doi.org/10.1242/jcs.086280] [PMID: 22114304]
[32]
Darden AG, Ries WL, Wolf WC, Rodriguiz RM, Key LL Jr. Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J Bone Miner Res 1996; 11(5): 671-5.
[http://dx.doi.org/10.1002/jbmr.5650110515] [PMID: 9157782]
[33]
Goettsch C, Babelova A, Trummer O, et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest 2013; 123(11): 4731-8.
[http://dx.doi.org/10.1172/JCI67603] [PMID: 24216508]
[34]
Bokoch GM. Regulation of innate immunity by Rho GTPases. Trends Cell Biol 2005; 15(3): 163-71.
[http://dx.doi.org/10.1016/j.tcb.2005.01.002] [PMID: 15752980]
[35]
Kwong CH, Adams AG, Leto TL. Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 1995; 270(34): 19868-72.
[http://dx.doi.org/10.1074/jbc.270.34.19868] [PMID: 7649999]
[36]
Lacy P, Mahmudi-Azer S, Bablitz B, et al. Expression and translocation of Rac2 in eosinophils during superoxide generation. Immunology 1999; 98(2): 244-52.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00873.x] [PMID: 10540223]
[37]
Zhao X, Carnevale KA, Cathcart MK. Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex. J Biol Chem 2003; 278(42): 40788-92.
[http://dx.doi.org/10.1074/jbc.M302208200] [PMID: 12912997]
[38]
Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005; 106(3): 852-9.
[http://dx.doi.org/10.1182/blood-2004-09-3662] [PMID: 15817678]
[39]
Sun CX, Magalhães MA, Glogauer M. Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 2007; 179(2): 239-45.
[http://dx.doi.org/10.1083/jcb.200705122] [PMID: 17954607]
[40]
Balcer HI, Daugherty-Clarke K, Goode BL. The p40/ARPC1 subunit of Arp2/3 complex performs multiple essential roles in WASp-regulated actin nucleation. J Biol Chem 2010; 285(11): 8481-91.
[http://dx.doi.org/10.1074/jbc.M109.054957] [PMID: 20071330]
[41]
Aspenström P. The intrinsic GDP/GTP exchange activities of cdc42 and rac1 are critical determinants for their specific effects on mobilization of the actin filament system. Cells 2019; 8(7): E759.
[http://dx.doi.org/10.3390/cells8070759] [PMID: 31330900]
[42]
de Beco S, Vaidžiulytė K, Manzi J, et al. Optogenetic dissection of Rac1 and Cdc42 gradient shaping. Nat Commun 2018; 9(1): 4816.
[http://dx.doi.org/10.1038/s41467-018-07286-8] [PMID: 30446664]
[43]
Song RL, Liu XZ, Zhu JQ, et al. New roles of filopodia and podosomes in the differentiation and fusion process of osteoclasts. Genet Mol Res 2014; 13(3): 4776-87.
[http://dx.doi.org/10.4238/2014.July.2.7] [PMID: 25062413]
[44]
Wheeler AP, Wells CM, Smith SD, et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 2006; 119(Pt 13): 2749-57.
[http://dx.doi.org/10.1242/jcs.03024] [PMID: 16772332]
[45]
Faccio R, Teitelbaum SL, Fujikawa K, et al. Vav3 regulates osteoclast function and bone mass. Nat Med 2005; 11(3): 284-90.
[http://dx.doi.org/10.1038/nm1194] [PMID: 15711558]
[46]
Guimbal S, Morel A, Guérit D, Chardon M, Blangy A, Vives V. Dock5 is a new regulator of microtubule dynamic instability in osteoclasts. Biol Cell 2019; 111(11): 271-83.
[http://dx.doi.org/10.1111/boc.201900014] [PMID: 31461543]
[47]
Song R, Gu J, Liu X, et al. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone. Int J Mol Med 2014; 34(3): 856-62.
[http://dx.doi.org/10.3892/ijmm.2014.1846] [PMID: 25017214]
[48]
Vives V, Cres G, Richard C, et al. Pharmacological inhibition of Dock5 prevents osteolysis by affecting osteoclast podosome organization while preserving bone formation. Nat Commun 2015; 6: 6218.
[http://dx.doi.org/10.1038/ncomms7218] [PMID: 25645278]
[49]
Takegahara N, Kang S, Nojima S, et al. Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 2010; 24(12): 4782-92.
[http://dx.doi.org/10.1096/fj.10.158212] [PMID: 20702777]
[50]
Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol 2014; 93(10-12): 466-77.
[http://dx.doi.org/10.1016/j.ejcb.2014.06.003] [PMID: 25022758]
[51]
Bulgin RR, Arbeloa A, Chung JC, Frankel G. EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. Cell Microbiol 2009; 11(2): 217-29.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01248.x] [PMID: 19016787]
[52]
Ogawa K, Tanaka Y, Uruno T, et al. DOCK5 functions as a key signaling adaptor that links FcεRI signals to microtubule dynamics during mast cell degranulation. J Exp Med 2014; 211(7): 1407-19.
[http://dx.doi.org/10.1084/jem.20131926] [PMID: 24913231]
[53]
Li W, Tam KMV, Chan WWR, et al. Neuronal adaptor FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1. J Biol Chem 2018; 293(20): 7674-88.
[http://dx.doi.org/10.1074/jbc.RA117.000505] [PMID: 29615491]
[54]
Kim H, Choi HK, Shin JH, et al. Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J Clin Invest 2009; 119(4): 813-25.
[http://dx.doi.org/10.1172/JCI36809] [PMID: 19258703]
[55]
Touaitahuata H, Morel A, Urbach S, Mateos-Langerak J, de Rossi S, Blangy A. Tensin 3 is a new partner of Dock5 that controls osteoclast podosome organization and activity. J Cell Sci 2016; 129(18): 3449-61.
[http://dx.doi.org/10.1242/jcs.184622] [PMID: 27505886]
[56]
Nagai Y, Osawa K, Fukushima H, et al. p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption. J Bone Miner Res 2013; 28(12): 2449-62.
[http://dx.doi.org/10.1002/jbmr.1936] [PMID: 23526406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy