Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Immuno-Informatics Quest against COVID-19/SARS-COV-2: Determining Putative T-Cell Epitopes for Vaccine Prediction

Author(s): Nahid Akhtar, Amit Joshi, Bhupender Singh and Vikas Kaushik*

Volume 21, Issue 4, 2021

Published on: 21 September, 2020

Page: [541 - 552] Pages: 12

DOI: 10.2174/1871526520666200921154149

Abstract

Background: Since December 2019, a novel coronavirus, SARS-CoV-2, has caused global public health issues after being reported for the first time in Wuhan province of China. So far, there have been approximately 14.8 million confirmed cases and 0.614 million deaths due to the SARS-CoV-2 infection globally, and still, numbers are increasing. Although the virus has caused a global public health concern, no effective treatment has been developed.

Objective: One of the strategies to combat the COVID-19 disease caused by SARS-CoV-2 is the development of vaccines that can make humans immune to these infections. Considering this approach, in this study, an attempt has been made to design epitope-based vaccine for combatting COVID-19 disease by analyzing the complete proteome of the virus by using immuno-informatics tools.

Methods: The protein sequence of the SARS-CoV-2 was retrieved and the individual proteins were checked for their allergic potential. Then, from non-allergen proteins, antigenic epitopes were identified that could bind with MHCII molecules. The epitopes were modeled and docked to predict the interaction with MHCII molecules. The stability of the epitope-MHCII complex was further analyzed by performing a molecular dynamics simulation study. The selected vaccine candidates were also analyzed for their global population coverage and conservancy among SARS-related coronavirus species.

Results: The study has predicted 5 peptide molecules that can act as potential candidates for epitope- based vaccine development. Among the 5 selected epitopes, the peptide LRARSVSPK can be the most potent epitope because of its high geometric shape complementarity score, low ACE and very high response towards it by the world population (81.81% global population coverage). Further, molecular dynamic simulation analysis indicated the formation of a stable epitope-MHCII complex. The epitope LRARSVSPK was also found to be highly conserved among the SARS-CoV- -2 isolated from different countries.

Conclusion: The study has predicted T-cell epitopes that can elicit a robust immune response in the global human population and act as potential vaccine candidates. However, the ability of these epitopes to act as vaccine candidate needs to be validated in wet lab studies.

Keywords: Vaccines, COVID-19, Coronavirus, Epitope, MHC class II, docking, simulation.

Graphical Abstract
[1]
Habibzadeh, P.; Stoneman, E.K. The Novel Coronavirus: A Bird’s Eye View. Int. J. Occup. Environ. Med., 2020, 11(2), 65-71.
[http://dx.doi.org/10.15171/ijoem.2020.1921] [PMID: 32020915]
[2]
Lai, C-C.; Shih, T-P.; Ko, W-C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[3]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[4]
Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 2020, 296(2), E15-E25.
[http://dx.doi.org/10.1148/radiol.2020200490] [PMID: 32083985]
[5]
Lam, TT-Y; Shum, MH-H; Zhu, H-C Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China bioRxiv, 2020.
[6]
Chaw, S.M.; Tai, J.H.; Chen, S.L.; Hsieh, C.H.; Chang, S.Y.; Yeh, S.H.; Yang, W.S.; Chen, P.J.; Wang, H.Y. The origin and underlying driving forces of the SARS-CoV-2 outbreak. J. Biomed. Sci., 2020, 27(1), 73.
[http://dx.doi.org/10.1186/s12929-020-00665-8] [PMID: 32507105]
[7]
Chang, D.; Lin, M.; Wei, L.; Xie, L.; Zhu, G.; Dela Cruz, C.S.; Sharma, L. Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China. JAMA, 2020, 323(11), 1092-1093.
[http://dx.doi.org/10.1001/jama.2020.1623] [PMID: 32031568]
[9]
Li, H.; Wang, Y.M.; Xu, J.Y.; Cao, B. [Potential antiviral therapeutics for 2019 Novel Coronavirus]. Zhonghua Jie He He Hu Xi Za Zhi, 2020, 43(0), E002.
[PMID: 32023685]
[10]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[11]
Pastick, KA; Okafor, EC; Wang, F Review: Hydroxychloroquine and Chloroquine for Treatment of SARS-CoV-2 (COVID-19) Open Forum Infect. Dis., 2020, 7(4), ofaa130.
[12]
Lester, M.; Shahin, A.; Pasyar, A. The use of dexamethasone in the treatment of COVID-19. Ann. Med. Surg. (Lond.), 2020, 56, 218-219.
[http://dx.doi.org/10.1016/j.amsu.2020.07.004]
[13]
Doytchinova, I.A.; Flower, D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8, 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[14]
Oyarzún, P.; Kobe, B. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production. Hum. Vaccin. Immunother., 2016, 12(3), 763-767.
[http://dx.doi.org/10.1080/21645515.2015.1094595] [PMID: 26430814]
[15]
Lei, Y.; Zhao, F.; Shao, J.; Li, Y.; Li, S.; Chang, H.; Zhang, Y. Application of built-in adjuvants for epitope-based vaccines. Peer. J., 2019, 6, e6185.
[http://dx.doi.org/10.7717/peerj.6185] [PMID: 30656066]
[16]
Sharma, P.; Kaur, R.; Upadhyay, A.K. In-Silico Prediction of Peptide Based Vaccine Against Zika Virus. Int. J. Pept. Res. Ther., 2019, 26, 85-91.
[http://dx.doi.org/10.1007/s10989-019-09818-2]
[17]
Kaushik, V. In Silico Identification of Epitope-Based Peptide Vaccine for Nipah Virus. Int. J. Pept. Res. Ther., 2020, 26, 1147-1153.
[http://dx.doi.org/10.1007/s10989-019-09917-0]
[18]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[19]
Saha, S.; Raghava, G.P.S. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res., 2006, 34(Web Server issue), W202-9.
[http://dx.doi.org/10.1093/nar/gkl343] [PMID: 16844994]
[20]
Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 2018, 154(3), 394-406.
[http://dx.doi.org/10.1111/imm.12889] [PMID: 29315598]
[21]
Saraiva, D.P.; Jacinto, A.; Borralho, P.; Braga, S.; Cabral, M.G. HLA-DR in Cytotoxic T Lymphocytes Predicts Breast Cancer Patients’ Response to Neoadjuvant Chemotherapy. Front. Immunol., 2018, 9, 2605.
[http://dx.doi.org/10.3389/fimmu.2018.02605] [PMID: 30555458]
[22]
Adhikari, U.K.; Tayebi, M.; Rahman, M.M. Immunoinformatics Approach for Epitope-Based Peptide Vaccine Design and Active Site Prediction against Polyprotein of Emerging Oropouche Virus. J. Immunol. Res., 2018, 2018, 6718083.
[http://dx.doi.org/10.1155/2018/6718083] [PMID: 30402510]
[23]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P. Open Source Drug Discovery Consortium. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[24]
Singh, S.; Singh, H.; Tuknait, A.; Chaudhary, K.; Singh, B.; Kumaran, S.; Raghava, G.P. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol. Direct, 2015, 10, 73.
[http://dx.doi.org/10.1186/s13062-015-0103-4] [PMID: 26690490]
[25]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[26]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33(Web Server issue), W363-7.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[27]
Guan, P.; Doytchinova, I.A.; Zygouri, C.; Flower, D.R. MHCPred: A server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res., 2003, 31(13), 3621-3624.
[http://dx.doi.org/10.1093/nar/gkg510] [PMID: 12824380]
[28]
Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7, 153.
[http://dx.doi.org/10.1186/1471-2105-7-153] [PMID: 16545123]
[29]
Hospital, A.; Andrio, P.; Fenollosa, C.; Cicin-Sain, D.; Orozco, M.; Gelpí, J.L. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations. Bioinformatics, 2012, 28(9), 1278-1279.
[http://dx.doi.org/10.1093/bioinformatics/bts139] [PMID: 22437851]
[30]
Sievers, F; Higgins, DG Clustal Omega Curr. Protoc. Bioinforma, 2014.
[http://dx.doi.org/10.1002/0471250953.bi0313s48]
[31]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[32]
Guo, F.; Li, S.C.; Wang, L.; Zhu, D. Protein-protein binding site identification by enumerating the configurations. BMC Bioinformatics, 2012, 13, 158.
[http://dx.doi.org/10.1186/1471-2105-13-158] [PMID: 22768846]
[33]
Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; Dold, C.; Faust, S.N.; Finn, A.; Flaxman, A.L.; Hallis, B.; Heath, P.; Jenkin, D.; Lazarus, R.; Makinson, R.; Minassian, A.M.; Pollock, K.M.; Ramasamy, M.; Robinson, H.; Snape, M.; Tarrant, R.; Voysey, M.; Green, C.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J. Oxford COVID Vaccine Trial Group. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 2020, S0140-6736(20)31604-4.
[PMID: 32702298]
[34]
Tahir Ul Qamar, M.; Saleem, S.; Ashfaq, U.A.; Bari, A.; Anwar, F.; Alqahtani, S. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study. J. Transl. Med., 2019, 17(1), 362.
[http://dx.doi.org/10.1186/s12967-019-2116-8] [PMID: 31703698]
[35]
Ben-Yedidia, T.; Arnon, R. Epitope-based vaccine against influenza. Expert Rev. Vaccines, 2007, 6(6), 939-948.
[http://dx.doi.org/10.1586/14760584.6.6.939] [PMID: 18034655]
[36]
Alberts, B.; Johnson, A.; Lewis, J. Helper T Cells and Lymphocyte Activation. 4th ed; , 2002.
[37]
G SK. Joshi A, Kaushik V. T cell epitope designing for dengue peptide vaccine using docking and molecular simulation studies. Mol. Simul., 2020, 46(10), 787-795.
[http://dx.doi.org/10.1080/08927022.2020.1772970]

© 2022 Bentham Science Publishers | Privacy Policy