Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Mass Spectrometry Techniques: Principles and Practices for Quantitative Proteomics

Author(s): Rocco J. Rotello and Timothy D. Veenstra*

Volume 22, Issue 2, 2021

Published on: 21 September, 2020

Page: [121 - 133] Pages: 13

DOI: 10.2174/1389203721666200921153513

Price: $65

Abstract

In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable of quantitatively comparing many thousands of proteins obtained from cells and organisms.

Keywords: Quantitation, mass spectrometry, proteomics, isotope labeling, subtractive proteomics, SWATH-MS.

Next »
Graphical Abstract
[1]
Horning, E.C.; Horning, M.G. Human metabolic profiles obtained by GC and GC/MS. J. Chromatogr. Sci., 1971, 9, 129-140.
[http://dx.doi.org/10.1093/chromsci/9.3.129]
[2]
Horning, E.C.; Horning, M.G. Metabolic profiles: gas-phase methods for analysis of metabolites. Clin. Chem., 1971, 17(8), 802-809.
[http://dx.doi.org/10.1093/clinchem/17.8.802] [PMID: 5105517]
[3]
Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246(4926), 64-71.
[http://dx.doi.org/10.1126/science.2675315] [PMID: 2675315]
[4]
Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 1988, 2, 151-153.
[http://dx.doi.org/10.1002/rcm.1290020802]
[5]
Wasinger, V.C.; Cordwell, S.J.; Cerpa-Poljak, A.; Yan, J.X.; Gooley, A.A.; Wilkins, M.R.; Duncan, M.W.; Harris, R.; Williams, K.L.; Humphery-Smith, I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16(7), 1090-1094.
[http://dx.doi.org/10.1002/elps.11501601185] [PMID: 7498152]
[6]
Wider, G.; Wüthrich, K. NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr. Opin. Struct. Biol., 1999, 9(5), 594-601.
[http://dx.doi.org/10.1016/S0959-440X(99)00011-1] [PMID: 10508768]
[7]
Havugimana, P.C.; Hu, P.; Emili, A. Protein complexes, big data, machine learning and integrative proteomics: lessons learned over a decade of systematic analysis of protein interaction networks. Expert Rev. Proteomics, 2017, 14(10), 845-855.
[http://dx.doi.org/10.1080/14789450.2017.1374179] [PMID: 28918672]
[8]
Yakubu, R.R.; Nieves, E.; Weiss, L.M. The methods employed in mass spectrometric analysis of posttranslational modifications (PTMs) and protein-protein interactions (PPIs). Adv. Exp. Med. Biol., 2019, 1140, 169-198.
[http://dx.doi.org/10.1007/978-3-030-15950-4_10] [PMID: 31347048]
[9]
Wolters, D.A.; Washburn, M.P.; Yates, J.R., III An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem., 2001, 73(23), 5683-5690.
[http://dx.doi.org/10.1021/ac010617e] [PMID: 11774908]
[10]
Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235), 467-470.
[http://dx.doi.org/10.1126/science.270.5235.467] [PMID: 7569999]
[11]
Griffin, T.J.; Gygi, S.P.; Ideker, T.; Rist, B.; Eng, J.; Hood, L.; Aebersold, R. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics, 2002, 1(4), 323-333.
[http://dx.doi.org/10.1074/mcp.M200001-MCP200] [PMID: 12096114]
[12]
Ankney, J.A.; Muneer, A.; Chen, X. Relative and absolute quantitation in mass spectrometry-based proteomics. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2018, 11(1), 49-77.
[http://dx.doi.org/10.1146/annurev-anchem-061516-045357] [PMID: 29894226]
[13]
Chen, Y.; Wang, F.; Xu, F.; Yang, T. Mass spectrometry-based protein quantification. Adv. Exp. Med. Biol., 2016, 919, 255-279.
[http://dx.doi.org/10.1007/978-3-319-41448-5_15] [PMID: 27975224]
[14]
Lindemann, C.; Thomanek, N.; Hundt, F.; Lerari, T.; Meyer, H.E.; Wolters, D.; Marcus, K. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol. Chem., 2017, 398(5-6), 687-699.
[http://dx.doi.org/10.1515/hsz-2017-0104] [PMID: 28282288]
[15]
Veenstra, T.D. Global and targeted quantitative proteomics for biomarker discovery. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 847(1), 3-11.
[http://dx.doi.org/10.1016/j.jchromb.2006.09.004] [PMID: 17023222]
[16]
Cox, J.; Mann, M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem., 2011, 80, 273-299.
[http://dx.doi.org/10.1146/annurev-biochem-061308-093216] [PMID: 21548781]
[17]
Li, H.; Han, J.; Pan, J.; Liu, T.; Parker, C.E.; Borchers, C.H. Current trends in quantitative proteomics - an update. J. Mass Spectrom., 2017, 52(5), 319-341.
[http://dx.doi.org/10.1002/jms.3932] [PMID: 28418607]
[18]
Pino, L.K.; Searle, B.C.; Bollinger, J.G.; Nunn, B.; MacLean, B.; MacCoss, M.J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev., 2020, 39(3), 229-244.
[http://dx.doi.org/10.1002/mas.21540] [PMID: 28691345]
[19]
Issaq, H.; Veenstra, T. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques, 2008, 44(5), 697-698, 700.
[http://dx.doi.org/10.2144/000112823] [PMID: 18474047]
[20]
Gygi, S.P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M.H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 1999, 17(10), 994-999.
[http://dx.doi.org/10.1038/13690] [PMID: 10504701]
[21]
Yu, L.R.; Conrads, T.P.; Uo, T.; Issaq, H.J.; Morrison, R.S.; Veenstra, T.D. Evaluation of the acid-cleavable isotope-coded affinity tag reagents: application to camptothecin-treated cortical neurons. J. Proteome Res., 2004, 3(3), 469-477.
[http://dx.doi.org/10.1021/pr034090t] [PMID: 15253428]
[22]
Koehler, C.J.; Strozynski, M.; Kozielski, F.; Treumann, A.; Thiede, B. Isobaric peptide termini labeling for MS/MS-based quantitative proteomics. J. Proteome Res., 2009, 8(9), 4333-4341.
[http://dx.doi.org/10.1021/pr900425n] [PMID: 19655813]
[23]
Kellermann, J. ICPL-isotope-coded protein label. Methods Mol. Biol., 2008, 424, 113-123.
[http://dx.doi.org/10.1007/978-1-60327-064-9_10] [PMID: 18369857]
[24]
Goshe, M.B.; Conrads, T.P.; Panisko, E.A.; Angell, N.H.; Veenstra, T.D.; Smith, R.D. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem., 2001, 73(11), 2578-2586.
[http://dx.doi.org/10.1021/ac010081x] [PMID: 11403303]
[25]
Aggarwal, K.; Choe, L.H.; Lee, K.H. Shotgun proteomics using the iTRAQ isobaric tags. Brief. Funct. Genomics Proteomics, 2006, 5(2), 112-120.
[http://dx.doi.org/10.1093/bfgp/ell018] [PMID: 16772272]
[26]
Phanstiel, D.; Unwin, R.; McAlister, G.C.; Coon, J.J. Peptide quantification using 8-plex isobaric tags and electron transfer dissociation tandem mass spectrometry. Anal. Chem., 2009, 81(4), 1693-1698.
[http://dx.doi.org/10.1021/ac8019202] [PMID: 19154110]
[27]
Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A.K.; Hamon, C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem., 2003, 75(8), 1895-1904.
[http://dx.doi.org/10.1021/ac0262560] [PMID: 12713048]
[28]
Conrads, T.P.; Alving, K.; Veenstra, T.D.; Belov, M.E.; Anderson, G.A.; Anderson, D.J.; Lipton, M.S.; Pasa-Tolić, L.; Udseth, H.R.; Chrisler, W.B.; Thrall, B.D.; Smith, R.D. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem., 2001, 73(9), 2132-2139.
[http://dx.doi.org/10.1021/ac001487x] [PMID: 11354501]
[29]
Knapp, D.R.; Holcombe, N.H.; Krueger, S.A.; Privitera, P.J. Qualitative metabolic fate of phenoxybenzamine in rat, dog, and man. Use of 15N-labeling. Drug Metab. Dispos., 1976, 4(2), 164-168.
[PMID: 5261]
[30]
Senn, H.; Eugster, A.; Otting, G.; Suter, F.; Wüthrich, K. 15N-labeled P22 c2 repressor for nuclear magnetic resonance studies of protein-DNA interactions. Eur. Biophys. J., 1987, 14(5), 301-306.
[http://dx.doi.org/10.1007/BF00254895] [PMID: 3552643]
[31]
Venters, R.A.; Calderone, T.L.; Spicer, L.D.; Fierke, C.A. Uniform 13C isotope labeling of proteins with sodium acetate for NMR studies: application to human carbonic anhydrase II. Biochemistry, 1991, 30(18), 4491-4494.
[http://dx.doi.org/10.1021/bi00232a017] [PMID: 1902380]
[32]
Veenstra, T.D.; Martinović, S.; Anderson, G.A.; Pasa-Tolić, L.; Smith, R.D. Proteome analysis using selective incorporation of isotopically labeled amino acids. J. Am. Soc. Mass Spectrom., 2000, 11(1), 78-82.
[http://dx.doi.org/10.1016/S1044-0305(99)00120-8] [PMID: 10631667]
[33]
Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol., 2006, 7(12), 952-958.
[http://dx.doi.org/10.1038/nrm2067] [PMID: 17139335]
[34]
Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 2002, 1(5), 376-386.
[http://dx.doi.org/10.1074/mcp.M200025-MCP200] [PMID: 12118079]
[35]
Pimienta, G.; Chaerkady, R.; Pandey, A. SILAC for global phosphoproteomic analysis. Methods Mol. Biol., 2009, 527, 107-116, x.
[http://dx.doi.org/10.1007/978-1-60327-834-8_9] [PMID: 19241009]
[36]
Wu, C.C.; MacCoss, M.J.; Howell, K.E.; Matthews, D.E.; Yates, J.R., III Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem., 2004, 76(17), 4951-4959.
[http://dx.doi.org/10.1021/ac049208j] [PMID: 15373428]
[37]
McClatchy, D.B.; Dong, M.Q.; Wu, C.C.; Venable, J.D.; Yates, J.R., III 15N metabolic labeling of mammalian tissue with slow protein turnover. J. Proteome Res., 2007, 6(5), 2005-2010.
[http://dx.doi.org/10.1021/pr060599n] [PMID: 17375949]
[38]
McClatchy, D.B.; Liao, L.; Lee, J.H.; Park, S.K.; Yates, J.R., III Dynamics of subcellular proteomes during brain development. J. Proteome Res., 2012, 11(4), 2467-2479.
[http://dx.doi.org/10.1021/pr201176v] [PMID: 22397461]
[39]
Oh, P.; Li, Y.; Yu, J.; Durr, E.; Krasinska, K.M.; Carver, L.A.; Testa, J.E.; Schnitzer, J.E. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature, 2004, 429(6992), 629-635.
[http://dx.doi.org/10.1038/nature02580] [PMID: 15190345]
[40]
Houbart, V.; Rozet, E.; Matagne, A.; Crommen, J.; Servais, A.C.; Fillet, M. Influence of sample and mobile phase composition on peptide retention behaviour and sensitivity in reversed-phase liquid chromatography/mass spectrometry. J. Chromatogr. A, 2013, 1314, 199-207.
[http://dx.doi.org/10.1016/j.chroma.2013.09.036] [PMID: 24070623]
[41]
Wilm, M. Principles of electrospray ionization Mol. Cell. Proteomics, 2011, 10.
[42]
Hou, J.; Xie, Z.; Xue, P.; Cui, Z.; Chen, X.; Li, J.; Cai, T.; Wu, P.; Yang, F. Enhanced MALDI-TOF MS analysis of phosphopeptides using an optimized DHAP/DAHC matrix. J. Biomed. Biotechnol., 2010, 2010, 759690.
[http://dx.doi.org/10.1155/2010/759690] [PMID: 20339515]
[43]
Anderson, N.L.; Anderson, N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics, 2002, 1(11), 845-867.
[http://dx.doi.org/10.1074/mcp.R200007-MCP200] [PMID: 12488461]
[44]
Anderson, N.L.; Polanski, M.; Pieper, R.; Gatlin, T.; Tirumalai, R.S.; Conrads, T.P.; Veenstra, T.D.; Adkins, J.N.; Pounds, J.G.; Fagan, R.; Lobley, A. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell. Proteomics, 2004, 3(4), 311-326.
[http://dx.doi.org/10.1074/mcp.M300127-MCP200] [PMID: 14718574]
[45]
Tirumalai, R.S.; Chan, K.C.; Prieto, D.A.; Issaq, H.J.; Conrads, T.P.; Veenstra, T.D. Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics, 2003, 2(10), 1096-1103.
[http://dx.doi.org/10.1074/mcp.M300031-MCP200] [PMID: 12917320]
[46]
Schirmer, E.C.; Florens, L.; Guan, T.; Yates, J.R., III; Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science, 2003, 301(5638), 1380-1382.
[http://dx.doi.org/10.1126/science.1088176] [PMID: 12958361]
[47]
Patel, V.; Hood, B.L.; Molinolo, A.A.; Lee, N.H.; Conrads, T.P.; Braisted, J.C.; Krizman, D.B.; Veenstra, T.D.; Gutkind, J.S. Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression. Clin. Cancer Res., 2008, 14(4), 1002-1014.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1497] [PMID: 18281532]
[48]
Patel, V.; Martin, D.; Malhotra, R.; Marsh, C.A.; Doçi, C.L.; Veenstra, T.D.; Nathan, C.A.; Sinha, U.K.; Singh, B.; Molinolo, A.A.; Rusling, J.F.; Gutkind, J.S. DSG3 as a biomarker for the ultrasensitive detection of occult lymph node metastasis in oral cancer using nanostructured immunoarrays. Oral Oncol., 2013, 49(2), 93-101.
[http://dx.doi.org/10.1016/j.oraloncology.2012.08.001] [PMID: 23010602]
[49]
Wiener, M.C.; Sachs, J.R.; Deyanova, e.g.; Yates, N.A. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem., 2004, 76(20), 6085-6096.
[http://dx.doi.org/10.1021/ac0493875] [PMID: 15481957]
[50]
Kelleher, N.L. Top-down proteomics. Anal. Chem., 2004, 76(11), 197A-203A.
[http://dx.doi.org/10.1021/ac0415657] [PMID: 15190879]
[51]
Mazur, M.T.; Cardasis, H.L.; Spellman, D.S.; Liaw, A.; Yates, N.A.; Hendrickson, R.C. Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proc. Natl. Acad. Sci. USA, 2010, 107(17), 7728-7733.
[http://dx.doi.org/10.1073/pnas.0910776107] [PMID: 20388904]
[52]
Paulweber, B.; Friedl, W.; Krempler, F.; Humphries, S.E.; Sandhofer, F. Genetic variation in the apolipoprotein AI-CIII-AIV gene cluster and coronary heart disease. Atherosclerosis, 1988, 73(2-3), 125-133.
[http://dx.doi.org/10.1016/0021-9150(88)90033-0] [PMID: 2903749]
[53]
Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics, 2012, 11, O111.016717.
[http://dx.doi.org/10.1074/mcp.O111.016717]
[54]
Heusel, M.; Frank, M.; Köhler, M.; Amon, S.; Frommelt, F.; Rosenberger, G.; Bludau, I.; Aulakh, S.; Linder, M.I.; Liu, Y.; Collins, B.C.; Gstaiger, M.; Kutay, U.; Aebersold, R. A global screen for assembly state changes of the mitotic proteome by SEC-SWATH-MS. Cell Syst., 2020, 10(2), 133-155.e6.
[http://dx.doi.org/10.1016/j.cels.2020.01.001] [PMID: 32027860]
[55]
Linder, M.I.; Köhler, M.; Boersema, P.; Weberruss, M.; Wandke, C.; Marino, J.; Ashiono, C.; Picotti, P.; Antonin, W.; Kutay, U. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev. Cell, 2017, 43(2), 141-156.e7.
[http://dx.doi.org/10.1016/j.devcel.2017.08.020] [PMID: 29065306]
[56]
Prezioso, D.; Di Martino, M.; Galasso, R.; Iapicca, G. Laboratory assessment. Urol. Int., 2007, 79(Suppl. 1), 20-25.
[http://dx.doi.org/10.1159/000104437] [PMID: 17726348]
[57]
Meng, Z.; Veenstra, T.D. Targeted mass spectrometry approaches for protein biomarker verification. J. Proteomics, 2011, 74(12), 2650-2659.
[http://dx.doi.org/10.1016/j.jprot.2011.04.011] [PMID: 21540133]
[58]
Ebhardt, H.A.; Root, A.; Sander, C.; Aebersold, R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics, 2015, 15(18), 3193-3208.
[http://dx.doi.org/10.1002/pmic.201500004] [PMID: 26097198]
[59]
Cole, W.J.; Mitchell, R.G.; Salamonsen, R.F. Isolation, characterization and quantitation of chloral hydrate as a transient metabolite of trichloroethylene in man using electron capture gas chromatography and mass fragmentography. J. Pharm. Pharmacol., 1975, 27(3), 167-171.
[http://dx.doi.org/10.1111/j.2042-7158.1975.tb09431.x] [PMID: 237998]
[60]
Edwards, D.J.; Rizk, M. Identification and quantitation of phenylethylene glycol in human and rat urine, and its elevation in phenylketonuria. Clin. Chim. Acta, 1979, 95(1), 1-10.
[http://dx.doi.org/10.1016/0009-8981(79)90329-2] [PMID: 509720]
[61]
Brash, A.R. Quantitation of the major urinary metabolite of PGF2 alpha in the human by GC-MS. Methods Enzymol., 1982, 86, 579-585.
[http://dx.doi.org/10.1016/0076-6879(82)86228-9] [PMID: 6957704]
[62]
Chace, D.H.; Hillman, S.L.; Millington, D.S.; Kahler, S.G.; Roe, C.R.; Naylor, E.W. Rapid diagnosis of maple syrup urine disease in blood spots from newborns by tandem mass spectrometry. Clin. Chem., 1995, 41(1), 62-68.
[http://dx.doi.org/10.1093/clinchem/41.1.62] [PMID: 7813082]
[63]
Yocum, A.K.; Chinnaiyan, A.M. Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief. Funct. Genomics Proteomics, 2009, 8(2), 145-157.
[http://dx.doi.org/10.1093/bfgp/eln056] [PMID: 19279071]
[64]
Boja, E.S.; Fehniger, T.E.; Baker, M.S.; Marko-Varga, G.; Rodriguez, H. Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers. J. Proteome Res., 2014, 13(12), 5325-5332.
[http://dx.doi.org/10.1021/pr500753r] [PMID: 25171765]
[65]
Meng, Z.; Srivastava, A.K.; Zhou, M.; Veenstra, T. Quantitation of Met tyrosine phosphorylation using MRM-MS. Methods Mol. Biol., 2013, 1002, 181-193.
[http://dx.doi.org/10.1007/978-1-62703-360-2_15] [PMID: 23625404]
[66]
Mohammed, Y.; Domański, D.; Jackson, A.M.; Smith, D.S.; Deelder, A.M.; Palmblad, M.; Borchers, C.H. PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J. Proteomics, 2014, 106, 151-161.
[http://dx.doi.org/10.1016/j.jprot.2014.04.018] [PMID: 24769191]
[67]
Percy, A.J.; Yang, J.; Chambers, A.G.; Mohammed, Y.; Miliotis, T.; Borchers, C.H. Protocol for standardizing high-to-moderate abundance protein biomarker assessments through an MRM-with- standard-peptides quantitative approach. Adv. Exp. Med. Biol., 2016, 919, 515-530.
[http://dx.doi.org/10.1007/978-3-319-41448-5_24] [PMID: 27975233]
[68]
Lin, P.P.; Chen, W.L.; Yuan, F.; Sheng, L.; Wu, Y.J.; Zhang, W.W.; Li, G.Q.; Xu, H.R.; Li, X.N. An UHPLC-MS/MS method for simultaneous quantification of human amyloid beta peptides Aβ1-38, Aβ1-40 and Aβ1-42 in cerebrospinal fluid using micro-elution solid phase extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1070, 82-91.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.047] [PMID: 29102244]
[69]
Korecka, M.; Figurski, M.J.; Landau, S.M.; Brylska, M.; Alexander, J.; Blennow, K.; Zetterberg, H.; Jagust, W.J.; Trojanowski, J.Q.; Shaw, L.M. Alzheimer’s Disease Neuroimaging Initiative. Analytical and clinical performance of amyloid-beta peptides measurements in CSF of ADNIGO/2 participants by an LC-MS/MS reference method. Clin. Chem., 2020, 66(4), 587-597.
[http://dx.doi.org/10.1093/clinchem/hvaa012] [PMID: 32087019]
[70]
Minikel, E.V.; Kuhn, E.; Cocco, A.R.; Vallabh, S.M.; Hartigan, C.R.; Reidenbach, A.G.; Safar, J.G.; Raymond, G.J.; McCarthy, M.D.; O’Keefe, R.; Llorens, F.; Zerr, I.; Capellari, S.; Parchi, P.; Schreiber, S.L.; Carr, S.A. Domain-specific quantification of prion protein in cerebrospinal fluid by targeted mass spectrometry. Mol. Cell. Proteomics, 2019, 18(12), 2388-2400.
[http://dx.doi.org/10.1074/mcp.RA119.001702] [PMID: 31558565]
[71]
Vallabh, S.M.; Nobuhara, C.K.; Llorens, F.; Zerr, I.; Parchi, P.; Capellari, S.; Kuhn, E.; Klickstein, J.; Safar, J.G.; Nery, F.C.; Swoboda, K.J.; Geschwind, M.D.; Zetterberg, H.; Arnold, S.E.; Minikel, E.V.; Schreiber, S.L. Prion protein quantification in human cerebrospinal fluid as a tool for prion disease drug development. Proc. Natl. Acad. Sci. USA, 2019, 116(16), 7793-7798.
[http://dx.doi.org/10.1073/pnas.1901947116] [PMID: 30936307]
[72]
Gaither, C.; Popp, R.; Mohammed, Y.; Borchers, C.H. Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. Analyst (Lond.), 2020, 145(10), 3634-3644.
[http://dx.doi.org/10.1039/C9AN01893J] [PMID: 32255452]
[73]
Anderson, N.L. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin. Chem., 2010, 56(2), 177-185.
[http://dx.doi.org/10.1373/clinchem.2009.126706] [PMID: 19884488]
[74]
Aggarwal, S.; Talukdar, N.C.; Yadav, A.K. Advances in higher order multiplexing techniques in proteomics. J. Proteome Res., 2019, 18(6), 2360-2369.
[http://dx.doi.org/10.1021/acs.jproteome.9b00228] [PMID: 31074990]
[75]
Krijgsveld, J.; Ketting, R.F.; Mahmoudi, T.; Johansen, J.; Artal-Sanz, M.; Verrijzer, C.P.; Plasterk, R.H.; Heck, A.J. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol., 2003, 21(8), 927-931.
[http://dx.doi.org/10.1038/nbt848] [PMID: 12858183]
[76]
Rauniyar, N.; McClatchy, D.B.; Yates, J.R., III Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis. Methods, 2013, 61(3), 260-268.
[http://dx.doi.org/10.1016/j.ymeth.2013.03.008] [PMID: 23523555]
[77]
Maccarrone, G.; Chen, A.; Filiou, M.D. Using 15N-metabolic labeling for quantitative proteomic analysis. Methods Mol. Biol., 2017, 1546, 235-243.
[http://dx.doi.org/10.1007/978-1-4939-6730-8_20] [PMID: 27896773]
[78]
Bateman, R.J.; Munsell, L.Y.; Morris, J.C.; Swarm, R.; Yarasheski, K.E.; Holtzman, D.M. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med., 2006, 12(7), 856-861.
[http://dx.doi.org/10.1038/nm1438] [PMID: 16799555]
[79]
Ghosal, K.; Haag, M.; Verghese, P.B.; West, T.; Veenstra, T.; Braunstein, J.B.; Bateman, R.J.; Holtzman, D.M.; Landreth, G.E. A randomized controlled study to evaluate the effect of bexarotene on amyloid-β and apolipoprotein E metabolism in healthy subjects. Alzheimers Dement. (N. Y.), 2016, 2(2), 110-120.
[http://dx.doi.org/10.1016/j.trci.2016.06.001] [PMID: 29067298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy