Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

A Comprehensive Study on Aptasensors For Cancer Diagnosis

Author(s): Sambhavi Animesh and Yengkhom D. Singh*

Volume 22, Issue 8, 2021

Published on: 18 September, 2020

Page: [1069 - 1084] Pages: 16

DOI: 10.2174/1389201021999200918152721

Price: $65

Abstract

Cancer is the most devastating disease in the present scenario, killing millions of people every year. Early detection, accurate diagnosis, and timely treatment are considered to be the most effective ways to control this disease. Rapid and efficient detection of cancer at their earliest stage is one of the most significant challenges in cancer detection and cure. Numerous diagnostic modules have been developed to detect cancer cells early. As nucleic acid equivalent to antibodies, aptamers emerge as a new class of molecular probes that can identify cancer-related biomarkers or circulating rare cancer/ tumor cells with very high specificity and sensitivity. The amalgamation of aptamers with the biosensing platforms gave birth to "Aptasensors." The advent of highly sensitive aptasensors has opened up many new promising point-of-care diagnostics for cancer. This comprehensive review focuses on the newly developed aptasensors for cancer diagnostics.

Keywords: Aptamers, cancer diagnosis, biomarker, aptasensors, cancer, therapy.

Graphical Abstract
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
American Cancer Society. Cancer Facts; Cancer Facts, 2016, pp. 1-9.
[4]
Tan, W.; Donovan, M.J.; Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev., 2013, 4, 2842-2862.
[http://dx.doi.org/10.1021/cr300468w]
[5]
Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem., 2016, 60(1), 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[6]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[http://dx.doi.org/10.1016/S0956-5663(01)00115-4] [PMID: 11261847]
[7]
Hong, P.; Li, W.; Li, J. Applications of aptasensors in clinical diagnostics. Sensors (Basel), 2012, 12(2), 1181-1193.
[http://dx.doi.org/10.3390/s120201181] [PMID: 22438706]
[8]
Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. electrochemical biosensors for the detection of lung cancer biomarkers. A review. Talanta, 2020, 206, 120251.
[http://dx.doi.org/10.1016/j.talanta.2019.120251]
[9]
Mairal, T.; Ozalp, V.C.; Lozano Sánchez, P.; Mir, M.; Katakis, I.; O’Sullivan, C.K. Aptamers: Molecular tools for analytical applications. Anal. Bioanal. Chem., 2008, 390(4), 989-1007.
[http://dx.doi.org/10.1007/s00216-007-1346-4] [PMID: 17581746]
[10]
Hu, M.; Zhang, K. The application of aptamers in cancer research: An up-to-date review. Future Oncol., 2013, 9(3), 369-376.
[http://dx.doi.org/10.2217/fon.12.201] [PMID: 23469972]
[11]
Nimjee, S.M.; Rusconi, C.P.; Sullenger, B.A. Aptamers: An emerging class of therapeutics. Annu. Rev. Med., 2005, 56(1), 555-583.
[http://dx.doi.org/10.1146/annurev.med.56.062904.144915] [PMID: 15660527]
[12]
O’Sullivan, C.K. Aptasensors-the future of biosensing? Anal. Bioanal. Chem., 2002, 372(1), 44-48.
[http://dx.doi.org/10.1007/s00216-001-1189-3] [PMID: 11939212]
[13]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[14]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 80-, 1990, 249(4968), 505-510..
[15]
Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci., 2017, 18(10), 2142.
[http://dx.doi.org/10.3390/ijms18102142]
[16]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4), 381-403.
[http://dx.doi.org/10.1016/j.bioeng.2007.06.001] [PMID: 17627883]
[17]
Marshall, K.A. Ellington, A.D. In Vitro Selection of RNA Aptamers. Methods in Enzymology; Academic Press Inc., 2000, pp. 193-214.
[18]
Proske, D.; Blank, M.; Buhmann, R.; Resch, A. Aptamers - basic research, drug development, and clinical applications. Appl. Microbiol. Biotechnol., 2005, 69, 367-374.
[19]
Blank, M.; Blind, M. Aptamers as tools for target validation. Curr. Opin. Chem. Biol., 2005, 9(4), 336-342.
[http://dx.doi.org/10.1016/j.cbpa.2005.06.011]
[20]
Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem., 1999, 45(9), 1628-1650.
[http://dx.doi.org/10.1093/clinchem/45.9.1628] [PMID: 10471678]
[21]
Ma, H.; Liu, J.; Ali, M.M.; Mahmood, M.A.I.; Labanieh, L.; Lu, M.; Iqbal, S.M.; Zhang, Q.; Zhao, W.; Wan, Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev., 2015, 44(5), 1240-1256.
[http://dx.doi.org/10.1039/C4CS00357H] [PMID: 25561050]
[22]
Chen, M.; Tang, Z.; Ma, C.; Yan, Y. A fluorometric aptamer based assay for prostate specific antigen based on enzyme-assisted target recycling. Sens. Actuators B Chem., 2020, 302, 127178.
[http://dx.doi.org/10.1016/j.snb.2019.127178]
[23]
Xu, Y.; Cheng, G.; He, P.; Fang, Y.A. Review: Electrochemical aptasensors with various detection strategies. Electroanalysis, 2009, 21(11), 1251-1259.
[http://dx.doi.org/10.1002/elan.200804561]
[24]
Xia, X.; He, Q.; Dong, Y.; Deng, R.; Li, J. Aptamer-based homogeneous analysis for food control. Curr. Anal. Chem., 2020, 16(1), 4-13.
[http://dx.doi.org/10.2174/1573411014666180810125737]
[25]
Balamurugan, S.; Obubuafo, A.; Soper, S.A.; Spivak, D.A. Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem., 2008, 390(4), 1009-1021.
[http://dx.doi.org/10.1007/s00216-007-1587-2] [PMID: 17891385]
[26]
Chandra, P.; Singh, J.; Singh, A.; Srivastava, A.; Goyal, R.N.; Shim, Y.B. Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. J. Nanoparticles, 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/535901]
[27]
Vorobyeva, M.; Vorobjev, P.; Venyaminova, A. Molecules multivalent aptamers: Versatile tools for diagnostic and therapeutic applications. Molecules, 2016, 21(12), 1613.
[28]
Goda, T.; Higashi, D.; Matsumoto, A.; Hoshi, T.; Sawaguchi, T.; Miyahara, Y. Dual aptamer-immobilized surfaces for improved affinity through multiple target binding in potentiometric thrombin biosensing. Biosens. Bioelectron., 2015, 73, 174-180.
[http://dx.doi.org/10.1016/j.bios.2015.05.067] [PMID: 26067329]
[29]
Boltz, A.; Piater, B.; Toleikis, L.; Guenther, R.; Kolmar, H.; Hock, B. Bi-specific aptamers mediating tumor cell lysis. J. Biol. Chem., 2011, 286(24), 21896-21905.
[30]
Müller, J.; Wulffen, B.; Pötzsch, B.; Mayer, G. Multidomain targeting generates a high-affinity thrombin-inhibiting bivalent aptamer. ChemBioChem, 2007, 8(18), 2223-2226.
[http://dx.doi.org/10.1002/cbic.200700535] [PMID: 17990265]
[31]
Riese, S.B.; Buscher, K.; Enders, S.; Kuehne, C.; Tauber, R.; Dernedde, J. Structural requirements of mono- and multivalent L-selectin blocking aptamers for enhanced receptor inhibition in vitro and in vivo. Nanomedicine (Lond.), 2016, 12(4), 901-908.
[http://dx.doi.org/10.1016/j.nano.2015.12.379] [PMID: 26772426]
[32]
Tian, L.; Heyduk, T. Bivalent ligands with long nanometer-scale flexible linkers. Biochemistry, 2009, 48(2), 264-275.
[http://dx.doi.org/10.1021/bi801630b] [PMID: 19113836]
[33]
Shaver, A.; Curtis, S.D.; Arroyo-Currás, N. alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces, 2020, 12(9), 11214-11223.
[http://dx.doi.org/10.1021/acsami.9b22385] [PMID: 32040915]
[34]
Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Al Bawab, A.; Ismail, S.I.; Jo, A.A.B. molecules aptamers chemistry: Chemical modifications and conjugation strategies. Molecules, 2019, 25(1), 3.
[35]
Jia, X.; Chen, X.; Han, J.; Ma, J.; Ma, Z. Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay. Biosens. Bioelectron., 2014, 53, 65-70.
[http://dx.doi.org/10.1016/j.bios.2013.09.021] [PMID: 24113435]
[36]
Sun, B.; Qiao, F.; Chen, L.; Zhao, Z.; Yin, H.; Ai, S. Effective signal-on photoelectrochemical immunoassay of subgroup J avian leukosis virus based on Bi2S3 nanorods as photosensitizer and in situ generated ascorbic acid for electron donating. Biosens. Bioelectron., 2014, 54, 237-243.
[http://dx.doi.org/10.1016/j.bios.2013.11.021] [PMID: 24287410]
[37]
Hou, L.; Wu, X.; Chen, G.; Yang, H.; Lu, M.; Tang, D. HCR-stimulated formation of DNAzyme concatamers on gold nanoparticle for ultrasensitive impedimetric immunoassay. Biosens. Bioelectron., 2015, 68, 487-493.
[http://dx.doi.org/10.1016/j.bios.2015.01.043] [PMID: 25636020]
[38]
Xu, T.; Zhang, H.; Li, X.; Xie, Z.; Li, X. Enzyme-triggered tyramine-enzyme repeats on prussian blue-gold hybrid nanostructures for highly sensitive electrochemical immunoassay of tissue polypeptide antigen. Biosens. Bioelectron., 2015, 73, 167-173.
[http://dx.doi.org/10.1016/j.bios.2015.05.057] [PMID: 26067328]
[39]
Gao, F.; Zhou, F.; Chen, S.; Yao, Y.; Wu, J.; Yin, D.; Geng, D.; Wang, P. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst (Lond.), 2017, 142(22), 4308-4316.
[http://dx.doi.org/10.1039/C7AN01434A] [PMID: 29053159]
[40]
Zhou, F.; Yao, Y.; Luo, J.; Zhang, X.; Zhang, Y.; Yin, D.; Gao, F.; Wang, P. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles. Anal. Chim. Acta, 2017, 969, 8-17.
[http://dx.doi.org/10.1016/j.aca.2017.03.038] [PMID: 28411633]
[41]
Wang, C.; Qian, Y.; Zhang, Y.; Meng, S.; Wang, S.; Li, Y.; Gao, F. A novel label-free and signal-on electrochemical aptasensor based on the autonomous assembly of hemin/G-quadruplex and direct electron transfer of hemin. Sens. Actuators B Chem., 2017, 238, 434-440.
[http://dx.doi.org/10.1016/j.snb.2016.07.086]
[42]
Ravalli, A.; Rivas, L.; De la Escosura-Muñiz, A.; Pons, J.; Merkoçi, A.; Marrazza, G. A DNA aptasensor for electrochemical detection of vascular endothelial growth factor. J. Nanosci. Nanotechnol., 2015, 15(5), 3411-3416.
[http://dx.doi.org/10.1166/jnn.2015.10037] [PMID: 26504959]
[43]
Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications - an overview; Front. Bioengin. Biotechnol, 2016.
[44]
Du, Y.; Li, B.; Wang, E. “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc. Chem. Res., 2013, 46(2), 203-213.
[http://dx.doi.org/10.1021/ar300011g] [PMID: 23214491]
[45]
Li, B.; Du, Y.; Wei, H.; Dong, S. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chem. Commun. (Camb.), 2007, 3780-3782(36), 3780-3782.
[http://dx.doi.org/10.1039/b707057h] [PMID: 17851626]
[46]
Estrela, P.; Paul, D.; Migliorato, P.; Ferrigno, P.K.; Wang, L.; Huq, E. Potentiometric detection of protein interactions with peptide aptamers. Proc. IEEE Sens., 2008, •••, 646-649.
[http://dx.doi.org/10.1109/ICSENS.2008.4716524]
[47]
Radi, A.E.; Acero Sánchez, J.L.; Baldrich, E.; O’Sullivan, C.K. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J. Am. Chem. Soc., 2006, 128(1), 117-124.
[http://dx.doi.org/10.1021/ja053121d] [PMID: 16390138]
[48]
Nica Mir, M.; Katakis, I. Aptamers as elements of bioelectronic devices. Mol. Biosystems, 2007, 3(9), 620-622.
[49]
Baker, B.R.; Lai, R.Y.; Wood, M.S.; Doctor, E.H.; Heeger, A.J.; Plaxco, K.W. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc., 2006, 128(10), 3138-3139.
[http://dx.doi.org/10.1021/ja056957p] [PMID: 16522082]
[50]
Cash, K.J.; Heeger, A.J.; Plaxco, K.W.; Xiao, Y. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum. Anal. Chem., 2009, 81(2), 656-661.
[http://dx.doi.org/10.1021/ac802011d] [PMID: 19093760]
[51]
Liu, Y.; Tuleouva, N.; Ramanculov, E.; Revzin, A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal. Chem., 2010, 82(19), 8131-8136.
[http://dx.doi.org/10.1021/ac101409t] [PMID: 20815336]
[52]
Yoshizumi, J.; Kumamoto, S.; Nakamura, M.; Yamana, K. Target-Induced Strand Release (TISR) from aptamer-DNA duplex: A general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst (Lond.), 2008, 133(3), 323-325.
[http://dx.doi.org/10.1039/b719089c] [PMID: 18299745]
[53]
Järås, K.; Ressine, A.; Nilsson, E.; Malm, J.; Marko-Varga, G.; Lilja, H.; Laurell, T. Reverse-phase versus sandwich antibody microarray, technical comparison from a clinical perspective. Anal. Chem., 2007, 79(15), 5817-5825.
[http://dx.doi.org/10.1021/ac0709955] [PMID: 17605470]
[54]
Wang, J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron., 2006, 21(10), 1887-1892.
[http://dx.doi.org/10.1016/j.bios.2005.10.027] [PMID: 16330202]
[55]
Shamsipur, M.; Farzin, L.; Amouzadeh Tabrizi, M.; Molaabasi, F. Highly sensitive label free electrochemical detection of VGEF165 tumor marker based on “signal off” and “signal on” strategies using an anti-VEGF165 aptamer immobilized BSA-gold nanoclusters/ionic liquid/glassy carbon electrode. Biosens. Bioelectron., 2015, 74, 369-375.
[http://dx.doi.org/10.1016/j.bios.2015.06.079] [PMID: 26162327]
[56]
Liu, Y. Electrochemical detection of prostate-specific antigen based on gold colloids/alumina derived sol-gel film. Thin Solid Films, 2008, 8, 1803-1808.
[57]
Gao, F.; Fan, T.; Wu, J.; Liu, S.; Du, Y.; Yao, Y.; Zhou, F.; Zhang, Y.; Liao, X.; Geng, D. Proximity hybridization triggered hemin/G-quadruplex formation for construction a label-free and signal-on electrochemical DNA sensor. Biosens. Bioelectron., 2017, 96, 62-67.
[http://dx.doi.org/10.1016/j.bios.2017.04.024] [PMID: 28460333]
[58]
Souada, M.; Piro, B.; Reisberg, S.; Anquetin, G.; Noël, V.; Pham, M.C. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens. Bioelectron., 2015, 68, 49-54.
[http://dx.doi.org/10.1016/j.bios.2014.12.033] [PMID: 25569871]
[59]
Chen, Z.; Zhang, C.; Li, X.; Ma, H.; Wan, C.; Li, K.; Lin, Y. Aptasensor for electrochemical sensing of angiogenin based on electrode modified by cationic polyelectrolyte-functionalized graphene/gold nanoparticles composites. Biosens. Bioelectron., 2015, 65, 232-237.
[http://dx.doi.org/10.1016/j.bios.2014.10.046] [PMID: 25461163]
[60]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens. Actuators B Chem., 2015, 220, 1145-1151.
[http://dx.doi.org/10.1016/j.snb.2015.06.094]
[61]
Florea, A.; Ravalli, A.; Cristea, C.; Săndulescu, R.; Marrazza, G. An optimized bioassay for mucin1 detection in serum samples. Electroanalysis, 2015, 27(7), 1594-1601.
[http://dx.doi.org/10.1002/elan.201400689]
[62]
Kashefi-Kheyrabadi, L.; Mehrgardi, M.A.; Wiechec, E.; Turner, A.P.F.; Tiwari, A. Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal. Chem., 2014, 86(10), 4956-4960.
[http://dx.doi.org/10.1021/ac500375p] [PMID: 24754473]
[63]
Feng, L.; Chen, Y.; Ren, J.; Qu, X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 2011, 32(11), 2930-2937.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.002] [PMID: 21256585]
[64]
Zhu, X.; Yang, J.; Liu, M.; Wu, Y.; Shen, Z.; Li, G. Sensitive detection of human breast cancer cells based on aptamer-cell-aptamer sandwich architecture. Anal. Chim. Acta, 2013, 764, 59-63.
[http://dx.doi.org/10.1016/j.aca.2012.12.024] [PMID: 23374215]
[65]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Capacitive aptamer-antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sens. Actuators B Chem., 2015, 209, 645-651.
[http://dx.doi.org/10.1016/j.snb.2014.12.040]
[66]
Zhu, Y.; Chandra, P.; Shim, Y.B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal. Chem., 2013, 85(2), 1058-1064.
[http://dx.doi.org/10.1021/ac302923k] [PMID: 23215018]
[67]
Sun, D.; Lu, J.; Chen, D.; Jiang, Y.; Wang, Z.; Qin, W.; Yu, Y.; Chen, Z.; Zhang, Y. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sens. Actuators B Chem., 2018, 268, 359-367.
[http://dx.doi.org/10.1016/j.snb.2018.04.142]
[68]
Tothill, I.E. Biosensors for cancer markers diagnosis. Semin. Cell Dev. Biol., 2009, 20(1), 55-62.
[http://dx.doi.org/10.1016/j.semcdb.2009.01.015] [PMID: 19429492]
[69]
Médé, M.; Loyez, M.; Hassan, E.M.; Lobry, M.; Liu, F.; Caucheteur, C.; Wattiez, R.; Derosa, M.C.; Willmore, W.G.; Albert, J. Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification. ACS Sens., 2020, 5(2), 454-463.
[http://dx.doi.org/10.1021/acssensors.9b02155]
[70]
Safarpour, H.; Dehghani, S.; Nosrati, R.; Zebardast, N.; Alibolandi, M.; Mokhtarzadeh, A.; Ramezani, M. Optical and electrochemical-based nano-aptasensing approaches for the detection of Circulating Tumor Cells (CTCs). Biosens. Bioelectron., 2020, 148, 111833.
[71]
Rohloff, J.C.; Gelinas, A.D.; Jarvis, T.C.; Ochsner, U.A.; Schneider, D.J.; Gold, L.; Janjic, N. Nucleic Acid Ligands with Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents; Molecular Therapy - Nucleic Acids; Nature Publishing Group, 2014, p. e201.
[72]
Gao, F.; Du, L.; Zhang, Y.; Tang, D.; Du, Y. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Anal. Chim. Acta, 2015, 883, 67-73.
[http://dx.doi.org/10.1016/j.aca.2015.04.058] [PMID: 26088778]
[73]
Zhang, S.; Yan, Y.; Bi, S. Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer. Anal. Chem., 2009, 81(21), 8695-8701.
[http://dx.doi.org/10.1021/ac901759g] [PMID: 19788280]
[74]
Li, J.J.; Fang, X.; Tan, W. Molecular aptamer beacons for real-time protein recognition. Biochem. Biophys. Res. Commun., 2002, 292(1), 31-40.
[http://dx.doi.org/10.1006/bbrc.2002.6581] [PMID: 11890667]
[75]
Kim, J.K.; Choi, K.J.; Lee, M.; Jo, M.H.; Kim, S. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials, 2012, 33(1), 207-217.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.023] [PMID: 21944470]
[76]
Tyagi, S.; Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol., 1996, 14(3), 303-308.
[http://dx.doi.org/10.1038/nbt0396-303] [PMID: 9630890]
[77]
Liang, J.; Wei, R.; He, S.; Liu, Y.; Guo, L.; Li, L. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Analyst (Lond.), 2013, 138(6), 1726-1732.
[http://dx.doi.org/10.1039/c2an36529d] [PMID: 23359871]
[78]
Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen, X.; Chen, G.N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. Engl., 2009, 48(26), 4785-4787.
[http://dx.doi.org/10.1002/anie.200901479] [PMID: 19475600]
[79]
Hashemian, Z.; Khayamian, T.; Saraji, M.; Shirani, M.P. Aptasensor based on fluorescence resonance energy transfer for the analysis of adenosine in urine samples of lung cancer patients. Biosens. Bioelectron., 2016, 79, 334-340.
[http://dx.doi.org/10.1016/j.bios.2015.12.028] [PMID: 26722763]
[80]
Xie, Q.; Tan, Y.; Guo, Q.; Wang, K.; Yuan, B.; Wan, J.; Zhao, X. A fluorescent aptasensor for sensitive detection of human hepatocellular carcinoma SMMC-7721 cells based on graphene oxide. Anal. Methods, 2014, 6(17), 6809-6814.
[http://dx.doi.org/10.1039/C4AY01213E]
[81]
Yamasuji, M.; Shibata, T.; Kabashima, T.; Kai, M. Chemiluminescence detection of telomere DNA in human cells on a membrane by using fluorescein-5-isothiocyanate-labeled primers. Anal. Biochem., 2011, 413(1), 50-54.
[http://dx.doi.org/10.1016/j.ab.2011.01.047] [PMID: 21300019]
[82]
Cha, T.; Cho, S.; Kim, Y.T.; Lee, J.H. Rapid aptasensor capable of simply diagnosing prostate cancer. Biosens. Bioelectron., 2014, 62, 31-37.
[http://dx.doi.org/10.1016/j.bios.2014.06.015] [PMID: 24973540]
[83]
Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2004, 101(39), 14036-14039.
[http://dx.doi.org/10.1073/pnas.0406115101] [PMID: 15381774]
[84]
Wei, H.; Li, B.; Li, J.; Wang, E.; Dong, S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun. (Camb.), 2007, (36), 3735-3737.
[http://dx.doi.org/10.1039/b707642h] [PMID: 17851611]
[85]
Wang, H-X.; Zhao, Y-W.; Li, Z.; Liu, B-S.; Zhang, D. Development and application of aptamer-based surface-enhanced raman spectroscopy sensors in quantitative analysis and biotherapy. Sensors (Basel), 2019, 19(17), 3806.
[86]
Scatena, E.; Baiguera, S.; Gaudio, C. Del, Raman spectroscopy and aptamers for a label-free approach: Diagnostic and application tools. J. Healthc. Eng., 2019, 2019, 2815789.
[87]
Yarbakht, M.; Nikkhah, M.; Moshaii, A.; Weber, K.; Matthäus, C.; Cialla-May, D.; Popp, J. Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy. Talanta, 2018, 186, 44-52.
[http://dx.doi.org/10.1016/j.talanta.2018.04.009] [PMID: 29784385]
[88]
Bhamidipati, M.; Cho, H.Y.; Lee, K.B.; Fabris, L. SERS-based quantification of biomarker expression at the single cell level enabled by gold nanostars and truncated aptamers. Bioconjug. Chem., 2018, 29(9), 2970-2981.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00397] [PMID: 30110153]
[89]
Liang, D.; Jin, Q.; Yan, N.; Feng, J.; Wang, J.; Tang, X. SERS nanoprobes in biologically raman silent region for tumor cell imaging and in vivo tumor spectral detection in mice. Adv. Biosyst., 2018, 2(12), 1800100.
[http://dx.doi.org/10.1002/adbi.201800100]
[90]
Su, L.; Zou, L.; Fong, C.C.; Wong, W.L.; Wei, F.; Wong, K.Y.; Wu, R.S.S.; Yang, M. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens. Bioelectron., 2013, 46, 155-161.
[http://dx.doi.org/10.1016/j.bios.2013.01.074] [PMID: 23542085]
[91]
Yang, L.; Huang, X.; Sun, L.; Xu, L. A Piezoelectric immunosensor for the rapid detection of P16INK4a expression in liquid-based cervical cytology specimens. Sens. Actuators B Chem., 2016, 224, 863-867.
[http://dx.doi.org/10.1016/j.snb.2015.11.002]
[92]
Poturnayová, A.; Dzubinová, Ľ.; Buríková, M.; Bízik, J.; Hianik, T. Detection of breast cancer cells using acoustics aptasensor specific to HER2 receptors. Biosensors (Basel), 2019, 9(2), E72.
[http://dx.doi.org/10.3390/bios9020072] [PMID: 31137893]
[93]
Chuang, T.L.; Chang, C.C.; Chu-Su, Y.; Wei, S.C.; Zhao, X.H.; Hsueh, P.R.; Lin, C.W. Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection. Lab Chip, 2014, 14(16), 2968-2977.
[http://dx.doi.org/10.1039/C4LC00249K] [PMID: 24931052]
[94]
Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J.P.; Boukherroub, R.; Szunerits, S. Surface plasmon resonance-based biosensors: From the development of different spr structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci., 2011, 15, 208-224.
[95]
Omar, N.A.S.; Fen, Y.W.; Saleviter, S.; Daniyal, W.M.E.M.M.; Anas, N.A.A.; Ramdzan, N.S.M.; Roshidi, M.D.A. Development of a graphene-based surface plasmon resonance optical sensor chip for potential biomedical application. Materials (Basel), 2019, 12(12), E1928.
[http://dx.doi.org/10.3390/ma12121928] [PMID: 31207960]
[96]
Soung, Y.H.; Ford, S.; Zhang, V.; Chung, J. Exosomes in cancer diagnostics. Cancers , 2017, 9(1), 8.
[http://dx.doi.org/10.3390/cancers9010008]
[97]
Li, W.; Li, C.; Zhou, T.; Liu, X.; Liu, X.; Li, X.; Chen, D. Role of exosomal proteins in cancer diagnosis. Mol. Cancer, 2017, 16, Article number: 145..
[http://dx.doi.org/10.1186/s12943-017-0706-8]
[98]
Huang, R.; He, L.; Li, S.; Liu, H.; Jin, L.; Chen, Z.; Zhao, Y.; Li, Z.; Deng, Y.; He, N. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle Amplification. Nanoscale, 2020, 12, 2445.
[http://dx.doi.org/10.1039/C9NR08747H]
[99]
Huang, R.; He, L.; Xia, Y.; Xu, H.; Liu, C.; Xie, H.; Wang, S.; Peng, L.; Liu, Y.; Liu, Y.; He, N.; Li, Z. A sensitive aptasensor based on a hemin/g-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small, 2019, 15(19), e1900735.
[http://dx.doi.org/10.1002/smll.201900735] [PMID: 30963720]
[100]
Ciancio, D.R.; Vargas, M.R.; Thiel, W.H.; Bruno, M.A.; Giangrande, P.H.; Mestre, M.B. Aptamers as diagnostic tools in cancer. Pharmaceuticals, 2018, 11(3), 86.
[101]
Wu, X.; Chen, J.; Wu, M.; Zhao, J.X. Aptamers: Active targeting ligands for cancer diagnosis and therapy. Theranostics, 2015, 5(4), 322-344.
[http://dx.doi.org/10.7150/thno.10257] [PMID: 25699094]
[102]
Hori, S-I.; Herrera, A.; Rossi, J.J.; Zhou, J. Cancers current advances in aptamers for cancer diagnosis and therapy. Cancers , 2018, 10(1), 9.
[http://dx.doi.org/10.3390/cancers10010009]
[103]
Khang, H.; Cho, K.; Chong, S.; Lee, J.H. All-in-one dual-aptasensor capable of rapidly quantifying carcinoembryonic antigen. Biosens. Bioelectron., 2017, 90, 46-52.
[http://dx.doi.org/10.1016/j.bios.2016.11.043] [PMID: 27875751]
[104]
Yang, H.; Yang, Q.; Li, Z.; Du, Y.; Zhang, C. Sensitive electrogenerated chemiluminescence aptasensor for the detection of ramos cells incorporating polyamidoamine dendrimers and oligonucleotide. Sens. Actuators B Chem., 2016, 236, 712-718.
[http://dx.doi.org/10.1016/j.snb.2016.04.030]
[105]
Majidi, M.R.; Karami, P.; Johari-Ahar, M.; Omidi, Y. Direct detection of tryptophan for rapid diagnosis of cancer cell metastasis competence by an ultra-sensitive and highly selective electrochemical biosensor. Anal. Methods, 2016, 8(44), 7910-7919.
[http://dx.doi.org/10.1039/C6AY02103D]
[106]
Zamay, G.S.; Zamay, T.N.; Kolovskii, V.A.; Shabanov, A.V.; Glazyrin, Y.E.; Veprintsev, D.V.; Krat, A.V.; Zamay, S.S.; Kolovskaya, O.S.; Gargaun, A.; Sokolov, A.E.; Modestov, A.A.; Artyukhov, I.P.; Chesnokov, N.V.; Petrova, M.M.; Berezovski, M.V.; Zamay, A.S. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci. Rep., 2016, 6, 34350.
[http://dx.doi.org/10.1038/srep34350] [PMID: 27694916]
[107]
Ahirwar, R.; Nahar, P. Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha. Anal. Bioanal. Chem., 2016, 408(1), 327-332.
[http://dx.doi.org/10.1007/s00216-015-9090-7] [PMID: 26476919]
[108]
Chen, X.; Zhang, Q.; Qian, C.; Hao, N.; Xu, L.; Yao, C. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag. Biosens. Bioelectron., 2015, 64, 485-492.
[http://dx.doi.org/10.1016/j.bios.2014.09.052] [PMID: 25290645]
[109]
Borghei, Y.S.; Hosseini, M.; Dadmehr, M.; Hosseinkhani, S.; Ganjali, M.R.; Sheikhnejad, R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal. Chim. Acta, 2016, 904, 92-97.
[http://dx.doi.org/10.1016/j.aca.2015.11.026] [PMID: 26724767]
[110]
Wu, X.; Gao, F.; Xu, L.; Kuang, H.; Wang, L.; Xu, C. A fluorescence active gold nanorod-quantum dot core-satellite nanostructure for sub-attomolar tumor marker biosensing. RSC Advances, 2015, 5(118), 97898-97902.
[http://dx.doi.org/10.1039/C5RA19628K]
[111]
Wang, T.; Liu, J.; Gu, X.; Li, D.; Wang, J.; Wang, E. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells. Anal. Chim. Acta, 2015, 882, 32-37.
[http://dx.doi.org/10.1016/j.aca.2015.05.008] [PMID: 26043089]
[112]
Zhu, Q.; Liu, H.; Zhang, J.; Wu, K.; Deng, A.; Li, J. Ultrasensitive QDs based electrochemiluminescent immunosensor for detecting ractopamine using AuNPs and Au nanoparticles@PDDA-graphene as amplifier. Sens. Actuators B Chem., 2017, 243, 121-129.
[http://dx.doi.org/10.1016/j.snb.2016.11.135]
[113]
Jolly, P.; Formisano, N.; Tkáč, J.; Kasák, P.; Frost, C.G.; Estrela, P. Label-free impedimetric aptasensor with antifouling surface chemistry: A prostate specific antigen case study. Sens. Actuators B Chem., 2015, 209, 306-312.
[http://dx.doi.org/10.1016/j.snb.2014.11.083]
[114]
Lim, D.K.; Jeon, K.S.; Kim, H.M.; Nam, J.M.; Suh, Y.D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater., 2010, 9(1), 60-67.
[http://dx.doi.org/10.1038/nmat2596] [PMID: 20010829]
[115]
Mir, T.A.; Yoon, J.H.; Gurudatt, N.G.; Won, M.S.; Shim, Y.B. Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: Detection of human non-small-cell lung cancer cells. Biosens. Bioelectron., 2015, 74, 594-600.
[http://dx.doi.org/10.1016/j.bios.2015.07.012] [PMID: 26190471]
[116]
Lu, C.Y.; Xu, J.J.; Wang, Z.H.; Chen, H.Y. A novel signal-amplified electrochemical aptasensor based on supersandwich G-quadruplex DNAzyme for highly sensitive cancer cell detection. Electrochem. Commun., 2015, 52, 49-52.
[http://dx.doi.org/10.1016/j.elecom.2015.01.015]
[117]
Wen, W.; Hu, R.; Bao, T.; Zhang, X.; Wang, S. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. Biosens. Bioelectron., 2015, 71, 13-17.
[http://dx.doi.org/10.1016/j.bios.2015.04.001] [PMID: 25880833]
[118]
Florea, A.; Taleat, Z.; Cristea, C.; Mazloum-Ardakani, M.; Sǎndulescu, R. Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes. Electrochem. Commun., 2013, 33(AUGUST), 127-130.
[http://dx.doi.org/10.1016/j.elecom.2013.05.008]
[119]
Xue, S.; Yi, H.; Jing, P.; Xu, W. Dendritic Pt@Au nanowires as nanocarriers and signal enhancers for sensitive electrochemical detection of carcinoembryonic antigen. RSC Advances, 2015, 5(94), 77454-77459.
[http://dx.doi.org/10.1039/C5RA15038H]
[120]
Amouzadeh Tabrizi, M.; Shamsipur, M.; Farzin, L. A high sensitive electrochemical aptasensor for the determination of VEGF(165) in serum of lung cancer patient. Biosens. Bioelectron., 2015, 74, 764-769.
[http://dx.doi.org/10.1016/j.bios.2015.07.032] [PMID: 26217879]
[121]
Jarczewska, M.; Kékedy-Nagy, L.; Nielsen, J.S.; Campos, R.; Kjems, J.; Malinowska, E.; Ferapontova, E.E. Electroanalysis of pM-levels of urokinase plasminogen activator in serum by phosphorothioated RNA aptamer. Analyst (Lond.), 2015, 140(11), 3794-3802.
[http://dx.doi.org/10.1039/C4AN02354D] [PMID: 25620243]
[122]
Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Development of an electrochemical RNA-aptasensor to detect human osteopontin. Biosens. Bioelectron., 2015, 71, 332-341.
[http://dx.doi.org/10.1016/j.bios.2015.04.050] [PMID: 25930003]
[123]
Raji, M.A.; Amoabediny, G.; Tajik, P.; Hosseini, M.; Ghafar-Zadeh, E. An apta-biosensor for colon cancer diagnostics. Sensors (Basel), 2015, 15(9), 22291-22303.
[http://dx.doi.org/10.3390/s150922291] [PMID: 26404293]
[124]
Cai, S.; Li, G.; Zhang, X.; Xia, Y.; Chen, M.; Wu, D.; Chen, Q.; Zhang, J.; Chen, J. A signal-on fluorescent aptasensor based on single-stranded DNA-sensitized luminescence of terbium (III) for label-free detection of breast cancer cells. Talanta, 2015, 138, 225-230.
[http://dx.doi.org/10.1016/j.talanta.2015.02.056] [PMID: 25863395]
[125]
Sun, J.; Jiang, W.; Zhu, J.; Li, W.; Wang, L. Label-free fluorescence dual-amplified detection of adenosine based on exonuclease III-assisted DNA cycling and hybridization chain reaction. Biosens. Bioelectron., 2015, 70, 15-20.
[http://dx.doi.org/10.1016/j.bios.2015.03.014] [PMID: 25775969]
[126]
Li, C.; Meng, Y.; Wang, S.; Qian, M.; Wang, J.; Lu, W.; Huang, R. Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo. ACS Nano, 2015, 9(12), 12096-12103.
[http://dx.doi.org/10.1021/acsnano.5b05137] [PMID: 26575351]
[127]
Pasquardini, L.; Pancheri, L.; Potrich, C.; Ferri, A.; Piemonte, C.; Lunelli, L.; Napione, L.; Comunanza, V.; Alvaro, M.; Vanzetti, L.; Bussolino, F.; Pederzolli, C. SPAD aptasensor for the detection of circulating protein biomarkers. Biosens. Bioelectron., 2015, 68, 500-507.
[http://dx.doi.org/10.1016/j.bios.2015.01.042] [PMID: 25636022]
[128]
Zhang, X.; Xiao, K.; Cheng, L.; Chen, H.; Liu, B.; Zhang, S.; Kong, J. Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification. Anal. Chem., 2014, 86(11), 5567-5572.
[http://dx.doi.org/10.1021/ac501068k] [PMID: 24819867]
[129]
Shi, H.W.; Wu, M.S.; Du, Y.; Xu, J.J.; Chen, H.Y. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells. Biosens. Bioelectron., 2014, 55, 459-463.
[http://dx.doi.org/10.1016/j.bios.2013.12.045] [PMID: 24441543]
[130]
Cao, H.; Ye, D.; Zhao, Q.; Luo, J.; Zhang, S.; Kong, J. A novel aptasensor based on MUC-1 conjugated CNSs for ultrasensitive detection of tumor cells. Analyst (Lond.), 2014, 139(19), 4917-4923.
[http://dx.doi.org/10.1039/C4AN00844H] [PMID: 25078888]
[131]
Wang, Z.; Xia, N.; Shi, J.; Li, S.; Zhao, Y.; Wang, H.; Liu, L. Electrochemical aptasensor for determination of mucin 1 by p-aminophenol redox cycling. Anal. Lett., 2014, 47(14), 2431-2442.
[http://dx.doi.org/10.1080/00032719.2014.905953]
[132]
Chun, L.; Kim, S.E.; Cho, M.; Choe, W.S.; Nam, J.; Lee, D.W.; Lee, Y. Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sens. Actuators B Chem., 2013, 186, 446-450.
[http://dx.doi.org/10.1016/j.snb.2013.06.046]
[133]
Yan, M.; Sun, G.; Liu, F.; Lu, J.; Yu, J.; Song, X. An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels. Anal. Chim. Acta, 2013, 798, 33-39.
[http://dx.doi.org/10.1016/j.aca.2013.08.046] [PMID: 24070481]
[134]
Cho, H.; Yeh, E.C.; Sinha, R.; Laurence, T.A.; Bearinger, J.P.; Lee, L.P. Single-step nanoplasmonic VEGF165 aptasensor for early cancer diagnosis. ACS Nano, 2012, 6(9), 7607-7614.
[http://dx.doi.org/10.1021/nn203833d] [PMID: 22880609]
[135]
Freeman, R.; Girsh, J.; Jou, A.F.; Ho, J.A.A.; Hug, T.; Dernedde, J.; Willner, I. Optical aptasensors for the analysis of the Vascular Endothelial Growth Factor (VEGF). Anal. Chem., 2012, 84(14), 6192-6198.
[http://dx.doi.org/10.1021/ac3011473] [PMID: 22746189]
[136]
Li, L.; Zhao, H.; Chen, Z.; Mu, X.; Guo, L. Aptamer biosensor for label-free square-wave voltammetry detection of angiogenin. Biosens. Bioelectron., 2011, 30(1), 261-266.
[http://dx.doi.org/10.1016/j.bios.2011.09.022] [PMID: 22018671]
[137]
Feng, L.; Zhang, Z.; Ren, J.; Qu, X. Functionalized graphene as sensitive electrochemical label in target-dependent linkage of split aptasensor for dual detection. Biosens. Bioelectron., 2014, 62, 52-58.
[http://dx.doi.org/10.1016/j.bios.2014.06.008] [PMID: 24976151]
[138]
Huang, J.; Luo, X.; Lee, I.; Hu, Y.; Cui, X.T.; Yun, M. Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor. Biosens. Bioelectron., 2011, 30(1), 306-309.
[http://dx.doi.org/10.1016/j.bios.2011.08.016] [PMID: 21937215]
[139]
Lee, H.S.; Kim, K.S.; Kim, C.J.; Hahn, S.K.; Jo, M.H. Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens. Bioelectron., 2009, 24(6), 1801-1805.
[http://dx.doi.org/10.1016/j.bios.2008.08.036] [PMID: 18835770]
[140]
Lai, R.Y.; Plaxco, K.W.; Heeger, A.J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem., 2007, 79(1), 229-233.
[http://dx.doi.org/10.1021/ac061592s] [PMID: 17194144]
[141]
Parra, J.P.R.L.L.; Crulhas, B.P.; Basso, C.R.; Delella, F.K.; Castro, G.R.; Pedrosa, V.A. Using an electrochemical aptasensor to early detect prostate specific and free prostate specific antigens released by cancer cells. Electroanalysis, 2018, 30(12), 2869-2877.
[http://dx.doi.org/10.1002/elan.201800558]
[142]
Qian, Y.; Fan, T.; Wang, P.; Zhang, X.; Luo, J.; Zhou, F.; Yao, Y.; Liao, X.; Li, Y.; Gao, F. A novel label-free homogeneous electrochemical immunosensor based on proximity hybridization-triggered isothermal exponential amplification induced G-quadruplex formation. Sens. Actuators B Chem., 2017, 248, 187-194.
[http://dx.doi.org/10.1016/j.snb.2017.03.152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy