Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Chemosensitizing Role of Metformin in Anti-Cancer Therapy

Author(s): Zhimin Tang, Nan Tang, Shanshan Jiang, Yangjinming Bai, Chenxi Guan, Wansi Zhang, Shipan Fan, Yonghong Huang, Hui Lin and Ying Ying*

Volume 21, Issue 8, 2021

Published on: 18 September, 2020

Page: [949 - 962] Pages: 14

DOI: 10.2174/1871520620666200918102642

Price: $65

Abstract

Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.

Keywords: Metformin, chemotherapeutic drugs, combination therapy, chemoresistance, cancer stem cells, multidrug resistance.

Graphical Abstract
[1]
Yamamoto, Y.; Yoshioka, Y.; Minoura, K.; Takahashi, R.U.; Takeshita, F.; Taya, T.; Horii, R.; Fukuoka, Y.; Kato, T.; Kosaka, N.; Ochiya, T. An integrative genomic analysis revealed the relevance of microRNA and gene expression for drug-resistance in human breast cancer cells. Mol. Cancer, 2011, 10, 135.
[http://dx.doi.org/10.1186/1476-4598-10-135] [PMID: 22051041]
[2]
Schmidt, F.; Efferth, T. Tumor heterogeneity, single-cell sequencing, and drug resistance. Pharmaceuticals (Basel), 2016, 9(2)E33
[http://dx.doi.org/10.3390/ph9020033] [PMID: 27322289]
[3]
Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer, 2009, 9(4), 265-273.
[http://dx.doi.org/10.1038/nrc2620] [PMID: 19262571]
[4]
Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ, 2005, 330(7503), 1304-1305.
[http://dx.doi.org/10.1136/bmj.38415.708634.F7] [PMID: 15849206]
[5]
Bowker, S.L.; Majumdar, S.R.; Veugelers, P.; Johnson, J.A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care, 2006, 29(2), 254-258.
[http://dx.doi.org/10.2337/diacare.29.02.06.dc05-1558] [PMID: 16443869]
[6]
Libby, G.; Donnelly, L.A.; Donnan, P.T.; Alessi, D.R.; Morris, A.D.; Evans, J.M. New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes. Diabetes Care, 2009, 32(9), 1620-1625.
[http://dx.doi.org/10.2337/dc08-2175] [PMID: 19564453]
[7]
Anisimov, V.N.; Berstein, L.M.; Egormin, P.A.; Piskunova, T.S.; Popovich, I.G.; Zabezhinski, M.A.; Kovalenko, I.G.; Poroshina, T.E.; Semenchenko, A.V.; Provinciali, M.; Re, F.; Franceschi, C. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp. Gerontol., 2005, 40(8-9), 685-693.
[http://dx.doi.org/10.1016/j.exger.2005.07.007] [PMID: 16125352]
[8]
Rattan, R.; Graham, R.P.; Maguire, J.L.; Giri, S.; Shridhar, V. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia, 2011, 13(5), 483-491.
[http://dx.doi.org/10.1593/neo.11148] [PMID: 21532889]
[9]
Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.
Colosetti, P.; Auberger, P.; Tanti, J.F.; Le Marchand-Brustel, Y.; Bost, F. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008, 27(25), 3576-3586.
[http://dx.doi.org/10.1038/sj.onc.1211024] [PMID: 18212742]
[10]
Kato, K.; Gong, J.; Iwama, H.; Kitanaka, A.; Tani, J.; Miyoshi, H.; Nomura, K.; Mimura, S.; Kobayashi, M.; Aritomo, Y.; Kobara, H.; Mori, H.; Himoto, T.; Okano, K.; Suzuki, Y.; Murao, K.; Masaki, T. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol. Cancer Ther., 2012, 11(3), 549-560.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0594] [PMID: 22222629]
[11]
Würth, R.; Pattarozzi, A.; Gatti, M.; Bajetto, A.; Corsaro, A.; Parodi, A.; Sirito, R.; Massollo, M.; Marini, C.; Zona, G.; Fenoglio, D.; Sambuceti, G.; Filaci, G.; Daga, A.; Barbieri, F.; Florio, T. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt. Cell Cycle, 2013, 12(1), 145-156.
[http://dx.doi.org/10.4161/cc.23050] [PMID: 23255107]
[12]
Chen, K.; Qian, W.; Jiang, Z.; Cheng, L.; Li, J.; Sun, L.; Zhou, C.; Gao, L.; Lei, M.; Yan, B.; Cao, J.; Duan, W.; Ma, Q. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer. Mol. Cancer, 2017, 16(1), 131.
[http://dx.doi.org/10.1186/s12943-017-0701-0] [PMID: 28738823]
[13]
Tang, D.; Xu, L.; Zhang, M.; Dorfman, R.G.; Pan, Y.; Zhou, Q.; Zhou, L.; Wang, Y.; Li, Y.; Yin, Y.; Wang, L.; Zou, X. Metformin facilitates BG45-induced apoptosis via an anti-Warburg effect in cholangiocarcinoma cells. Oncol. Rep., 2018, 39(4), 1957-1965.
[http://dx.doi.org/10.3892/or.2018.6275] [PMID: 29484415]
[14]
Mallik, R.; Chowdhury, T.A. Metformin in cancer. Diabetes Res. Clin. Pract., 2018, 143, 409-419.
[http://dx.doi.org/10.1016/j.diabres.2018.05.023] [PMID: 29807101]
[15]
Iliopoulos, D.; Hirsch, H.A.; Struhl, K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res., 2011, 71(9), 3196-3201.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3471] [PMID: 21415163]
[16]
Suzuki, K.; Takeuchi, O.; Suzuki, Y.; Kitagawa, Y. Mechanisms of metformin’s anti-tumor activity against gemcitabine-resistant pancreatic adenocarcinoma. Int. J. Oncol., 2019, 54(2), 764-772.
[PMID: 30570108]
[17]
Berstein, L.M.; Yue, W.; Wang, J.P.; Santen, R.J. Isolated and combined action of tamoxifen and metformin in wild-type, tamoxifen-resistant, and estrogen-deprived MCF-7 cells. Breast Cancer Res. Treat., 2011, 128(1), 109-117.
[http://dx.doi.org/10.1007/s10549-010-1072-z] [PMID: 20683653]
[18]
Marrone, K.A.; Zhou, X.; Forde, P.M.; Purtell, M.; Brahmer, J.R.; Hann, C.L.; Kelly, R.J.; Coleman, B.; Gabrielson, E.; Rosner, G.L.; Ettinger, D.S. A randomized phase II study of metformin plus paclitaxel/carboplatin/bevacizumab in patients with chemotherapy-naïve advanced or metastatic nonsquamous non-small cell lung cancer. Oncologist, 2018, 23(7), 859-865.
[http://dx.doi.org/10.1634/theoncologist.2017-0465] [PMID: 29487223]
[19]
Ganesh, T.; Yang, C.; Norris, A.; Glass, T.; Bane, S.; Ravindra, R.; Banerjee, A.; Metaferia, B.; Thomas, S.L.; Giannakakou, P.; Alcaraz, A.A.; Lakdawala, A.S.; Snyder, J.P.; Kingston, D.G. Evaluation of the tubulin-bound paclitaxel conformation: Synthesis, biology, and SAR studies of C-4 to C-3′ bridged paclitaxel analogues. J. Med. Chem., 2007, 50(4), 713-725.
[http://dx.doi.org/10.1021/jm061071x] [PMID: 17263521]
[20]
Lee, J.J.; Beumer, J.H.; Chu, E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother. Pharmacol., 2016, 78(3), 447-464.
[http://dx.doi.org/10.1007/s00280-016-3054-2] [PMID: 27217046]
[21]
Meredith, A.M.; Dass, C.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J. Pharm. Pharmacol., 2016, 68(6), 729-741.
[http://dx.doi.org/10.1111/jphp.12539] [PMID: 26989862]
[22]
Lin, J.F.; Lin, Y.C.; Tsai, T.F.; Chen, H.E.; Chou, K.Y.; Hwang, T.I. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des. Devel. Ther., 2017, 11, 1517-1533.
[http://dx.doi.org/10.2147/DDDT.S126464] [PMID: 28553083]
[23]
Schalken, J.; Fitzpatrick, J.M. Enzalutamide: Targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int., 2016, 117(2), 215-225.
[http://dx.doi.org/10.1111/bju.13123] [PMID: 25818596]
[24]
Khosrow-Khavar, F.; Filion, K.B.; Al-Qurashi, S.; Torabi, N.; Bouganim, N.; Suissa, S.; Azoulay, L. Cardiotoxicity of aromatase inhibitors and tamoxifen in postmenopausal women with breast cancer: A systematic review and meta-analysis of randomized controlled trials. Ann. Oncol., 2017, 28(3), 487-496.
[http://dx.doi.org/10.1093/annonc/mdw673] [PMID: 27998966]
[25]
Hidalgo, M. Pancreatic cancer. N. Engl. J. Med., 2010, 362(17), 1605-1617.
[http://dx.doi.org/10.1056/NEJMra0901557] [PMID: 20427809]
[26]
Lewis, J.D.; Chagpar, A.B.; Shaughnessy, E.A.; Nurko, J.; McMasters, K.; Edwards, M.J. Excellent outcomes with adjuvant toremifene or tamoxifen in early stage breast cancer. Cancer, 2010, 116(10), 2307-2315.
[http://dx.doi.org/10.1002/cncr.24940] [PMID: 20209619]
[27]
Zhu, H.; Luo, H.; Zhang, W.; Shen, Z.; Hu, X.; Zhu, X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des. Devel. Ther., 2016, 10, 1885-1895.
[http://dx.doi.org/10.2147/DDDT.S106412] [PMID: 27354763]
[28]
Bielopolski, D.; Evron, E.; Moreh-Rahav, O.; Landes, M.; Stemmer, S.M.; Salamon, F. Paclitaxel-induced pneumonitis in patients with breast cancer: Case series and review of the literature. J. Chemother., 2017, 29(2), 113-117.
[http://dx.doi.org/10.1179/1973947815Y.0000000029] [PMID: 25978147]
[29]
Petrelli, F.; Coinu, A.; Cabiddu, M.; Ghilardi, M.; Lonati, V.; Barni, S. Five or more years of adjuvant endocrine therapy in breast cancer: A meta-analysis of published randomised trials. Breast Cancer Res. Treat., 2013, 140(2), 233-240.
[http://dx.doi.org/10.1007/s10549-013-2629-4] [PMID: 23860926]
[30]
Ko, G.; Kim, T.; Ko, E.; Park, D.; Lee, Y. Synergistic enhancement of paclitaxel-induced inhibition of cell growth by metformin in melanoma cells. Dev. Reprod., 2019, 23(2), 119-128.
[http://dx.doi.org/10.12717/DR.2019.23.2.119] [PMID: 31321352]
[31]
Zhao, Y.; Zeng, X.; Tang, H.; Ye, D.; Liu, J. Combination of metformin and paclitaxel suppresses proliferation and induces apoptosis of human prostate cancer cells via oxidative stress and targeting the mitochondria-dependent pathway. Oncol. Lett., 2019, 17(5), 4277-4284.
[http://dx.doi.org/10.3892/ol.2019.10119] [PMID: 30944622]
[32]
Dos Santos Guimarães, I.; Ladislau-Magescky, T.; Tessarollo, N.G.; Dos Santos, D.Z.; Gimba, E.R.P.; Sternberg, C.; Silva, I.V.; Rangel, L.B.A. Chemosensitizing effects of metformin on cisplatin- and paclitaxel-resistant ovarian cancer cell lines. Pharmacol. Rep., 2018, 70(3), 409-417.
[http://dx.doi.org/10.1016/j.pharep.2017.11.007] [PMID: 29627688]
[33]
Braghiroli, M.I.; de Celis Ferrari, A.C.; Pfiffer, T.E.; Alex, A.K.; Nebuloni, D.; Carneiro, A.S.; Caparelli, F.; Senna, L.; Lobo, J.; Hoff, P.M.; Riechelmann, R.P. Phase II trial of metformin and paclitaxel for patients with gemcitabine-refractory advanced adenocarcinoma of the pancreas. Ecancermedicalscience, 2015, 9, 563.
[http://dx.doi.org/10.3332/ecancer.2015.563] [PMID: 26316884]
[34]
Tseng, S.C.; Huang, Y.C.; Chen, H.J.; Chiu, H.C.; Huang, Y.J.; Wo, T.Y.; Weng, S.H.; Lin, Y.W. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem. Pharmacol., 2013, 85(4), 583-594.
[http://dx.doi.org/10.1016/j.bcp.2012.12.001] [PMID: 23228696]
[35]
Hanna, R.K.; Zhou, C.; Malloy, K.M.; Sun, L.; Zhong, Y.; Gehrig, P.A.; Bae-Jump, V.L. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol. Oncol., 2012, 125(2), 458-469.
[http://dx.doi.org/10.1016/j.ygyno.2012.01.009] [PMID: 22252099]
[36]
Wu, P.; Tang, Y.; Fang, X.; Xie, C.; Zeng, J.; Wang, W.; Zhao, S. Metformin suppresses hypopharyngeal cancer growth by epigenetically silencing long non-coding RNA SNHG7 in FaDu cells. Front. Pharmacol., 2019, 10, 143.
[http://dx.doi.org/10.3389/fphar.2019.00143] [PMID: 30853913]
[37]
Wu, X. Effect of metformin combined with chemotherapeutic agents on gastric cancer cell line AGS. Pak. J. Pharm. Sci., 2017, 30(5(Special)), 1833-1836.
[PMID: 29084654]
[38]
Mayer, M.J.; Klotz, L.H.; Venkateswaran, V. The effect of metformin use during docetaxel chemotherapy on prostate cancer specific and overall survival of diabetic patients with castration resistant prostate cancer. J. Urol., 2017, 197(4), 1068-1075.
[http://dx.doi.org/10.1016/j.juro.2016.10.069] [PMID: 27984108]
[39]
Mayer, M.J.; Klotz, L.H.; Venkateswaran, V. Evaluating metformin as a potential chemosensitizing agent when combined with docetaxel chemotherapy in castration-resistant prostate cancer cells. Anticancer Res., 2017, 37(12), 6601-6607.
[PMID: 29187435]
[40]
Zechner, D.; Albert, A.C.; Bürtin, F.; Vollmar, B. Metformin inhibits gemcitabine induced apoptosis in pancreatic cancer cell lines. J. Cancer, 2017, 8(10), 1744-1749.
[http://dx.doi.org/10.7150/jca.17972] [PMID: 28819370]
[41]
Shi, Y.; He, Z.; Jia, Z.; Xu, C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol. Med. Rep., 2016, 14(4), 2921-2928.
[http://dx.doi.org/10.3892/mmr.2016.5592] [PMID: 27499118]
[42]
Chai, X.; Chu, H.; Yang, X.; Meng, Y.; Shi, P.; Gou, S. Metformin increases sensitivity of pancreatic cancer cells to gemcitabine by reducing CD133+ cell populations and suppressing ERK/P70S6K signaling. Sci. Rep., 2015, 5, 14404.
[http://dx.doi.org/10.1038/srep14404] [PMID: 26391180]
[43]
Baron, B.; Wang, Y.; Maehara, S.; Maehara, Y.; Kuramitsu, Y.; Nakamura, K. Resistance to gemcitabine in the pancreatic cancer cell line KLM1-R reversed by metformin action. Anticancer Res., 2015, 35(4), 1941-1949.
[PMID: 25862846]
[44]
Kawanami, T.; Takiguchi, S.; Ikeda, N.; Funakoshi, A. A humanized anti-IGF-1R monoclonal antibody (R1507) and/or metformin enhance gemcitabine-induced apoptosis in pancreatic cancer cells. Oncol. Rep., 2012, 27(3), 867-872.
[PMID: 22200743]
[45]
Qian, W.; Li, J.; Chen, K.; Jiang, Z.; Cheng, L.; Zhou, C.; Yan, B.; Cao, J.; Ma, Q.; Duan, W. Metformin suppresses tumor angiogenesis and enhances the chemosensitivity of gemcitabine in a genetically engineered mouse model of pancreatic cancer. Life Sci., 2018, 208, 253-261.
[http://dx.doi.org/10.1016/j.lfs.2018.07.046] [PMID: 30053447]
[46]
Mynhardt, C.; Damelin, L.H.; Jivan, R.; Peres, J.; Prince, S.; Veale, R.B.; Mavri-Damelin, D. Metformin-induced alterations in nucleotide metabolism cause 5-fluorouracil resistance but gemcitabine susceptibility in oesophageal squamous cell carcinoma. J. Cell. Biochem., 2018, 119(1), 1193-1203.
[http://dx.doi.org/10.1002/jcb.26291] [PMID: 28722177]
[47]
Zhu, H.Q.; Ma, J.B.; Song, X.; Gao, H.J.; Ma, C.Q.; Chang, H.; Li, H.G.; Liu, F.F.; Lu, J.; Zhou, X. Metformin potentiates the anticancer activities of gemcitabine and cisplatin against cholangiocarcinoma cells in vitro and in vivo. Oncol. Rep., 2016, 36(6), 3488-3496.
[http://dx.doi.org/10.3892/or.2016.5187] [PMID: 27779693]
[48]
Soo, J.S.; Ng, C.H.; Tan, S.H.; Malik, R.A.; Teh, Y.C.; Tan, B.S.; Ho, G.F.; See, M.H.; Taib, N.A.; Yip, C.H.; Chung, F.F.; Hii, L.W.; Teo, S.H.; Leong, C.O. Metformin synergizes 5-Fluorouracil, Epirubicin, and Cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells. Apoptosis, 2015, 20(10), 1373-1387.
[http://dx.doi.org/10.1007/s10495-015-1158-5] [PMID: 26276035]
[49]
Miranda, V.C.; Braghiroli, M.I.; Faria, L.D.; Bariani, G.; Alex, A.; Bezerra Neto, J.E.; Capareli, F.C.; Sabbaga, J.; Lobo Dos Santos, J.F.; Hoff, P.M.; Riechelmann, R.P. Phase 2 trial of metformin combined With 5-fluorouracil in patients with refractory metastatic colorectal cancer. Clin. Colorectal Cancer, 2016, 15(4), 321-328.
[50]
Wu, X.; He, C.; Wu, Y.; Chen, X. Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials, 2016, 75, 148-162.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.016] [PMID: 26497429]
[51]
Harada, K.; Ferdous, T.; Harada, T.; Ueyama, Y. Metformin in combination with 5-fluorouracil suppresses tumor growth by inhibiting the Warburg effect in human oral squamous cell carcinoma. Int. J. Oncol., 2016, 49(1), 276-284.
[http://dx.doi.org/10.3892/ijo.2016.3523] [PMID: 27210058]
[52]
Tian, Y.; Tang, B.; Wang, C.; Sun, D.; Zhang, R.; Luo, N.; Han, Z.; Liang, R.; Gao, Z.; Wang, L. Metformin mediates resensitivity to 5-fluorouracil in hepatocellular carcinoma via the suppression of YAP. Oncotarget, 2016, 7(29), 46230-46241.
[http://dx.doi.org/10.18632/oncotarget.10079] [PMID: 27323827]
[53]
Ling, S.; Tian, Y.; Zhang, H.; Jia, K.; Feng, T.; Sun, D.; Gao, Z.; Xu, F.; Hou, Z.; Li, Y.; Wang, L. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel-7402/5-fluorouracil cells. Mol. Med. Rep., 2014, 10(6), 2891-2897.
[http://dx.doi.org/10.3892/mmr.2014.2614] [PMID: 25310259]
[54]
Yamazaki, T.; Desai, A.; Goldwater, R.; Han, D.; Lasseter, K.C.; Howieson, C.; Akhtar, S.; Kowalski, D.; Lademacher, C.; Rammelsberg, D.; Townsend, R. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, digoxin, metformin, and methotrexate in healthy subjects. Clin. Pharmacol. Drug Dev., 2017, 6(1), 66-75.
[http://dx.doi.org/10.1002/cpdd.280] [PMID: 27273004]
[55]
Yang, C.; Zhao, N.; Li, D.; Zou, G.; Chen, Y. Metformin improves the sensitivity of ovarian cancer cells to chemotherapeutic agents. Oncol. Lett., 2019, 18(3), 2404-2411.
[http://dx.doi.org/10.3892/ol.2019.10564] [PMID: 31402943]
[56]
Marinello, P.C.; Panis, C.; Silva, T.N.X.; Binato, R.; Abdelhay, E.; Rodrigues, J.A.; Mencalha, A.L.; Lopes, N.M.D.; Luiz, R.C.; Cecchini, R.; Cecchini, A.L. Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Sci. Rep., 2019, 9(1), 5864.
[http://dx.doi.org/10.1038/s41598-019-42357-w] [PMID: 30971831]
[57]
Li, Y.; Wang, M.; Zhi, P.; You, J.; Gao, J.Q. Metformin synergistically suppress tumor growth with doxorubicin and reverse drug resistance by inhibiting the expression and function of P-glycoprotein in MCF7/ADR cells and xenograft models. Oncotarget, 2017, 9(2), 2158-2174.
[http://dx.doi.org/10.18632/oncotarget.23187] [PMID: 29416762]
[58]
Shafiei-Irannejad, V.; Samadi, N.; Yousefi, B.; Salehi, R.; Velaei, K.; Zarghami, N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem. Biol. Drug Des., 2018, 91(1), 269-276.
[http://dx.doi.org/10.1111/cbdd.13078] [PMID: 28782285]
[59]
El-Ashmawy, N.E.; Khedr, N.F.; El-Bahrawy, H.A.; Abo Mansour, H.E. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway. Tumour Biol., 2017, 39(5)1010428317692235
[http://dx.doi.org/10.1177/1010428317692235] [PMID: 28459206]
[60]
Xue, C.; Wang, C.; Sun, Y.; Meng, Q.; Liu, Z.; Huo, X.; Sun, P.; Sun, H.; Ma, X.; Ma, X.; Peng, J.; Liu, K. Targeting P-glycoprotein function, p53 and energy metabolism: Combination of metformin and 2-deoxyglucose reverses the multidrug resistance of MCF-7/Dox cells to doxorubicin. Oncotarget, 2017, 8(5), 8622-8632.
[http://dx.doi.org/10.18632/oncotarget.14373] [PMID: 28052008]
[61]
Gatti, M.; Solari, A.; Pattarozzi, A.; Campanella, C.; Thellung, S.; Maniscalco, L.; De Maria, R.; Würth, R.; Corsaro, A.; Bajetto, A.; Ratto, A.; Ferrari, A.; Daga, A.; Barbieri, F.; Florio, T. In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Exp. Cell Res., 2018, 363(1), 48-64.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.002] [PMID: 29305964]
[62]
Paiva-Oliveira, D.I.; Martins-Neves, S.R.; Abrunhosa, A.J.; Fontes-Ribeiro, C.; Gomes, C.M.F. Therapeutic potential of the metabolic modulator Metformin on osteosarcoma cancer stem-like cells. Cancer Chemother. Pharmacol., 2018, 81(1), 49-63.
[http://dx.doi.org/10.1007/s00280-017-3467-6] [PMID: 29086064]
[63]
Reni, M.; Dugnani, E.; Cereda, S.; Belli, C.; Balzano, G.; Nicoletti, R.; Liberati, D.; Pasquale, V.; Scavini, M.; Maggiora, P.; Sordi, V.; Lampasona, V.; Ceraulo, D.; Di Terlizzi, G.; Doglioni, C.; Falconi, M.; Piemonti, L. (Ir)relevance of metformin treatment in patients with metastatic pancreatic cancer: An open-label, randomized phase II trial. Clin. Cancer Res., 2016, 22(5), 1076-1085.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1722] [PMID: 26459175]
[64]
Chung, Y.G.; Tak, E.; Hwang, S.; Lee, J.Y.; Kim, J.Y.; Kim, Y.Y.; Song, G.W.; Lee, K.J.; Kim, N. Synergistic effect of metformin on sorafenib in in vitro study using hepatocellular carcinoma cell lines. Ann. Hepatobiliary Pancreat. Surg., 2018, 22(3), 179-184.
[http://dx.doi.org/10.14701/ahbps.2018.22.3.179] [PMID: 30215039]
[65]
Feng, Y.; Guo, X.; Huang, X.; Wu, M.; Li, X.; Wu, S.; Luo, X. Metformin reverses stem cell-like HepG2 sphere formation and resistance to sorafenib by attenuating epithelial-mesenchymal transformation. Mol. Med. Rep., 2018, 18(4), 3866-3872.
[http://dx.doi.org/10.3892/mmr.2018.9348] [PMID: 30106125]
[66]
Ling, S.; Song, L.; Fan, N.; Feng, T.; Liu, L.; Yang, X.; Wang, M.; Li, Y.; Tian, Y.; Zhao, F.; Liu, Y.; Huang, Q.; Hou, Z.; Xu, F.; Shi, L.; Li, Y. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway. Int. J. Oncol., 2017, 50(1), 297-309.
[http://dx.doi.org/10.3892/ijo.2016.3799] [PMID: 27959383]
[67]
Casadei Gardini, A.; Faloppi, L.; De Matteis, S.; Foschi, F.G.; Silvestris, N.; Tovoli, F.; Palmieri, V.; Marisi, G.; Brunetti, O.; Vespasiani-Gentilucci, U.; Perrone, G.; Valgiusti, M.; Granato, A.M.; Ercolani, G.; Negrini, G.; Tamburini, E.; Aprile, G.; Passardi, A.; Santini, D.; Cascinu, S.; Frassineti, G.L.; Scartozzi, M. Metformin and insulin impact on clinical outcome in patients with advanced hepatocellular carcinoma receiving sorafenib: Validation study and biological rationale. Eur. J. Cancer, 2017, 86, 106-114.
[http://dx.doi.org/10.1016/j.ejca.2017.09.003] [PMID: 28985579]
[68]
You, A.; Cao, M.; Guo, Z.; Zuo, B.; Gao, J.; Zhou, H.; Li, H.; Cui, Y.; Fang, F.; Zhang, W.; Song, T.; Li, Q.; Zhu, X.; Yin, H.; Sun, H.; Zhang, T. Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models. J. Hematol. Oncol., 2016, 9, 20.
[http://dx.doi.org/10.1186/s13045-016-0253-6] [PMID: 26957312]
[69]
Guo, Z.; Cao, M.; You, A.; Gao, J.; Zhou, H.; Li, H.; Cui, Y.; Fang, F.; Zhang, W.; Song, T.; Li, Q.; Zhu, X.; Sun, H.; Zhang, T. Metformin inhibits the prometastatic effect of sorafenib in hepatocellular carcinoma by upregulating the expression of TIP30. Cancer Sci., 2016, 107(4), 507-513.
[http://dx.doi.org/10.1111/cas.12885] [PMID: 26752068]
[70]
Casadei Gardini, A.; Marisi, G.; Scarpi, E.; Scartozzi, M.; Faloppi, L.; Silvestris, N.; Masi, G.; Vivaldi, C.; Brunetti, O.; Tamberi, S.; Foschi, F.G.; Tamburini, E.; Tenti, E.; Ricca Rosellini, S.; Ulivi, P.; Cascinu, S.; Nanni, O.; Frassineti, G.L. Effects of metformin on clinical outcome in diabetic patients with advanced HCC receiving sorafenib. Expert Opin. Pharmacother., 2015, 16(18), 2719-2725.
[http://dx.doi.org/10.1517/14656566.2015.1102887] [PMID: 26513009]
[71]
Hsieh, S.C.; Tsai, J.P.; Yang, S.F.; Tang, M.J.; Hsieh, Y.H. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression. Amino Acids, 2014, 46(12), 2809-2822.
[http://dx.doi.org/10.1007/s00726-014-1838-4] [PMID: 25245054]
[72]
Chen, G.; Nicula, D.; Renko, K.; Derwahl, M. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol. Rep., 2015, 33(4), 1994-2000.
[http://dx.doi.org/10.3892/or.2015.3805] [PMID: 25683253]
[73]
Groenendijk, F.H.; Mellema, W.W.; van der Burg, E.; Schut, E.; Hauptmann, M.; Horlings, H.M.; Willems, S.M.; van den Heuvel, M.M.; Jonkers, J.; Smit, E.F.; Bernards, R. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation. Int. J. Cancer, 2015, 136(6), 1434-1444.
[http://dx.doi.org/10.1002/ijc.29113] [PMID: 25080865]
[74]
Wang, F.; Liu, Z.; Zeng, J.; Zhu, H.; Li, J.; Cheng, X.; Jiang, T.; Zhang, L.; Zhang, C.; Chen, T.; Liu, T.; Jia, Y. Metformin synergistically sensitizes FLT3-ITD-positive acute myeloid leukemia to sorafenib by promoting mTOR-mediated apoptosis and autophagy. Leuk. Res., 2015, 39(12), 1421-1427.
[http://dx.doi.org/10.1016/j.leukres.2015.09.016] [PMID: 26505133]
[75]
Aldea, M.D.; Petrushev, B.; Soritau, O.; Tomuleasa, C.I.; Berindan-Neagoe, I.; Filip, A.G.; Chereches, G.; Cenariu, M.; Craciun, L.; Tatomir, C.; Florian, I.S.; Crivii, C.B.; Kacso, G. Metformin plus sorafenib highly impacts temozolomide resistant glioblastoma stem-like cells. J. BUON, 2014, 19(2), 502-511.
[PMID: 24965413]
[76]
Zheng, Y.; Zhu, J.; Zhang, H.; Liu, Y.; Sun, H. Metformin inhibits ovarian cancer growth and migration in vitro and in vivo by enhancing cisplatin cytotoxicity. Am. J. Transl. Res., 2018, 10(10), 3086-3098.
[PMID: 30416652]
[77]
Dang, J.H.; Jin, Z.J.; Liu, X.J.; Hu, D.; Wang, J.; Luo, Y.; Li, L.L. Metformin in combination with cisplatin inhibits cell viability and induces apoptosis of human ovarian cancer cells by inactivating ERK 1/2. Oncol. Lett., 2017, 14(6), 7557-7564.
[http://dx.doi.org/10.3892/ol.2017.7176] [PMID: 29344202]
[78]
Xie, Y.; Peng, Z.; Shi, M.; Ji, M.; Guo, H.; Shi, H. Metformin combined with p38 MAPK inhibitor improves cisplatin sensitivity in cisplatin-resistant ovarian cancer. Mol. Med. Rep., 2014, 10(5), 2346-2350.
[http://dx.doi.org/10.3892/mmr.2014.2490] [PMID: 25118792]
[79]
Qi, X.; Xu, W.; Xie, J.; Wang, Y.; Han, S.; Wei, Z.; Ni, Y.; Dong, Y.; Han, W. Metformin sensitizes the response of oral squamous cell carcinoma to cisplatin treatment through inhibition of NF-κB/HIF-1α signal axis. Sci. Rep., 2016, 6, 35788.
[http://dx.doi.org/10.1038/srep35788] [PMID: 27762347]
[80]
Moro, M.; Caiola, E.; Ganzinelli, M.; Zulato, E.; Rulli, E.; Marabese, M.; Centonze, G.; Busico, A.; Pastorino, U.; de Braud, F.G.; Vernieri, C.; Simbolo, M.; Bria, E.; Scarpa, A.; Indraccolo, S.; Broggini, M.; Sozzi, G.; Garassino, M.C. Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in Co-mutated KRAS/LKB1 NSCLC. J. Thorac. Oncol., 2018, 13(11), 1692-1704.
[http://dx.doi.org/10.1016/j.jtho.2018.07.102] [PMID: 30149143]
[81]
Xiong, Y.; Zhao, Y.; Miao, L.; Lin, C.M.; Huang, L. Co-delivery of polymeric metformin and cisplatin by self-assembled coremembrane nanoparticles to treat non-small cell lung cancer J. Control. Release, 2016, 244(Pt A), 63-73.
[82]
Chen, Y.Q.; Chen, G. Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice. J. Cancer Res. Ther., 2015, 11(2), 324-330.
[http://dx.doi.org/10.4103/0973-1482.151444] [PMID: 26148594]
[83]
Riaz, M.A.; Sak, A.; Erol, Y.B.; Groneberg, M.; Thomale, J.; Stuschke, M. Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci. Rep., 2019, 9(1), 1282.
[http://dx.doi.org/10.1038/s41598-018-38004-5] [PMID: 30718758]
[84]
Teixeira, S.F.; Guimarães, I.S.; Madeira, K.P.; Daltoé, R.D.; Silva, I.V.; Rangel, L.B. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells. J. Bras. Pneumol., 2013, 39(6), 644-649.
[http://dx.doi.org/10.1590/S1806-37132013000600002] [PMID: 24473757]
[85]
Dong, L.; Zhou, Q.; Zhang, Z.; Zhu, Y.; Duan, T.; Feng, Y. Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J. Obstet. Gynaecol. Res., 2012, 38(8), 1077-1085.
[http://dx.doi.org/10.1111/j.1447-0756.2011.01839.x] [PMID: 22540333]
[86]
Dong, H.; Huang, J.; Zheng, K.; Tan, D.; Chang, Q.; Gong, G.; Zhang, Q.; Tang, H.; Sun, J.; Zhang, S. Metformin enhances the chemosensitivity of hepatocarcinoma cells to cisplatin through AMPK pathway. Oncol. Lett., 2017, 14(6), 7807-7812.
[http://dx.doi.org/10.3892/ol.2017.7198] [PMID: 29344225]
[87]
Fujita, H.; Hirose, K.; Sato, M.; Fujioka, I.; Fujita, T.; Aoki, M.; Takai, Y. Metformin attenuates hypoxia-induced resistance to cisplatin in the HepG2 cell line. Oncol. Lett., 2019, 17(2), 2431-2440.
[PMID: 30719114]
[88]
Wang, F.; Ding, X.; Wang, T.; Shan, Z.; Wang, J.; Wu, S.; Chi, Y.; Zhang, Y.; Lv, Z.; Wang, L.; Fan, Q. Metformin inhibited esophageal squamous cell carcinoma proliferation in vitro and in vivo and enhanced the anti-cancer effect of cisplatin. PLoS One, 2017, 12(4)e0174276
[http://dx.doi.org/10.1371/journal.pone.0174276] [PMID: 28406985]
[89]
Yu, H.; Bian, X.; Gu, D.; He, X. Metformin synergistically enhances cisplatin-induced cytotoxicity in esophageal squamous cancer cells under glucose-deprivation conditions. BioMed Res. Int., 2016, 20168678634
[http://dx.doi.org/10.1155/2016/8678634] [PMID: 26904687]
[90]
Li, P.D.; Liu, Z.; Cheng, T.T.; Luo, W.G.; Yao, J.; Chen, J.; Zou, Z.W.; Chen, L.L.; Ma, C.; Dai, X.F. Redox-dependent modulation of metformin contributes to enhanced sensitivity of esophageal squamous cell carcinoma to cisplatin. Oncotarget, 2017, 8(37), 62057-62068.
[http://dx.doi.org/10.18632/oncotarget.18907] [PMID: 28977926]
[91]
Shang, D.; Wu, J.; Guo, L.; Xu, Y.; Liu, L.; Lu, J. Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int. J. Oncol., 2017, 50(5), 1848-1856.
[http://dx.doi.org/10.3892/ijo.2017.3950] [PMID: 28393220]
[92]
Quattrini, I.; Conti, A.; Pazzaglia, L.; Novello, C.; Ferrari, S.; Picci, P.; Benassi, M.S. Metformin inhibits growth and sensitizes osteosarcoma cell lines to cisplatin through cell cycle modulation. Oncol. Rep., 2014, 31(1), 370-375.
[http://dx.doi.org/10.3892/or.2013.2862] [PMID: 24253938]
[93]
Wandee, J.; Prawan, A.; Senggunprai, L.; Kongpetch, S.; Tusskorn, O.; Kukongviriyapan, V. Metformin enhances cisplatin induced inhibition of cholangiocarcinoma cells via AMPK-mTOR pathway. Life Sci., 2018, 207, 172-183.
[http://dx.doi.org/10.1016/j.lfs.2018.05.046] [PMID: 29847773]
[94]
Yu, G.; Fang, W.; Xia, T.; Chen, Y.; Gao, Y.; Jiao, X.; Huang, S.; Wang, J.; Li, Z.; Xie, K. Metformin potentiates rapamycin and cisplatin in gastric cancer in mice. Oncotarget, 2015, 6(14), 12748-12762.
[http://dx.doi.org/10.18632/oncotarget.3327] [PMID: 25909163]
[95]
Lesan, V.; Ghaffari, S.H.; Salaramoli, J.; Heidari, M.; Rostami, M.; Alimoghaddam, K.; Ghavamzadeh, A. Evaluation of antagonistic effects of metformin with Cisplatin in gastric cancer cells. Int. J. Hematol. Oncol. Stem Cell Res., 2014, 8(3), 12-19.
[PMID: 25642303]
[96]
Tyszka-Czochara, M.; Bukowska-Strakova, K.; Majka, M. Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35 cells and augment anticancer activity of Cisplatin via cell cycle regulation Food Chem. Toxicol, 2017, 106(Pt A), 260-272.
[97]
Wang, D.; Wu, X. In vitro and in vivo targeting of bladder carcinoma with metformin in combination with cisplatin. Oncol. Lett., 2015, 10(2), 975-981.
[http://dx.doi.org/10.3892/ol.2015.3267] [PMID: 26622608]
[98]
Sun, X.J.; Zhang, P.; Li, H.H.; Jiang, Z.W.; Jiang, C.C.; Liu, H. Cisplatin combined with metformin inhibits migration and invasion of human nasopharyngeal carcinoma cells by regulating E-cadherin and MMP-9. Asian Pac. J. Cancer Prev., 2014, 15(9), 4019-4023.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.4019] [PMID: 24935589]
[99]
Nanni, O.; Amadori, D.; De Censi, A.; Rocca, A.; Freschi, A.; Bologna, A.; Gianni, L.; Rosetti, F.; Amaducci, L.; Cavanna, L.; Foca, F.; Sarti, S.; Serra, P.; Valmorri, L.; Bruzzi, P.; Corradengo, D.; Gennari, A. MYME investigators. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase 2 clinical trial. Breast Cancer Res. Treat., 2019, 174(2), 433-442.
[http://dx.doi.org/10.1007/s10549-018-05070-2] [PMID: 30536182]
[100]
Zhu, W.; Xu, H.; Ma, J.; Guo, J.; Xue, W.; Gu, B.; Sheng, L.; Yao, X.; Sun, F.; Gong, J.; Qiu, W.; Ding, Q.; Jiang, H. An open-label pilot study of metformin as a concomitant therapy on patients with prostate cancer undergoing androgen deprivation treatment. Urol. Int., 2017, 98(1), 79-84.
[http://dx.doi.org/10.1159/000448691] [PMID: 27684440]
[101]
Liu, Q.; Tong, D.; Liu, G.; Xu, J.; Do, K.; Geary, K.; Zhang, D.; Zhang, J.; Zhang, Y.; Li, Y.; Bi, G.; Lan, W.; Jiang, J. Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis., 2017, 8(8)e3007
[http://dx.doi.org/10.1038/cddis.2017.417] [PMID: 28837141]
[102]
Kim, J.; Lee, J.; Jang, S.Y.; Kim, C.; Choi, Y.; Kim, A. Anticancer effect of metformin on estrogen receptor-positive and tamoxifen-resistant breast cancer cell lines. Oncol. Rep., 2016, 35(5), 2553-2560.
[http://dx.doi.org/10.3892/or.2016.4675] [PMID: 26986571]
[103]
Kim, J.; Lee, J.; Kim, C.; Choi, J.; Kim, A. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells. Tumour Biol., 2016, 37(5), 5811-5819.
[http://dx.doi.org/10.1007/s13277-015-4440-9] [PMID: 26581908]
[104]
Davis, S.R.; Robinson, P.J.; Jane, F.; White, S.; Brown, K.A.; Piessens, S.; Edwards, A.; McNeilage, J.; Woinarski, J.; Chipman, M.; Bell, R.J. The benefits of adding metformin to tamoxifen to protect the endometrium-A randomized placebo-controlled trial. Clin. Endocrinol. (Oxf.), 2018, 89(5), 605-612.
[http://dx.doi.org/10.1111/cen.13830] [PMID: 30107043]
[105]
Bacci, M.; Giannoni, E.; Fearns, A.; Ribas, R.; Gao, Q.; Taddei, M.L.; Pintus, G.; Dowsett, M.; Isacke, C.M.; Martin, L.A.; Chiarugi, P.; Morandi, A. miR-155 drives metabolic reprogramming of ER+ breast cancer cells following long-term estrogen deprivation and predicts clinical response to aromatase inhibitors. Cancer Res., 2016, 76(6), 1615-1626.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2038] [PMID: 26795347]
[106]
Candido, S.; Abrams, S.L.; Steelman, L.; Lertpiriyapong, K.; Martelli, A.M.; Cocco, L.; Ratti, S.; Follo, M.Y.; Murata, R.M.; Rosalen, P.L.; Lombardi, P.; Montalto, G.; Cervello, M.; Gizak, A.; Rakus, D.; Suh, P.G.; Libra, M.; McCubrey, J.A. Metformin influences drug sensitivity in pancreatic cancer cells. Adv. Biol. Regul., 2018, 68, 13-30.
[http://dx.doi.org/10.1016/j.jbior.2018.02.002] [PMID: 29482945]
[107]
Li, J.; Wang, R.; Schweickert, P.G.; Karki, A.; Yang, Y.; Kong, Y.; Ahmad, N.; Konieczny, S.F.; Liu, X. Plk1 inhibition enhances the efficacy of gemcitabine in human pancreatic cancer. Cell Cycle, 2016, 15(5), 711-719.
[http://dx.doi.org/10.1080/15384101.2016.1148838] [PMID: 26890815]
[108]
Wink, K.C.; Belderbos, J.S.; Dieleman, E.M.; Rossi, M.; Rasch, C.R.; Damhuis, R.A.; Houben, R.M.; Troost, E.G. Improved progression free survival for patients with diabetes and locally advanced Non-Small Cell Lung Cancer (NSCLC) using metformin during concurrent chemoradiotherapy. Radiother. Oncol., 2016, 118(3), 453-459.
[http://dx.doi.org/10.1016/j.radonc.2016.01.012] [PMID: 26861738]
[109]
Tan, B.X.; Yao, W.X.; Ge, J.; Peng, X.C.; Du, X.B.; Zhang, R.; Yao, B.; Xie, K.; Li, L.H.; Dong, H.; Gao, F.; Zhao, F.; Hou, J.M.; Su, J.M.; Liu, J.Y. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer, 2011, 117(22), 5103-5111.
[http://dx.doi.org/10.1002/cncr.26151] [PMID: 21523768]
[110]
Engels, C.C.; de Glas, N.A.; Sajet, A.; Bastiaannet, E.; Smit, V.T.; Kuppen, P.J.; Seynaeve, C.; van de Velde, C.J.; Liefers, G.J. The influence of insulin-like Growth Factor-1-Receptor expression and endocrine treatment on clinical outcome of postmenopausal hormone receptor positive breast cancer patients: A Dutch Team substudy analysis. Mol. Oncol., 2016, 10(4), 509-516.
[http://dx.doi.org/10.1016/j.molonc.2015.10.010] [PMID: 26706833]
[111]
Prasetyanti, P.R.; Medema, J.P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer, 2017, 16(1), 41.
[http://dx.doi.org/10.1186/s12943-017-0600-4] [PMID: 28209166]
[112]
Zechner, D.; Bürtin, F.; Albert, A.C.; Zhang, X.; Kumstel, S.; Schönrogge, M.; Graffunder, J.; Shih, H.Y.; Müller, S.; Radecke, T.; Jaster, R.; Vollmar, B. Intratumoral heterogeneity of the therapeutical response to gemcitabine and metformin. Oncotarget, 2016, 7(35), 56395-56407.
[http://dx.doi.org/10.18632/oncotarget.10892] [PMID: 27486761]
[113]
Curley, M.D.; Therrien, V.A.; Cummings, C.L.; Sergent, P.A.; Koulouris, C.R.; Friel, A.M.; Roberts, D.J.; Seiden, M.V.; Scadden, D.T.; Rueda, B.R.; Foster, R. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells, 2009, 27(12), 2875-2883.
[http://dx.doi.org/10.1002/stem.236] [PMID: 19816957]
[114]
Klemba, A.; Purzycka-Olewiecka, J.K.; Wcisło, G.; Czarnecka, A.M.; Lewicki, S.; Lesyng, B.; Szczylik, C.; Kieda, C. Surface markers of cancer stem-like cells of ovarian cancer and their clinical relevance. Contemp. Oncol. (Pozn.), 2018, 22(1A), 48-55.
[http://dx.doi.org/10.5114/wo.2018.73885] [PMID: 29628794]
[115]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[116]
De Vitis, C.; Corleone, G.; Salvati, V.; Ascenzi, F.; Pallocca, M.; De Nicola, F.; Fanciulli, M.; di Martino, S.; Bruschini, S.; Napoli, C.; Ricci, A.; Bassi, M.; Venuta, F.; Rendina, E.A.; Ciliberto, G.; Mancini, R. B4GALT1 is a new candidate to maintain the stemness of lung cancer stem cells. J. Clin. Med., 2019, 8(11)E1928
[http://dx.doi.org/10.3390/jcm8111928] [PMID: 31717588]
[117]
Bishnu, A.; Sakpal, A.; Ghosh, N.; Choudhury, P.; Chaudhury, K.; Ray, P. Long term treatment of metformin impedes development of chemoresistance by regulating cancer stem cell differentiation through taurine generation in ovarian cancer cells. Int. J. Biochem. Cell Biol., 2019, 107, 116-127.
[http://dx.doi.org/10.1016/j.biocel.2018.12.016] [PMID: 30593952]
[118]
Maehara, O.; Ohnishi, S.; Asano, A.; Suda, G.; Natsuizaka, M.; Nakagawa, K.; Kobayashi, M.; Sakamoto, N.; Takeda, H. Metformin regulates the expression of CD133 through the AMPK-CEBPβ pathway in hepatocellular carcinoma cell lines. Neoplasia, 2019, 21(6), 545-556.
[http://dx.doi.org/10.1016/j.neo.2019.03.007] [PMID: 31042624]
[119]
Kuo, S.Z.; Honda, C.O.; Li, W.T.; Honda, T.K.; Kim, E.; Altuna, X.; Abhold, E.; Wang-Rodriguez, J.; Ongkeko, W.M. Metformin results in diametrically opposed effects by targeting non-stem cancer cells but protecting cancer stem cells in head and neck squamous cell carcinoma. Int. J. Mol. Sci., 2019, 20(1)E193
[http://dx.doi.org/10.3390/ijms20010193] [PMID: 30621095]
[120]
Kwon, Y.S.; Chun, S.Y.; Nan, H.Y.; Nam, K.S.; Lee, C.; Kim, S. Metformin selectively targets 4T1 tumorspheres and enhances the antitumor effects of doxorubicin by downregulating the AKT and STAT3 signaling pathways. Oncol. Lett., 2019, 17(2), 2523-2530.
[PMID: 30675314]
[121]
Janzer, A.; German, N.J.; Gonzalez-Herrera, K.N.; Asara, J.M.; Haigis, M.C.; Struhl, K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells Proc. Natl. Acad. Sci. USA,, 2014, 111(29), 10574-10579.
[http://dx.doi.org/10.1073/pnas.1409844111] [PMID: 25002509]
[122]
Qu, C.; Zhang, W.; Zheng, G.; Zhang, Z.; Yin, J.; He, Z. Metformin reverses multidrug resistance and Epithelial-Mesenchymal Transition (EMT) via activating AMP-activated protein Kinase (AMPK) in human breast cancer cells. Mol. Cell. Biochem., 2014, 386(1-2), 63-71.
[http://dx.doi.org/10.1007/s11010-013-1845-x] [PMID: 24096736]
[123]
Silva, R.; Vilas-Boas, V.; Carmo, H.; Dinis-Oliveira, R.J.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther., 2015, 149, 1-123.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.013] [PMID: 25435018]
[124]
Davies, G.; Lobanova, L.; Dawicki, W.; Groot, G.; Gordon, J.R.; Bowen, M.; Harkness, T.; Arnason, T. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer. PLoS One, 2017, 12(12)e0187191
[http://dx.doi.org/10.1371/journal.pone.0187191] [PMID: 29211738]
[125]
Wu, W.; Yang, J.L.; Wang, Y.L.; Wang, H.; Yao, M.; Wang, L.; Gu, J.J.; Cai, Y.; Shi, Y.; Yao, D.F. Reversal of multidrug resistance of hepatocellular carcinoma cells by metformin through inhibiting NF-κB gene transcription. World J. Hepatol., 2016, 8(23), 985-993.
[http://dx.doi.org/10.4254/wjh.v8.i23.985] [PMID: 27621764]
[126]
Kim, H.G.; Hien, T.T.; Han, E.H.; Hwang, Y.P.; Choi, J.H.; Kang, K.W.; Kwon, K.I.; Kim, B.H.; Kim, S.K.; Song, G.Y.; Jeong, T.C.; Jeong, H.G. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br. J. Pharmacol., 2011, 162(5), 1096-1108.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01101.x] [PMID: 21054339]
[127]
Xue, C.; Wang, C.; Liu, Q.; Meng, Q.; Sun, H.; Huo, X.; Ma, X.; Liu, Z.; Ma, X.; Peng, J.; Liu, K. Targeting P-glycoprotein expression and cancer cell energy metabolism: Combination of metformin and 2-deoxyglucose reverses the multidrug resistance of K562/Dox cells to doxorubicin. Tumour Biol., 2016, 37(7), 8587-8597.
[http://dx.doi.org/10.1007/s13277-015-4478-8] [PMID: 26733176]
[128]
Horsman, M.R.; Vaupel, P. Pathophysiological basis for the formation of the tumor microenvironment. Front. Oncol., 2016, 6, 66.
[http://dx.doi.org/10.3389/fonc.2016.00066] [PMID: 27148472]
[129]
Kim, J.Y.; Lee, J.Y. Targeting tumor adaption to chronic hypoxia: Implications for drug resistance, and how it can be overcome. Int. J. Mol. Sci., 2017, 18(9)E1854
[http://dx.doi.org/10.3390/ijms18091854] [PMID: 28841148]
[130]
Comerford, K.M.; Wallace, T.J.; Karhausen, J.; Louis, N.A.; Montalto, M.C.; Colgan, S.P. Hypoxia-inducible factor-1-dependent regulation of the Multidrug Resistance (MDR1) gene. Cancer Res., 2002, 62(12), 3387-3394.
[PMID: 12067980]
[131]
Bottsford-Miller, J.N.; Coleman, R.L.; Sood, A.K. Resistance and escape from antiangiogenesis therapy: Clinical implications and future strategies. J. Clin. Oncol., 2012, 30(32), 4026-4034.
[http://dx.doi.org/10.1200/JCO.2012.41.9242] [PMID: 23008289]
[132]
Bridges, H.R.; Jones, A.J.; Pollak, M.N.; Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J., 2014, 462(3), 475-487.
[http://dx.doi.org/10.1042/BJ20140620] [PMID: 25017630]
[133]
Zannella, V.E.; Dal Pra, A.; Muaddi, H.; McKee, T.D.; Stapleton, S.; Sykes, J.; Glicksman, R.; Chaib, S.; Zamiara, P.; Milosevic, M.; Wouters, B.G.; Bristow, R.G.; Koritzinsky, M. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin. Cancer Res., 2013, 19(24), 6741-6750.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1787] [PMID: 24141625]
[134]
Li, Y.; Luo, J.; Lin, M.T.; Zhi, P.; Guo, W.W.; Han, M.; You, J.; Gao, J.Q. Co-delivery of metformin enhances the antimultidrug resistant tumor effect of doxorubicin by improving hypoxic tumor microenvironment. Mol. Pharm., 2019, 16(7), 2966-2979.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00199] [PMID: 31095914]
[135]
Cioce, M.; Valerio, M.; Casadei, L.; Pulito, C.; Sacconi, A.; Mori, F.; Biagioni, F.; Manetti, C.; Muti, P.; Strano, S.; Blandino, G. Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget, 2014, 5(12), 4129-4143.
[http://dx.doi.org/10.18632/oncotarget.1864] [PMID: 24980829]
[136]
Aleisa, A.M.; Al-Rejaie, S.S.; Bakheet, S.A.; Al-Bekari, A.M.; Al-Shabanah, O.A.; Al-Majed, A.; Al-Yahya, A.A.; Qureshi, S. Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swiss albino mice. Mutat. Res., 2007, 634(1-2), 93-100.
[http://dx.doi.org/10.1016/j.mrgentox.2007.06.005] [PMID: 17693128]
[137]
Liu, Y.; He, C.; Huang, X. Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism. Oncotarget, 2017, 8(43), 75206-75216.
[http://dx.doi.org/10.18632/oncotarget.20663] [PMID: 29088858]
[138]
Zhang, L.; Yang, H.; Zhang, W.; Liang, Z.; Huang, Q.; Xu, G.; Zhen, X.; Zheng, L.T. Clk1-regulated aerobic glycolysis is involved in glioma chemoresistance. J. Neurochem., 2017, 142(4), 574-588.
[http://dx.doi.org/10.1111/jnc.14096] [PMID: 28581641]
[139]
Han, C.Y.; Patten, D.A.; Lee, S.G.; Parks, R.J.; Chan, D.W.; Harper, M.E.; Tsang, B.K. p53 Promotes chemoresponsiveness by regulating hexokinase II gene transcription and metabolic reprogramming in epithelial ovarian cancer. Mol. Carcinog., 2019, 58(11), 2161-2174.
[http://dx.doi.org/10.1002/mc.23106] [PMID: 31486135]
[140]
Courtnay, R.; Ngo, D.C.; Malik, N.; Ververis, K.; Tortorella, S.M.; Karagiannis, T.C. Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol. Biol. Rep., 2015, 42(4), 841-851.
[http://dx.doi.org/10.1007/s11033-015-3858-x] [PMID: 25689954]
[141]
Lin, C.C.; Yeh, H.H.; Huang, W.L.; Yan, J.J.; Lai, W.W.; Su, W.P.; Chen, H.H.; Su, W.C. Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway. Am. J. Respir. Cell Mol. Biol., 2013, 49(2), 241-250.
[http://dx.doi.org/10.1165/rcmb.2012-0244OC] [PMID: 23526220]
[142]
Petrushev, B.; Tomuleasa, C.; Soritau, O.; Aldea, M.; Pop, T.; Susman, S.; Kacso, G.; Berindan, I.; Irimie, A.; Cristea, V. Metformin plus PIAF combination chemotherapy for hepatocellular carcinoma. Exp. Oncol., 2012, 34(1), 17-24.
[PMID: 22453143]
[143]
Ling, S.; Feng, T.; Ke, Q.; Fan, N.; Li, L.; Li, Z.; Dong, C.; Wang, C.; Xu, F.; Li, Y.; Wang, L. Metformin inhibits proliferation and enhances chemosensitivity of intrahepatic cholangiocarcinoma cell lines. Oncol. Rep., 2014, 31(6), 2611-2618.
[http://dx.doi.org/10.3892/or.2014.3151] [PMID: 24788596]
[144]
Chen, H.P.; Shieh, J.J.; Chang, C.C.; Chen, T.T.; Lin, J.T.; Wu, M.S.; Lin, J.H.; Wu, C.Y. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: Population-based and in vitro studies. Gut, 2013, 62(4), 606-615.
[http://dx.doi.org/10.1136/gutjnl-2011-301708] [PMID: 22773548]
[145]
Zhang, J.; Jiao, K.; Liu, J.; Xia, Y. Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncol. Lett., 2018, 16(5), 6071-6080.
[http://dx.doi.org/10.3892/ol.2018.9382] [PMID: 30333878]
[146]
Asik, A.; Kayabasi, C.; Ozmen Yelken, B.; Yılmaz Susluer, S.; Dogan Sigva, Z.O.; Balcı Okcanoglu, T.; Saydam, G.; Biray Avci, C.; Gunduz, C. Antileukemic effect of paclitaxel in combination with metformin in HL-60 cell line. Gene, 2018, 647, 213-220.
[http://dx.doi.org/10.1016/j.gene.2018.01.017] [PMID: 29309887]
[147]
Rocha, G.Z.; Dias, M.M.; Ropelle, E.R.; Osório-Costa, F.; Rossato, F.A.; Vercesi, A.E.; Saad, M.J.; Carvalheira, J.B. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin. Cancer Res., 2011, 17(12), 3993-4005.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2243] [PMID: 21543517]
[148]
Lu, Z.; Long, Y.; Cun, X.; Wang, X.; Li, J.; Mei, L.; Yang, Y.; Li, M.; Zhang, Z.; He, Q. A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapy. Nanoscale, 2018, 10(21), 9957-9970.
[http://dx.doi.org/10.1039/C8NR01184B] [PMID: 29770821]
[149]
Xu, S.; Yang, Z.; Jin, P.; Yang, X.; Li, X.; Wei, X.; Wang, Y.; Long, S.; Zhang, T.; Chen, G.; Sun, C.; Ma, D.; Gao, Q. Metformin suppresses tumor progression by inactivating stromal fibroblasts in ovarian cancer. Mol. Cancer Ther., 2018, 17(6), 1291-1302.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0927] [PMID: 29545331]
[150]
Figueroa-González, G.; García-Castillo, V.; Coronel-Hernández, J.; López-Urrutia, E.; León-Cabrera, S.; Arias-Romero, L.E.; Terrazas, L.I.; Rodríguez-Sosa, M.; Campos-Parra, A.D.; Zúñiga-Calzada, E.; Lopez-Camarillo, C.; Morales-González, F.; Jacobo-Herrera, N.J.; Pérez-Plasencia, C. Anti-inflammatory and antitumor activity of a triple therapy for a colitis-related colorectal cancer. J. Cancer, 2016, 7(12), 1632-1644.
[http://dx.doi.org/10.7150/jca.13123] [PMID: 27698900]
[151]
Brunmair, B.; Staniek, K.; Gras, F.; Scharf, N.; Althaym, A.; Clara, R.; Roden, M.; Gnaiger, E.; Nohl, H.; Waldhäusl, W.; Fürnsinn, C. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes, 2004, 53(4), 1052-1059.
[http://dx.doi.org/10.2337/diabetes.53.4.1052] [PMID: 15047621]
[152]
Hadad, S.M.; Fleming, S.; Thompson, A.M. Targeting AMPK: A new therapeutic opportunity in breast cancer. Crit. Rev. Oncol. Hematol., 2008, 67(1), 1-7.
[http://dx.doi.org/10.1016/j.critrevonc.2008.01.007] [PMID: 18343152]
[153]
Cantrell, L.A.; Zhou, C.; Mendivil, A.; Malloy, K.M.; Gehrig, P.A.; Bae-Jump, V.L. Metformin is a potent inhibitor of endometrial cancer cell proliferation--implications for a novel treatment strategy. Gynecol. Oncol., 2010, 116(1), 92-98.
[http://dx.doi.org/10.1016/j.ygyno.2009.09.024] [PMID: 19822355]
[154]
Gotlieb, W.H.; Saumet, J.; Beauchamp, M.C.; Gu, J.; Lau, S.; Pollak, M.N.; Bruchim, I. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol., 2008, 110(2), 246-250.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.008] [PMID: 18495226]
[155]
Zakikhani, M.; Dowling, R.; Fantus, I.G.; Sonenberg, N.; Pollak, M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res., 2006, 66(21), 10269-10273.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1500] [PMID: 17062558]
[156]
Zakikhani, M.; Dowling, R.J.; Sonenberg, N.; Pollak, M.N. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev. Res. (Phila.), 2008, 1(5), 369-375.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0081] [PMID: 19138981]
[157]
Feng, Z.; Zhang, H.; Levine, A.J.; Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8204-8209.
[http://dx.doi.org/10.1073/pnas.0502857102] [PMID: 15928081]
[158]
Budanov, A.V.; Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 2008, 134(3), 451-460.
[http://dx.doi.org/10.1016/j.cell.2008.06.028] [PMID: 18692468]
[159]
Shen, M.; Zhang, Z.; Ratnam, M.; Dou, Q.P. The interplay of AMP-activated protein kinase and androgen receptor in prostate cancer cells. J. Cell. Physiol., 2014, 229(6), 688-695.
[http://dx.doi.org/10.1002/jcp.24494] [PMID: 24129850]
[160]
Nguyen, H.G.; Yang, J.C.; Kung, H.J.; Shi, X.B.; Tilki, D.; Lara, P.N., Jr; DeVere White, R.W.; Gao, A.C.; Evans, C.P. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene, 2014, 33(36), 4521-4530.
[http://dx.doi.org/10.1038/onc.2014.25] [PMID: 24662833]
[161]
Bao, B.; Wang, Z.; Ali, S.; Ahmad, A.; Azmi, A.S.; Sarkar, S.H.; Banerjee, S.; Kong, D.; Li, Y.; Thakur, S.; Sarkar, F.H. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev. Res. (Phila.), 2012, 5(3), 355-364.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0299] [PMID: 22086681]
[162]
Yang, Q.; Zhang, T.; Wang, C.; Jiao, J.; Li, J.; Deng, Y. Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells. Eur. J. Pharm. Biopharm., 2014, 88(3), 737-745.
[http://dx.doi.org/10.1016/j.ejpb.2014.10.006] [PMID: 25460146]
[163]
Zhang, Y.; Guan, M.; Zheng, Z.; Zhang, Q.; Gao, F.; Xue, Y. Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PLoS One, 2013, 8(11)e81264
[http://dx.doi.org/10.1371/journal.pone.0081264] [PMID: 24278407]
[164]
Kitazono, S.; Takiguchi, Y.; Ashinuma, H.; Saito-Kitazono, M.; Kitamura, A.; Chiba, T.; Sakaida, E.; Sekine, I.; Tada, Y.; Kurosu, K.; Sakao, S.; Tanabe, N.; Iwama, A.; Yokosuka, O.; Tatsumi, K. Effect of metformin on residual cells after chemotherapy in a human lung adenocarcinoma cell line. Int. J. Oncol., 2013, 43(6), 1846-1854.
[http://dx.doi.org/10.3892/ijo.2013.2120] [PMID: 24100792]
[165]
Li, Z.; Yang, P.; Li, Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim. Biophys. Acta, 2014, 1846(2), 285-296.
[PMID: 25064846]
[166]
He, Y.; Wang, Y.; Liu, H.; Xu, X.; He, S.; Tang, J.; Huang, Y.; Miao, X.; Wu, Y.; Wang, Q.; Cheng, C. Pyruvate kinase isoform M2 (PKM2) participates in multiple myeloma cell proliferation, adhesion and chemoresistance. Leuk. Res., 2015, 39(12), 1428-1436.
[http://dx.doi.org/10.1016/j.leukres.2015.09.019] [PMID: 26453405]
[167]
He, J.; Xie, G.; Tong, J.; Peng, Y.; Huang, H.; Li, J.; Wang, N.; Liang, H. Overexpression of microRNA-122 re-sensitizes 5-FU-resistant colon cancer cells to 5-FU through the inhibition of PKM2 in vitro and in vivo. Cell Biochem. Biophys., 2014, 70(2), 1343-1350.
[http://dx.doi.org/10.1007/s12013-014-0062-x] [PMID: 24898807]
[168]
Robitaille, A.M.; Christen, S.; Shimobayashi, M.; Cornu, M.; Fava, L.L.; Moes, S.; Prescianotto-Baschong, C.; Sauer, U.; Jenoe, P.; Hall, M.N. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science, 2013, 339(6125), 1320-1323.
[http://dx.doi.org/10.1126/science.1228771] [PMID: 23429704]
[169]
Jeong, J.H.; Jeong, Y.J.; Cho, H.J.; Shin, J.M.; Kang, J.H.; Park, K.K.; Park, Y.Y.; Chung, I.K.; Chang, H.W.; Magae, J. Ascochlorin inhibits growth factor-induced HIF-1α activation and tumor-angiogenesis through the suppression of EGFR/ERK/p70S6K signaling pathway in human cervical carcinoma cells. J. Cell. Biochem., 2012, 113(4), 1302-1313.
[http://dx.doi.org/10.1002/jcb.24001] [PMID: 22109717]
[170]
Bessard, A.; Frémin, C.; Ezan, F.; Coutant, A.; Baffet, G. MEK/ERK-dependent uPAR expression is required for motility via phosphorylation of P70S6K in human hepatocarcinoma cells. J. Cell. Physiol., 2007, 212(2), 526-536.
[http://dx.doi.org/10.1002/jcp.21049] [PMID: 17427199]
[171]
Gou, S.; Cui, P.; Li, X.; Shi, P.; Liu, T.; Wang, C. Low concentrations of metformin selectively inhibit CD133+ cell proliferation in pancreatic cancer and have anticancer action. PLoS One, 2013, 8(5)e63969
[http://dx.doi.org/10.1371/journal.pone.0063969] [PMID: 23667692]
[172]
Blasi, F.; Sidenius, N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett., 2010, 584(9), 1923-1930.
[http://dx.doi.org/10.1016/j.febslet.2009.12.039] [PMID: 20036661]
[173]
Lu, J.T.; Zhao, W.D.; He, W.; Wei, W. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway. Acta Pharmacol. Sin., 2012, 33(5), 691-700.
[http://dx.doi.org/10.1038/aps.2012.24] [PMID: 22543708]
[174]
Zhu, B.; Shi, S.; Ma, Y.G.; Fan, F.; Yao, Z.Z. Lysophosphatidic acid enhances human hepatocellular carcinoma cell migration, invasion and adhesion through P38 MAPK pathway. Hepatogastroenterology, 2012, 59(115), 785-789.
[PMID: 22020916]
[175]
Liotta, L.A.; Stetler-Stevenson, W.G. Tumor invasion and metastasis: An imbalance of positive and negative regulation. Cancer Res., 1991, 51(18)(Suppl.), 5054s-5059s.
[PMID: 1884381]
[176]
Monteagudo, S.; Pérez-Martínez, F.C.; Pérez-Carrión, M.D.; Guerra, J.; Merino, S.; Sánchez-Verdú, M.P.; Ceña, V. Inhibition of p42 MAPK using a nonviral vector-delivered siRNA potentiates the anti-tumor effect of metformin in prostate cancer cells. Nanomedicine (Lond.), 2012, 7(4), 493-506.
[http://dx.doi.org/10.2217/nnm.11.61] [PMID: 21995500]
[177]
Fischer, C.; Leithner, K.; Wohlkoenig, C.; Quehenberger, F.; Bertsch, A.; Olschewski, A.; Olschewski, H.; Hrzenjak, A. Panobinostat reduces hypoxia-induced cisplatin resistance of non-small cell lung carcinoma cells via HIF-1α destabilization. Mol. Cancer, 2015, 14, 4.
[http://dx.doi.org/10.1186/1476-4598-14-4] [PMID: 25608569]
[178]
Gariboldi, M.B.; Taiana, E.; Bonzi, M.C.; Craparotta, I.; Giovannardi, S.; Mancini, M.; Monti, E. The BH3-mimetic obatoclax reduces HIF-1α levels and HIF-1 transcriptional activity and sensitizes hypoxic colon adenocarcinoma cells to 5-fluorouracil. Cancer Lett., 2015, 364(2), 156-164.
[http://dx.doi.org/10.1016/j.canlet.2015.05.008] [PMID: 25979228]
[179]
Jiao, M.; Nan, K.J. Activation of PI3 kinase/Akt/HIF-1α pathway contributes to hypoxia-induced epithelial-mesenchymal transition and chemoresistance in hepatocellular carcinoma. Int. J. Oncol., 2012, 40(2), 461-468.
[PMID: 21922131]
[180]
Su, W.; Huang, L.; Ao, Q.; Zhang, Q.; Tian, X.; Fang, Y.; Lu, Y. Noscapine sensitizes chemoresistant ovarian cancer cells to cisplatin through inhibition of HIF-1α. Cancer Lett., 2011, 305(1), 94-99.
[http://dx.doi.org/10.1016/j.canlet.2011.02.031] [PMID: 21421285]
[181]
Raposo, T.P.; Beirão, B.C.; Pang, L.Y.; Queiroga, F.L.; Argyle, D.J. Inflammation and cancer: Till death tears them apart. Vet. J., 2015, 205(2), 161-174.
[http://dx.doi.org/10.1016/j.tvjl.2015.04.015] [PMID: 25981934]
[182]
Campbell, K.J.; Perkins, N.D. Regulation of NF-kappaB function. Biochem. Soc. Symp., 2006, 73, 165-180.
[PMID: 16626297]
[183]
Han, S.; Xu, W.; Wang, Z.; Qi, X.; Wang, Y.; Ni, Y.; Shen, H.; Hu, Q.; Han, W. Crosstalk between the HIF-1 and Toll-like receptor/nuclear factor-κB pathways in the oral squamous cell carcinoma microenvironment. Oncotarget, 2016, 7(25), 37773-37789.
[http://dx.doi.org/10.18632/oncotarget.9329] [PMID: 27191981]
[184]
Lee, J.; An, S.; Jung, J.H.; Kim, K.; Kim, J.Y.; An, I.S.; Bae, S. MUL1 E3 ligase regulates the antitumor effects of metformin in chemoresistant ovarian cancer cells via AKT degradation. Int. J. Oncol., 2019, 54(5), 1833-1842.
[http://dx.doi.org/10.3892/ijo.2019.4730] [PMID: 30816444]
[185]
Bai, M.; Yang, L.; Liao, H.; Liang, X.; Xie, B.; Xiong, J.; Tao, X.; Chen, X.; Cheng, Y.; Chen, X.; Feng, Y.; Zhang, Z.; Zheng, W. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene, 2018, 37(42), 5666-5681.
[http://dx.doi.org/10.1038/s41388-018-0360-7] [PMID: 29921847]
[186]
Du, J.; Shi, H.R.; Ren, F.; Wang, J.L.; Wu, Q.H.; Li, X.; Zhang, R.T. Inhibition of the IGF signaling pathway reverses cisplatin resistance in ovarian cancer cells. BMC Cancer, 2017, 17(1), 851.
[http://dx.doi.org/10.1186/s12885-017-3840-1] [PMID: 29241458]
[187]
Lee, J.O.; Kang, M.J.; Byun, W.S.; Kim, S.A.; Seo, I.H.; Han, J.A.; Moon, J.W.; Kim, J.H.; Kim, S.J.; Lee, E.J. In Park, S.; Park, S.H.; Kim, H.S. Metformin overcomes resistance to cisplatin in Triple-Negative Breast Cancer (TNBC) cells by targeting RAD51. Breast Cancer Res., 2019, 21(1), 115.
[http://dx.doi.org/10.1186/s13058-019-1204-2] [PMID: 31640742]
[188]
Hoseini Shafa, M.; Jalal, R.; Kosari, N.; Rahmani, F. Efficacy of metformin in mediating cellular uptake and inducing apoptosis activity of doxorubicin. Regul. Toxicol. Pharmacol., 2018, 99, 200-212.
[http://dx.doi.org/10.1016/j.yrtph.2018.09.023] [PMID: 30266241]
[189]
Mitsuhashi, A.; Sato, Y.; Kiyokawa, T.; Koshizaka, M.; Hanaoka, H.; Shozu, M. Phase II study of medroxyprogesterone acetate plus metformin as a fertility-sparing treatment for atypical endometrial hyperplasia and endometrial cancer. Ann. Oncol., 2016, 27(2), 262-266.
[http://dx.doi.org/10.1093/annonc/mdv539] [PMID: 26578736]
[190]
Jiralerspong, S.; Palla, S.L.; Giordano, S.H.; Meric-Bernstam, F.; Liedtke, C.; Barnett, C.M.; Hsu, L.; Hung, M.C.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol., 2009, 27(20), 3297-3302.
[http://dx.doi.org/10.1200/JCO.2009.19.6410] [PMID: 19487376]
[191]
Sayed, R.; Saad, A.S.; El Wakeel, L.; Elkholy, E.; Badary, O. Metformin addition to chemotherapy in stage IV non-small cell lung cancer: An open label randomized controlled study. Asian Pac. J. Cancer Prev., 2015, 16(15), 6621-6626.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6621] [PMID: 26434885]
[192]
Soliman, P.T.; Westin, S.N.; Iglesias, D.A.; Fellman, B.M.; Yuan, Y.; Zhang, Q.; Yates, M.S.; Broaddus, R.R.; Slomovitz, B.M.; Lu, K.H.; Coleman, R.L. everolimus, letrozole, and metformin in women with advanced or recurrent endometrioid endometrial cancer: A multi-center, single arm, phase II study. Clin. Cancer Res., 2020, 26(3), 581-587.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0471] [PMID: 31628143]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy