Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Organocatalytic Ring-opening Polymerization

Author(s): Mingjun Ji, Mengqi Wu, Jiayu Han, Fanjun Zhang, Hongwei Peng* and Lihua Guo*

Volume 25 , Issue 2 , 2021

Published on: 17 September, 2020

Page: [272 - 286] Pages: 15

DOI: 10.2174/1385272824999200917151344

Price: $65

Abstract

As compared with widely used polyolefin materials, aliphatic polyesters have been primarily used in electronics, packaging, and biomedicine owing to its unique biocompatibility and degradability. At present, ring-opening polymerization (ROP) of lactone is the main method to synthesize polyesters. Two types of catalysts, including metal-based catalysts and organocatalysts, were most researched today. However, metal-based catalysts lead to polymer materials with metal residues, which limits its properties and applications. As a result, organocatalysts have received great attention. In this review, the progress of organocatalytic ring-opening polymerization in the past decades was systematically summarized. The potential challenges and development directions in this field are also discussed.

Keywords: Ring-opening polymerization, organocatalysts, aliphatic polyesters, phosphazene base, N-heterocyclic carbenes, (thio)urea.

Graphical Abstract
[1]
Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev., 2000, 100(4), 1169-1204.
[http://dx.doi.org/10.1021/cr9804644] [PMID: 11749263]
[2]
Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal., 2016, 6, 428-441.
[http://dx.doi.org/10.1021/acscatal.5b02426]
[3]
Xiong, S.; Guo, L.; Zhang, S.; Liu, Z. Asymmetric cationic [P, O] type palladium complexes in olefin homopolymerization and copolymerization. Chin. J. Chem., 2017, 35, 1209-1221.
[http://dx.doi.org/10.1002/cjoc.201600898]
[4]
Gibson, V.C.; Spitzmesser, S.K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev., 2003, 103(1), 283-315.
[http://dx.doi.org/10.1021/cr980461r] [PMID: 12517186]
[5]
Guo, L.; Liu, W.; Chen, C. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front., 2017, 1, 2487-2494.
[http://dx.doi.org/10.1039/C7QM00321H]
[6]
Guo, L.; Chen, C. (α-Diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers. Sci. China Chem., 2015, 58, 1663-1673.
[http://dx.doi.org/10.1007/s11426-015-5433-7]
[7]
Hong, M.; Chen, J.; Chen, E.Y.X. Polymerization of polar monomers mediated by main-group Lewis acid-base pairs. Chem. Rev., 2018, 118(20), 10551-10616.
[http://dx.doi.org/10.1021/acs.chemrev.8b00352] [PMID: 30350583 ]
[8]
Kamber, N.E.; Jeong, W.; Waymouth, R.M.; Pratt, R.C.; Lohmeijer, B.G.G.; Hedrick, J.L. Organocatalytic ring-opening polymerization. Chem. Rev., 2007, 107(12), 5813-5840.
[http://dx.doi.org/10.1021/cr068415b] [PMID: 17988157]
[9]
Kiesewetter, M.K.; Shin, E.J.; Hedrick, J.L.; Waymouth, R.M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules, 2010, 43, 2093-2107.
[http://dx.doi.org/10.1021/ma9025948]
[10]
Albertsson, A-C.; Varma, I.K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 2003, 4(6), 1466-1486.
[http://dx.doi.org/10.1021/bm034247a] [PMID: 14606869]
[11]
Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degra-dable materials. Chem. Rev., 2017, 117(3), 1319-1406.
[http://dx.doi.org/10.1021/acs.chemrev.6b00319] [PMID: 28085265]
[12]
Agarwal, S. Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym. Chem., 2010, 1, 953-964.
[http://dx.doi.org/10.1039/c0py00040j]
[13]
Miao, Y.; Zinck, P. Ring-opening polymerization of cyclic esters initiated by cyclodextrins. Polym. Chem., 2012, 3, 1119-1122.
[http://dx.doi.org/10.1039/c2py00567k]
[14]
Yuan, P-j.; Hong, M. Ring-opening polymerizations of the “non-strained” γ-butyrolactone and its derivatives: an overview and outlook. Gaofenzi Xuebao, 2019, 50, 327-337.
[15]
Dove, A.P. Organic catalysis for ring-opening polymerization. ACS Macro Lett., 2012, 1, 1409-1412.
[http://dx.doi.org/10.1021/mz3005956]
[16]
Ottou, W.N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci., 2016, 56, 64-115.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.12.001]
[17]
Schwesinger, R.; Schlemper, H. Peralkylated polyaminophosphazenes- extremely strong, neutral nitrogen bases. Angew. Chem. Int. Ed. Engl., 1987, 26, 1167-1169.
[http://dx.doi.org/10.1002/anie.198711671]
[18]
Rexin, O.; Mülhaupt, R. Anionic ring-opening polymerization of propylene oxide in the presence of phosphonium catalysts. J. Polym. Sci. A Polym. Chem., 2002, 40, 864-873.
[http://dx.doi.org/10.1002/pola.10163]
[19]
Zhang, L.; Nederberg, F.; Pratt, R.C.; Waymouth, R.M.; Hedrick, J.L.; Wade, C.G. Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules, 2007, 40, 4154-4158.
[http://dx.doi.org/10.1021/ma070316s]
[20]
Zhao, J.; Alamri, H.; Hadjichristidis, N. A facile metal-free “grafting-from” route from acrylamide-based substrate toward complex macromolecular combs. Chem. Commun. (Camb.), 2013, 49(63), 7079-7081.
[http://dx.doi.org/10.1039/c3cc44131h] [PMID: 23824060]
[21]
Zhao, J.; Pahovnik, D.; Gnanou, Y.; Hadjichristidis, N. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid. Macromolecules, 2014, 47, 1693-1698.
[http://dx.doi.org/10.1021/ma500067j]
[22]
Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem., 2010, 12, 539-554.
[http://dx.doi.org/10.1039/b922014c]
[23]
Bomgardner, M.M. Biobased polymers. Chem. Eng. News, 2014, 92, 10-14.
[http://dx.doi.org/10.1021/cen-09243-cover]
[24]
Houk, K.N.; Jabbari, A.; Hall, H.K., Jr; Alemán, C. Why δ-valerolactone polymerizes and γ-butyrolactone does not. J. Org. Chem., 2008, 73(7), 2674-2678.
[http://dx.doi.org/10.1021/jo702567v] [PMID: 18324833]
[25]
Hong, M.; Chen, E.Y.X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem., 2016, 8(1), 42-49.
[http://dx.doi.org/10.1038/nchem.2391] [PMID: 26673263]
[26]
Hong, M.; Chen, E.Y.X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. Engl., 2016, 55(13), 4188-4193.
[http://dx.doi.org/10.1002/anie.201601092] [PMID: 26934184]
[27]
Zhao, N.; Ren, C.; Li, H.; Li, Y.; Liu, S.; Li, Z. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. Engl., 2017, 56(42), 12987-12990.
[http://dx.doi.org/10.1002/anie.201707122] [PMID: 28834073]
[28]
Liu, S.; Ren, C.; Zhao, N.; Shen, Y.; Li, Z. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun., 2018, 39(24)e1800485
[http://dx.doi.org/10.1002/marc.201800485] [PMID: 30276913]
[29]
Li, Y.; Zhao, N.; Wei, C.; Sun, A.; Liu, S.; Li, Z. Binary organocatalytic system for ring-opening polymerization of ε-caprolactone and δ-valerolactone: synergetic effects for enhanced selectivity. Eur. Polym. J., 2019, 111, 11-19.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.12.012]
[30]
Shen, Y.; Zhao, Z.; Li, Y.; Liu, S.; Liu, F.; Li, Z. A facile method to prepare high molecular weight bio-renewable poly(γ-butyrolactone) using a strong base/urea binary synergistic catalytic system. Polym. Chem., 2019, 10, 1231-1237.
[http://dx.doi.org/10.1039/C8PY01812J]
[31]
Liu, S.; Li, H.; Zhao, N.; Li, Z. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett., 2018, 7, 624-628.
[http://dx.doi.org/10.1021/acsmacrolett.8b00353]
[32]
Shen, Y.; Zhang, J.; Zhao, N.; Liu, F.; Li, Z. Preparation of biorenewable poly(γ-butyrolactone)-b-poly(l-lactide) diblock copolyesters via one-pot sequential metal-free ring-opening polymerization. Polym. Chem., 2018, 9, 2936-2941.
[http://dx.doi.org/10.1039/C8PY00389K]
[33]
Zhao, N.; Ren, C.; Shen, Y.; Liu, S.; Li, Z. Facile synthesis of aliphatic ω-pentadecalactone containing diblock copolyesters via sequential ROP with l-lactide, ε-caprolactone, and δ-valerolactone catalyzed by cyclic trimeric phosphazene base with inherent tribasic characteristics. Macromolecules, 2019, 52, 1083-1091.
[http://dx.doi.org/10.1021/acs.macromol.8b02690]
[34]
Coutelier, O.; El Ezzi, M.; Destarac, M.; Bonnette, F.; Kato, T.; Baceiredo, A.; Sivasankarapillai, G.; Gnanou, Y.; Taton, D. N-Heterocyclic carbene-catalysed synthesis of polyurethanes. Polym. Chem., 2012, 3, 605-608.
[http://dx.doi.org/10.1039/c2py00477a]
[35]
Duong, H.A.; Cross, M.J.; Louie, J. N-heterocyclic carbenes as highly efficient catalysts for the cyclotrimerization of isocyanates. Org. Lett., 2004, 6(25), 4679-4681.
[http://dx.doi.org/10.1021/ol048211m] [PMID: 15575659]
[36]
Nyce, G.W.; Glauser, T.; Connor, E.F.; Möck, A.; Waymouth, R.M.; Hedrick, J.L. In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J. Am. Chem. Soc., 2003, 125(10), 3046-3056.
[http://dx.doi.org/10.1021/ja021084+] [PMID: 12617671]
[37]
Connor, E.F.; Nyce, G.W.; Myers, M.; Möck, A.; Hedrick, J.L. First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J. Am. Chem. Soc., 2002, 124(6), 914-915.
[http://dx.doi.org/10.1021/ja0173324] [PMID: 11829593]
[38]
Raynaud, J.; Absalon, C.; Gnanou, Y.; Taton, D. N-heterocyclic carbene-organocatalyzed ring-opening polymerization of ethylene oxide in the presence of alcohols or trimethylsilyl nucleophiles as chain moderators for the synthesis of α,ω-heterodifunctionalized poly(ethylene oxide)s. Macromolecules, 2010, 43, 2814-2823.
[http://dx.doi.org/10.1021/ma902676r]
[39]
Kamber, N.E.; Jeong, W.; Gonzalez, S.; Hedrick, J.L.; Waymouth, R.M. N-heterocyclic carbenes for the organocatalytic ring-opening polymerization of ε-caprolactone. Macromolecules, 2009, 42, 1634-1639.
[http://dx.doi.org/10.1021/ma802618h]
[40]
Fischer, C.; Smith, S.W.; Powell, D.A.; Fu, G.C. Umpolung of Michael acceptors catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc., 2006, 128(5), 1472-1473.
[http://dx.doi.org/10.1021/ja058222q] [PMID: 16448117]
[41]
Biju, A.T.; Padmanaban, M.; Wurz, N.E.; Glorius, F. N-heterocyclic carbene catalyzed umpolung of Michael acceptors for intermolecular reactions. Angew. Chem. Int. Ed. Engl., 2011, 50(36), 8412-8415.
[http://dx.doi.org/10.1002/anie.201103555] [PMID: 21780269]
[42]
Bugaut, X.; Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev., 2012, 41(9), 3511-3522.
[http://dx.doi.org/10.1039/c2cs15333e] [PMID: 22377957]
[43]
Ryan, S.J.; Candish, L.; Lupton, D.W. Acyl anion free N-heterocyclic carbene organocatalysis. Chem. Soc. Rev., 2013, 42(12), 4906-4917.
[http://dx.doi.org/10.1039/c3cs35522e] [PMID: 23403488]
[44]
Mahatthananchai, J.; Bode, J.W. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res., 2014, 47(2), 696-707.
[http://dx.doi.org/10.1021/ar400239v] [PMID: 24410291]
[45]
Chauhan, P.; Enders, D. N-heterocyclic carbene catalyzed activation of esters: a new option for asymmetric domino reactions. Angew. Chem. Int. Ed. Engl., 2014, 53(6), 1485-1487.
[http://dx.doi.org/10.1002/anie.201309952] [PMID: 24492969]
[46]
Zhang, R.; Zhang, L.; Wang, J.; Guo, X. Ring-opening copolymerization of ε-caprolactone with 2,2-dimethyltrimethylene carbonate using N-hetero-cyclic carbene organocatalysts. Polym. Bull., 2013, 70, 1289-1301.
[http://dx.doi.org/10.1007/s00289-012-0854-3]
[47]
Wang, Y.; Zhang, L.; Guo, X.; Zhang, R.; Li, J. Characteristics and mechanism of L-lactide polymerization using N-heterocyclic carbene organocatalyst. J. Polym. Res., 2013, 20, 87.
[http://dx.doi.org/10.1007/s10965-013-0087-7]
[48]
Xia, H.; Kan, S.; Li, Z.; Chen, J.; Cui, S.; Wu, W.; Ouyang, P.; Guo, K. N-heterocyclic carbenes as organocatalysts in controlled/living ring-opening polymerization of O-carboxyanhydrides derived from l-lactic acid and l-mandelic acid. J. Polym. Sci. A Polym. Chem., 2014, 52, 2306-2315.
[http://dx.doi.org/10.1002/pola.27241]
[49]
Naumann, S.; Buchmeiser, M.R. Liberation of N-heterocyclic carbenes (NHCs) from thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization catalysis. Catal. Sci. Technol., 2014, 4, 2466-2479.
[http://dx.doi.org/10.1039/C4CY00344F]
[50]
Fèvre, M.; Pinaud, J.; Leteneur, A.; Gnanou, Y.; Vignolle, J.; Taton, D.; Miqueu, K.; Sotiropoulos, J-M. Imidazol(in)ium hydrogen carbonates as a genuine source of N-heterocyclic carbenes (NHCs): applications to the facile preparation of NHC metal complexes and to NHC-organocatalyzed molecular and macromolecular syntheses. J. Am. Chem. Soc., 2012, 134(15), 6776-6784.
[http://dx.doi.org/10.1021/ja3005804] [PMID: 22455795]
[51]
Fèvre, M.; Vignolle, J.; Taton, D. Azolium hydrogen carbonates and azolium carboxylates as organic pre-catalysts for N-heterocyclic carbene-catalysed group transfer and ring-opening polymerisations. Polym. Chem., 2013, 4, 1995-2003.
[http://dx.doi.org/10.1039/c2py20915b]
[52]
Naumann, S.; Schmidt, F.G.; Frey, W.; Buchmeiser, M.R. Protected N-heterocyclic carbenes as latent pre-catalysts for the polymerization of ε-caprolactone. Polym. Chem., 2013, 4, 4172-4181.
[http://dx.doi.org/10.1039/c3py00548h]
[53]
Jones, G.O.; Chang, Y.A.; Horn, H.W.; Acharya, A.K.; Rice, J.E.; Hedrick, J.L.; Waymouth, R.M. N-Heterocyclic carbene-catalyzed ring opening polymerization of ε-caprolactone with and without alcohol initiators: insights from theory and experiment. J. Phys. Chem. B, 2015, 119(17), 5728-5737.
[http://dx.doi.org/10.1021/acs.jpcb.5b01595] [PMID: 25848823]
[54]
Falivene, L.; Cavallo, L. Guidelines to select the N-heterocyclic carbene for the organopolymerization of monomers with a polar group. Macromolecules, 2017, 50, 1394-1401.
[http://dx.doi.org/10.1021/acs.macromol.6b02646]
[55]
Pratt, R.C.; Lohmeijer, B.G.G.; Long, D.A.; Waymouth, R.M.; Hedrick, J.L. Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc., 2006, 128(14), 4556-4557.
[http://dx.doi.org/10.1021/ja060662+] [PMID: 16594676]
[56]
Lohmeijer, B.G.G.; Pratt, R.C.; Leibfarth, F.; Logan, J.W.; Long, D.A.; Dove, A.P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R.M.; Hedrick, J.L. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules, 2006, 39, 8574-8583.
[http://dx.doi.org/10.1021/ma0619381]
[57]
Sabot, C.; Kumar, K.A.; Meunier, S.; Mioskowski, C. A convenient aminolysis of esters catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under solvent-free conditions. Tetrahedron Lett., 2007, 48, 3863-3866.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.146]
[58]
Nederberg, F.; Lohmeijer, B.G.G.; Leibfarth, F.; Pratt, R.C.; Choi, J.; Dove, A.P.; Waymouth, R.M.; Hedrick, J.L. Organocatalytic ring opening polymerization of trimethylene carbonate. Biomacromolecules, 2007, 8(1), 153-160.
[http://dx.doi.org/10.1021/bm060795n] [PMID: 17206801]
[59]
Pratt, R.C.; Lohmeijer, B.G.G.; Long, D.A.; Lundberg, P.N.P.; Dove, A.P.; Li, H.; Wade, C.G.; Waymouth, R.M.; Hedrick, J.L. Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co)polymers. Macromolecules, 2006, 39, 7863-7871.
[http://dx.doi.org/10.1021/ma061607o]
[60]
Makiuchi, N.; Sudo, A.; Endo, T. Substituent effect of N-aryl-N′-pyridyl ureas as thermal latent initiators on ring-opening polymerization of epoxide. J. Polym. Sci. A Polym. Chem., 2015, 53, 2569-2574.
[http://dx.doi.org/10.1002/pola.27726]
[61]
Fastnacht, K.V.; Spink, S.S.; Dharmaratne, N.U.; Pothupitiya, J.U.; Datta, P.P.; Kiesewetter, E.T.; Kiesewetter, M.K. Bis- and tris-urea H-bond donors for ring-opening polymerization: unprecedented activity and control from an organocatalyst. ACS Macro Lett., 2016, 5, 982-986.
[http://dx.doi.org/10.1021/acsmacrolett.6b00527]
[62]
Xu, S.; Sun, H.; Liu, J.; Xu, J.; Pan, X.; Dong, H.; Liu, Y.; Li, Z.; Guo, K. Internal Lewis pair enhanced H-bond donor: boronate-urea and tertiary amine co-catalysis in ring-opening polymerization. Polym. Chem., 2016, 7, 6843-6853.
[http://dx.doi.org/10.1039/C6PY01436D]
[63]
Dharmaratne, N.U.; Pothupitiya, J.U.; Bannin, T.J.; Kazakov, O.I.; Kiesewetter, M.K. Triclocarban: commercial antibacterial and highly effective h-bond donating catalyst for ring-opening polymerization. ACS Macro Lett., 2017, 6, 421-425.
[http://dx.doi.org/10.1021/acsmacrolett.7b00111]
[64]
Pothupitiya, J.U.; Hewawasam, R.S.; Kiesewetter, M.K. Urea and thiourea H-bond donating catalysts for ring-opening polymerization: mechanistic insights via (non)linear free energy relationships. Macromolecules, 2018, 51, 3203-3211.
[http://dx.doi.org/10.1021/acs.macromol.8b00321]
[65]
Jiang, Z.; Zhao, J.; Zhang, G. Ionic Organocatalyst with a urea anion and tetra-n-butyl ammonium cation for rapid, selective, and versatile ring-opening polymerization of lactide. ACS Macro Lett., 2019, 8, 759-765.
[http://dx.doi.org/10.1021/acsmacrolett.9b00418]
[66]
Dharmaratne, N.U.; Pothupitiya, J.U.; Kiesewetter, M.K. The mechanistic duality of (thio)urea organocatalysts for ring-opening polymerization. Org. Biomol. Chem., 2019, 17(13), 3305-3313.
[http://dx.doi.org/10.1039/C8OB03174F] [PMID: 30834919]
[67]
Lv, C.; Zhou, L.; Yuan, R.; Mahmood, Q.; Xu, G.; Wang, Q. Isoselective ring-opening polymerization and asymmetric kinetic resolution polymerization of rac-lactide catalyzed by bifunctional iminophosphorane–thiourea/urea catalysts. New J. Chem., 2020, 44, 1648-1655.
[http://dx.doi.org/10.1039/C9NJ05074D]
[68]
Dove, A.P.; Pratt, R.C.; Lohmeijer, B.G.G.; Waymouth, R.M.; Hedrick, J.L. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J. Am. Chem. Soc., 2005, 127(40), 13798-13799.
[http://dx.doi.org/10.1021/ja0543346] [PMID: 16201794]
[69]
Pounder, R.J.; Fox, D.J.; Barker, I.A.; Bennison, M.J.; Dove, A.P. Ring-opening polymerization of an O-carboxyanhydride monomer derived from l-malic acid. Polym. Chem., 2011, 2, 2204-2212.
[http://dx.doi.org/10.1039/c1py00254f]
[70]
Lu, Y.; Yin, L.; Zhang, Y.; Zhonghai, Z.; Xu, Y.; Tong, R.; Cheng, J. Synthesis of water-soluble poly(α-hydroxy acids) from living ring-opening polymerization of O-benzyl-L-serine carboxyanhydrides. ACS Macro Lett., 2012, 1(4), 441-444.
[http://dx.doi.org/10.1021/mz200165c] [PMID: 23359651]
[71]
Buchard, A.; Carbery, D.R.; Davidson, M.G.; Ivanova, P.K.; Jeffery, B.J.; Kociok-Köhn, G.I.; Lowe, J.P. Preparation of stereoregular isotactic poly(mandelic acid) through organocatalytic ring-opening polymerization of a cyclic O-carboxyanhydride. Angew. Chem. Int. Ed. Engl., 2014, 53(50), 13858-13861.
[http://dx.doi.org/10.1002/anie.201407525] [PMID: 25314676]
[72]
Martin Vaca, B.; Bourissou, D. O-carboxyanhydrides: useful tools for the preparation of well-defined functionalized polyesters. ACS Macro Lett., 2015, 4, 792-798.
[http://dx.doi.org/10.1021/acsmacrolett.5b00376]
[73]
Bexis, P.; De Winter, J.; Coulembier, O.; Dove, A.P. Isotactic degradable polyesters derived from O-carboxyanhydrides of l-lactic and l-malic acid using a single organocatalyst/initiator system. Eur. Polym. J., 2017, 95, 660-670.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.05.038]
[74]
Yamaoka, Y.; Miyabe, H.; Yasui, Y.; Takemoto, Y. Chiral-thiourea-catalyzed direct Mannich reaction. Synthesis, 2007, 2007, 2571-2575.
[http://dx.doi.org/10.1055/s-2007-983795]
[75]
Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J. Am. Chem. Soc., 2003, 125(42), 12672-12673.
[http://dx.doi.org/10.1021/ja036972z] [PMID: 14558791]
[76]
Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. Enantio- and diastereoselective Michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea. J. Am. Chem. Soc., 2005, 127(1), 119-125.
[http://dx.doi.org/10.1021/ja044370p] [PMID: 15631461]
[77]
Li, M.; Tao, Y.; Tang, J.; Wang, Y.; Zhang, X.; Tao, Y.; Wang, X. Synergetic organocatalysis for eliminating epimerization in ring-opening polymerizations enables synthesis of stereoregular isotactic polyester. J. Am. Chem. Soc., 2019, 141(1), 281-289.
[http://dx.doi.org/10.1021/jacs.8b09739] [PMID: 30511838]
[78]
Lin, B.; Waymouth, R.M. Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc., 2017, 139(4), 1645-1652.
[http://dx.doi.org/10.1021/jacs.6b11864] [PMID: 28105810]
[79]
Zhang, X.; Jones, G.O.; Hedrick, J.L.; Waymouth, R.M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem., 2016, 8(11), 1047-1053.
[http://dx.doi.org/10.1038/nchem.2574] [PMID: 27768102]
[80]
Mespouille, L.; Coulembier, O.; Kawalec, M.; Dove, A.P.; Dubois, P. Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Prog. Polym. Sci., 2014, 39, 1144-1164.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.02.003]
[81]
Du, G.; Wei, Y.; Zhang, W.; Dong, Y.; Lin, Z.; He, H.; Zhang, S.; Li, X. Bis(imino)diphenylamido rare-earth metal dialkyl complexes: synthesis, structure, and catalytic activity in living ring-opening ε-caprolactone polymerization and copolymerization with γ-butyrolactone. Dalton Trans., 2013, 42(4), 1278-1286.
[http://dx.doi.org/10.1039/C2DT31932B] [PMID: 23143470]
[82]
Stevels, W.M.; Ankoné, M.J.K.; Dijkstra, P.J.; Feijen, J. a versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols. Macromolecules, 1996, 29, 3332-3333.
[http://dx.doi.org/10.1021/ma951813o]
[83]
Nishiura, M.; Hou, Z.; Koizumi, T-a.; Imamoto, T.; Wakatsuki, Y. Ring-opening polymerization and copolymerization of lactones by samarium(II) aryloxide complexes. Macromolecules, 1999, 32, 8245-8251.
[http://dx.doi.org/10.1021/ma990101l]
[84]
Mingotaud, A-F.; Dargelas, F.; Cansell, F. Cationic and anionic ring-opening polymerization in supercritical CO2. Macromol. Symp., 2000, 153, 77-86.
[http://dx.doi.org/10.1002/1521-3900(200003)153:1<77:AID-MASY77>3.0.CO;2-D]
[85]
Dyer, H.E.; Huijser, S.; Schwarz, A.D.; Wang, C.; Duchateau, R.; Mount-ford, P. Zwitterionic bis(phenolate)amine lanthanide complexes for the ring-opening polymerisation of cyclic esters. Dalton Trans., 2008, 2008(1), 32-35.
[http://dx.doi.org/10.1039/B714583G] [PMID: 18399223]
[86]
Binda, P.I.; Delbridge, E.E.; Abrahamson, H.B.; Skelton, B.W. Coordination of substitutionally inert phenolate ligands to lanthanide(II) and (III) compounds--catalysts for ring-opening polymerization of cyclic esters. Dalton Trans., 2009, 2009(15), 2777-2787.
[http://dx.doi.org/10.1039/b821770j] [PMID: 19333501]
[87]
Robert, D.; Kondracka, M.; Okuda, J. Cationic rare-earth metal bis(tetrahydridoborato) complexes: direct synthesis, structure and ring-opening polymerisation activity toward cyclic esters. Dalton Trans., 2008, 2008(20), 2667-2669.
[http://dx.doi.org/10.1039/b801030g] [PMID: 18688395]
[88]
Poirier, V.; Roisnel, T.; Carpentier, J-F.; Sarazin, Y. Versatile catalytic systems based on complexes of zinc, magnesium and calcium supported by a bulky bis(morpholinomethyl)phenoxy ligand for the large-scale immortal ring-opening polymerisation of cyclic esters. Dalton Trans., 2009, 2009(44), 9820-9827.
[http://dx.doi.org/10.1039/b917799j] [PMID: 19885529]
[89]
Thevenon, A.; Romain, C.; Bennington, M.S.; White, A.J.P.; Davidson, H.J.; Brooker, S.; Williams, C.K. Dizinc lactide polymerization catalysts: hyperactivity by control of ligand conformation and metallic cooperativity. Angew. Chem. Int. Ed. Engl., 2016, 55(30), 8680-8685.
[http://dx.doi.org/10.1002/anie.201602930] [PMID: 27295339]
[90]
Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev., 2009, 38(12), 3484-3504.
[http://dx.doi.org/10.1039/b820162p] [PMID: 20449064]
[91]
Lin, B.; Waymouth, R.M. Organic ring-opening polymerization catalysts: reactivity control by balancing acidity. Macromolecules, 2018, 51, 2932-2938.
[http://dx.doi.org/10.1021/acs.macromol.8b00540]
[92]
Zhang, C-J.; Hu, L-F.; Wu, H-L.; Cao, X-H.; Zhang, X-H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules, 2018, 51, 8705-8711.
[http://dx.doi.org/10.1021/acs.macromol.8b01757]
[93]
Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules, 2018, 51, 9317-9322.
[http://dx.doi.org/10.1021/acs.macromol.8b01860]
[94]
Zhu, J-B.; Watson, E.M.; Tang, J.; Chen, E.Y.X. A synthetic polymer system with repeatable chemical recyclability. Science, 2018, 360(6387), 398-403.
[http://dx.doi.org/10.1126/science.aar5498] [PMID: 29700260]
[95]
Zhu, J-B.; Chen, E.Y.X. Living Coordination Polymerization of a Six-Five bicyclic lactone to produce completely recyclable polyester. Angew. Chem. Int. Ed. Engl., 2018, 57(38), 12558-12562.
[http://dx.doi.org/10.1002/anie.201808003] [PMID: 30088314]
[96]
Cywar, R.M.; Zhu, J-B.; Chen, E.Y.X. Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters. Polym. Chem., 2019, 10, 3097-3106.
[http://dx.doi.org/10.1039/C9PY00190E]
[97]
Rostami, A.; Colin, A.; Li, X.Y.; Chudzinski, M.G.; Lough, A.J.; Taylor, M.S.N. ′-diarylsquaramides: general, high-yielding synthesis and applications in colorimetric anion sensing. J. Org. Chem., 2010, 75(12), 3983-3992.
[http://dx.doi.org/10.1021/jo100104g] [PMID: 20486682]
[98]
Busschaert, N.; Elmes, R.B.P.; Czech, D.D.; Wu, X.; Kirby, I.L.; Peck, E.M.; Hendzel, K.D.; Shaw, S.K.; Chan, B.; Smith, B.D.; Jolliffe, K.A.; Gale, P.A. Thiosquaramides: pH switchable anion transporters. Chem. Sci. (Camb.), 2014, 5(9), 3617-3626.
[http://dx.doi.org/10.1039/C4SC01629G] [PMID: 26146535]
[99]
Connell, A.; Holliman, P.J.; Jones, E.W.; Furnell, L.; Kershaw, C.; Davies, M.L.; Gwenin, C.D.; Pitak, M.B.; Coles, S.J.; Cooke, G. Multiple linker half-squarylium dyes for dye-sensitized solar cells; are two linkers better than one? J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 2883-2894.
[http://dx.doi.org/10.1039/C4TA06896C]
[100]
Rostami, A.; Sadeh, E.; Ahmadi, S. Exploration of tertiary aminosquaramide bifunctional organocatalyst in controlled/living ring-opening polymerization of l-lactide. J. Polym. Sci. A Polym. Chem., 2017, 55, 2483-2493.
[http://dx.doi.org/10.1002/pola.28641]
[101]
Liu, J.; Xu, J.; Li, Z.; Xu, S.; Wang, X.; Wang, H.; Guo, T.; Gao, Y.; Zhang, L.; Guo, K. Squaramide and amine binary H-bond organocatalysis in polymerizations of cyclic carbonates, lactones, and lactides. Polym. Chem., 2017, 8, 7054-7068.
[http://dx.doi.org/10.1039/C7PY01671A]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy