Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Microwave-assisted Green Synthesis of β-Diketone Hydrazone Derivatives and Evaluation of their Antioxidant and Antibacterial Activities

Author(s): Syed Tajudeen Syed Ameen*, Anbalagan Vilvanathan, Syed Zameer Ahmed Khader and Gayathri Mahalingam

Volume 7, Issue 3, 2020

Page: [222 - 229] Pages: 8

DOI: 10.2174/2213335607999200917145217

Price: $65

Abstract

Background: A series of β-diketone hydrazones have been synthesized via condensation of isoniazid with series of β-diketone. The structures of the Schiff bases are established by elemental and spectroscopic techniques. The prepared compounds were screened for antibacterial and antioxidant potential by DPPH free-radical scavenging activity and Ferric reducing antioxidant power (FRAP) assays.

Methods: β-diketone hydrazine derivatives were synthesized by simple condensation between various β-diketones and isoniazid. The titled compounds were synthesized following both conventional and microwave irradiation methods. The in vitro antibacterial activity of synthesized derivatives was evaluated against gram-positive (B. subtilis, S. aureus and S. pyogenes) and gram-negative (E. coli, and K. pneumonia) bacterial strains and expressed in terms of zone of inhibition and also screened for antioxidant activity.

Results: The yield of products was appreciably increased in shorter reaction times with the aid of microwave-assisted synthesis. Therefore, it follows the green chemistry approach by making the above reactions eco-friendly. The synthesized compounds were characterized using FT-IR, 1H NMR, 13C NMR, and elemental analysis techniques. The spectroscopic techniques showed the formation of β-diketone hydrazone compounds. Theoretical data show good agreement with the experimental results. Some of the compounds displayed significant antibacterial and antioxidant potentials when compared to the standard drug.

Conclusion: In the present research work, we report the synthesis of some novel β-diketone hydrazone derivatives. A high yield of compounds was noted under microwave-assisted reaction in shorter reaction times. The results revealed that the synthesized Schiff bases showed good radical scavenging activity.

Keywords: β-Diketone, isoniazid, hydrazones, green synthesis, microwave, antibacterial, antioxidant study.

Graphical Abstract
[1]
Kel’in, A.V. Recent advances in the synthesis of 1, 3-diketones. Curr. Org. Chem., 2003, 7(16), 1691-1711.
[http://dx.doi.org/10.2174/1385272033486233]
[2]
Xi, Z.; Liu, F.; Zhou, Y.; Chen, W. CuI/L (L= pyridine-functionalized 1, 3-diketones) catalyzed C–N coupling reactions of aryl halides with NH-containing heterocycles. Tetrahedron, 2008, 64(19), 4254-4259.
[http://dx.doi.org/10.1016/j.tet.2008.02.082]
[3]
El-Sonbati, A.Z.; Diab, M.A.; Belal, A.A.; Morgan, ShM. Supramolecular structure and spectral studies on mixed-ligand complexes derived from β-diketone with azodye rhodanine derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 99, 353-360.
[http://dx.doi.org/10.1016/j.saa.2012.08.059] [PMID: 23036937]
[4]
Aromí, G.; Gamez, P.; Reedijk, J. Poly beta-diketones: prime ligands to generate supramolecular metalloclusters. Coord. Chem. Rev., 2008, 252(8-9), 964-989.
[http://dx.doi.org/10.1016/j.ccr.2007.07.008]
[5]
Jeewoth, T.; Bhowon, M.G.; Wah, H.L.K. Synthesis, characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3-diaminopyridine. Transition Metal Chem., 1999, 24(4), 445-448.
[http://dx.doi.org/10.1023/A:1006917704209]
[6]
Desai, P.S.; Desai, K.R. Synthesis and antibacterial activity of 2-(6′-chlorobenzothiazol-2′-ylamino)-4-N4-N1-(n-butyl)sulphanilamido-6-(arylthioureido)-s-triazine derivatives. J. Indian Chem. Soc., 1993, 70, 177-178.
[7]
Lv, J.; Liu, T.; Cai, S.; Wang, X.; Liu, L.; Wang, Y. Synthesis, structure and biological activity of cobalt(II) and copper(II) complexes of valine-derived schiff bases. J. Inorg. Biochem., 2006, 100(11), 1888-1896.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.07.014] [PMID: 16965817]
[8]
del Campo, R.; Criado, J.J.; García, E.; Hermosa, M.R.; Jiménez-Sánchez, A.; Manzano, J.L.; Monte, E.; Rodríguez-Fernández, E.; Sanz, F. Thiourea derivatives and their nickel(II) and platinum(II) complexes: antifungal activity. J. Inorg. Biochem., 2002, 89(1-2), 74-82.
[http://dx.doi.org/10.1016/S0162-0134(01)00408-1] [PMID: 11931966]
[9]
Belaid, S.; Landreau, A.; Djebbar, S.; Benali-Baitich, O.; Bouet, G.; Bouchara, J.P. Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N′-O-phenylenebis(salicylideneimine). J. Inorg. Biochem., 2008, 102(1), 63-69.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.07.001] [PMID: 17870175]
[10]
Hussain, Z.; Yousif, E.; Ahmed, A.; Altaie, A. Synthesis and characterization of Schiff’s bases of sulfamethoxazole. Org. Med. Chem. Lett., 2014, 4(1), 1.
[http://dx.doi.org/10.1186/2191-2858-4-1] [PMID: 24576663]
[11]
Pandey, S.N.; Lakshmi, V.S.; Pandey, A. Biological activity of Mannich bases. Indian J. Pharm. Sci., 2003, 65, 213-222.
[12]
Wadher, J.; Puranik, M.P.; Karande, N.A.; Yeole, P.G. Synthesis and biological evaluation of schiff base of dapsone and their derivative as antimicrobial agents. Int. J. Pharm. Tech. Res., 2009, 1, 22-33.
[13]
aDhar, D.N.; Taploo, C.L. Schiff bases and their applications. J. Sci. Ind. Res. (India), 1982, 41, 501-506.
bPrzybylski, P.; Huczyński, A.; Pyta, K.; Brzezinski, B.; Bartl, F. Biological properties of Schiff bases and azo derivatives of phenols. Curr. Org. Chem., 2009, 13, 124-148.
[http://dx.doi.org/10.2174/138527209787193774]
[14]
Li, Y.; Yang, Z.S.; Zhang, H.; Cao, B.J.; Wang, F.D.; Zhang, Y.; Shi, Y.L.; Yang, J.D.; Wu, B.A. Artemisinin derivatives bearing Mannich base group: synthesis and antimalarial activity. Bioorg. Med. Chem., 2003, 11(20), 4363-4368.
[http://dx.doi.org/10.1016/S0968-0896(03)00499-1] [PMID: 13129573]
[15]
Villar, R.; Encio, I.; Migliaccio, M.; Gil, M.J.; Martinez-Merino, V. Synthesis and cytotoxic activity of lipophilic sulphonamide derivatives of the benzo[b]thiophene 1,1-dioxide. Bioorg. Med. Chem., 2004, 12(5), 963-968.
[http://dx.doi.org/10.1016/j.bmc.2003.12.012] [PMID: 14980609]
[16]
Bhat, M.A.; Imran, M.; Khan, S.A.; Siddiqui, N. Biologicbal activitities of sulfonamides. J. Pharm. Sci., 2005, 67, 151-159.
[17]
Karthikeyan, M.S. Dasappa Jagadeesh Prasad.; Boja Poojary Subrahmanya Bhat K.; Bantwal shivaram holla. Synthesis and biological activity of Schiff and Mannich bases bearing 2, 4-dichloro-5-flourophenyl moiety. Bioorg. Med. Chem., 2006, 14, 7482-7489.
[http://dx.doi.org/10.1016/j.bmc.2006.07.015] [PMID: 16879972]
[18]
Yang, G.F.; Liu, H.Y.; Yang, X.F.; Yang, H.Z. Design, syntheses and biological activity of novel ALS inhibitors (IX)—CoMFA of sulfonylureas and triazolopyrimidine-2-sulfonamides ALS inhibitors. Sci. China, Ser. Biol. Chem., 1999, 42, 656-662.
[19]
Venugopala, K.N.; Jayashree, B.S. Microwave-induced synthesis of schiff bases of aminothiazolyl bromocoumarins as antibacterials. Indian J. Pharm. Sci., 2008, 70(1), 88-91.
[http://dx.doi.org/10.4103/0250-474X.40338] [PMID: 20390087]
[20]
aKelley, J.L.; Koble, C.S.; Davis, R.G.; McLean, E.W.; Soroko, F.E.B.; Cooper, B.R. 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c]pyridines: synthesis and anticonvulsant activity. J. Med. Chem., 1995, 38(20), 4131-4134.
bRavlee, I.; Sivakumar, R.; Muruganantham, N.; Anbalagan, N.; Gunasekaran, V.; Thomas Leonard, J. Pharmacological evaluation of some new 6-amino/methyl pyridine derivatives. Chem. Pharm. Bull. (Tokyo), 2003, 51(2), 162-170.
[http://dx.doi.org/10.1021/jm00020a030] [PMID: 7562950] [http://dx.doi.org/10.1248/cpb.51.162] [PMID: 12576649]
[21]
Chandra, T.; Garg, N.; Lata, S.; Saxena, K.K.; Kumar, A. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem., 2010, 45(5), 1772-1776.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.009] [PMID: 20149499]
[22]
aMcAulife, C.A.; Ashmawy, F.M.; Cick, R.V.; James, J.J. Water Photolysis. 1. The Photolysis of Coordinated Water in [(MnL- (H2O)2](ClO4)2 (L = Dianion of Tetradentate O2N2-Donor Schiff Bases). A Model for the Manganase Site in Photosystem-II of Green Plant Photosynthesis. J. Chem. Soc., Dalton Trans., 1985, 1391-1395.
bRamadan, A.M. Structural and biological aspects of copper (II) complexes with 2-methyl-3-amino-(3H)-quinazolin-4-one. J. Inorg. Biochem., 1997, 65(3), 183-189.
[http://dx.doi.org/10.1016/S0162-0134(96)00122-5] [PMID: 9025270]
[23]
aBhagat, P.R. Microwave Synthesis Of 3-(2′-Hydroxy-5′-Methylphenyl)-5-Aryl –Isoxazoles, Rasāyan. J. Che., 2008, 1(1), 59-62.
bBhagat, P.R. Microwave Assisted Synthesis Of 1-(3 -Chlorophenyl)-3, 5- Diaryl – Pyrazoles, Int. J. Chem. Sci., 2008, 6(1), 68-72.
[24]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[25]
Quiroga, J.; Norha, E. Sanchez; Acosta, Paola.; Insuasty, Braulio.; Abonia, Rodrigo. Microwave-assisted synthesis of fused pyrazolo[3,4-b]pyrazines by the reaction of ortho-aminonitrosopyrazoles and cyclic β-diketones. Tetrahedron Lett., 2012, 53, 3181-3187.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.083]
[26]
Driowya, M.; Saber, A.; Marzag, H.; Demange, L.; Benhida, R.; Bougrin, K. Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and Their Fused Analogues. Molecules, 2016, 21(4), 492.
[http://dx.doi.org/10.3390/molecules21040492] [PMID: 27089315]
[27]
Syed Tajudeen, S.; Kannappan, Geetha. Synthetic, structural and pharmacological studies on some isonicotinohydrazide and benzohydrazide analogues. J. Pharm. Res., 2013, 7, 534-539.
[http://dx.doi.org/10.1016/j.jopr.2013.06.017]
[28]
Cleiser, T.P. da S.; Bill, N.S.; Murilo, P.M.; Joziane, G.M.; Pedro, A.A.; Silvia, L.F.; Emerson, M.G.; Eduardo, R.; Andrelson, W.R. Synthesis of Zn-BTC metal organic framework assisted by a home microwave oven and their unusual morphologies. Mater. Lett., 2016, 182, 231-234.
[http://dx.doi.org/10.1016/j.matlet.2016.06.015]
[29]
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945-948.
[http://dx.doi.org/10.1021/jf00018a005]
[30]
Oyaizu, M. Studies on product of browning reaction prepared from glucoseamine. Jpn. J. Nutr, 1986, 44, 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[31]
Palani, S.H.; Stephen, M.R.; Subbu, P.; Abdulrahman, I.A. A microwave-mediated catalyst- and solvent-free regioselective Biginelli reaction in the synthesis of highly functionalized novel tetrahydropyrimidines. Tetrahedron Lett., 2013, 54, 1076-1079.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.034]
[32]
Mohamed, M. Ibrahim; Hamdy, S.; Sheshtawy, El.; Kemary, Maged El.; Juaid, Salih Al.; Youssef, Mohamed.; Islam, H.; Azab, El. Synthesis, structure characterization, and anticancer activity of a novel oxygen-bridged tricyclic Biginelli adduct. J. Mol. Struct., 2017, 1137, 714-719.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.091]
[33]
Shujang, Tu.; Fang, F. Chunbao, M.; Hong, J; Youjian, F.; Daqing, S.; Xiangshan Wang. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using boric acid as catalyst. Tetrahedron Lett., 2003, 44, 6153-6155.
[http://dx.doi.org/10.1016/S0040-4039(03)01466-7]
[34]
Saloutina, V.I.; Burgarta, Ya.V.; Kuzuevaa, O.G.; Kappeb, C.O.; Chupakhin, O.N. Biginelli condensations of Fuorinated 3-oxo esters and 1,3-diketones. J. Fluor. Chem., 2000, 103, 17-23.
[http://dx.doi.org/10.1016/S0022-1139(99)00216-X]
[35]
Reddy, M.V.B.; Su, C.R.; Chiou, W.F.; Liu, Y.N.; Chen, R.Y.H.; Bastow, K.F.; Lee, K.H.; Wu, T.S.; Bhaskar, M.V.; Su, C.R. Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorg. Med. Chem., 2008, 16(15), 7358-7370.
[http://dx.doi.org/10.1016/j.bmc.2008.06.018] [PMID: 18602831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy