Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Covalent-driven Layer-by-layer Self-assembly of Clindamycin-loaded PPLA Nanoparticles/chitosan Membrane on Titanium Sheet for Longacting Anti-infection

Author(s): Shuangya Yang, Yan Yin, Yajuan Xu, Tanglin Zhang, Youbin Li, Jun Fei* and Xiao Huang*

Volume 17, Issue 5, 2021

Published on: 17 September, 2020

Page: [789 - 795] Pages: 7

DOI: 10.2174/1573413716999200917120155

Price: $65

Abstract

Background: Post-arthroplasty implant-related infection is one of the most feared complications with adverse consequences for patients and public health systems, especially in terms of the huge financial cost of treatment. This is compounded by the potential risks of continuous metamorphosis and emergence of new resistant bacterial strains. Constructing an antibacterial surface, therefore, on the implant represents an approach to reduce the incidence of implant-related infections.

Methods: In this study, a covalent-driven layer-by-layer self-assembly of clindamycin-loaded polyethylene glycol grafted polylactic acid nanoparticles/chitosan membrane has been successfully fabricated on the titanium sheet and evaluated for drug releasing potential and antibiotic activity.

Results: Attenuated total reflectance spectrum of the layer-by-layer self-assembly membrane showed three absorption peaks around 1680, 1520 and 1240 cm-1, which are the characteristic absorption peaks of secondary amines. The results indicated the formation of an amide bond between the carboxyl groups of clindamycin-loaded polyethylene glycol grafted polylactic acid nanoparticles and the amino groups of chitosan. The covalent bond stabilized the membrane construct. The membrane exhibited a sustained drug release behavior whereby less than 50% of clindamycin was released after 160 hr. The membrane persistently inhibited the growth of Staphylococcus aureus with the inhibition ratio exceeding 60%.

Conclusion: The membrane construct holds a great potential for managing anti-implant-related infections.

Keywords: Covalent-driving, layer-by-layer self-assembly, sustained release, implant-related infection, long-acting bacteriostatic effect, titanium sheet.

« Previous
Graphical Abstract
[1]
Wang, H.; Su, K.; Su, L.; Liang, P.; Ji, P.; Wang, C. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater. Sci. Eng. C, 2019, 104, 109908.
[http://dx.doi.org/10.1016/j.msec.2019.109908] [PMID: 31499974]
[2]
Awad, N.K.; Edwards, S.L.; Morsi, Y.S. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. Mater. Sci. Eng. C, 2017, 76, 1401-1412.
[http://dx.doi.org/10.1016/j.msec.2017.02.150] [PMID: 28482507]
[3]
Wang, J.; Wang, L.; Fan, Y. Adverse biological effect of TiO2 and hydroxyapatite nanoparticles used in bone repair and replacement. Int. J. Mol. Sci., 2016, 17, 798.
[http://dx.doi.org/10.3390/ijms17060798]
[4]
Qu, G.X.; Zhang, C.H.; Yan, S.G.; Cai, X.Z. Debridement, antibiotics, and implant retention for periprosthetic knee infections: a pooling analysis of 1266 cases. J. Orthop. Surg. Res., 2019, 14(1), 358.
[http://dx.doi.org/10.1186/s13018-019-1378-4] [PMID: 31718644]
[5]
Richards, J.E.; Kauffmann, R.M.; Obremskey, W.T.; May, A.K. Stress-induced hyperglycemia as a risk factor for surgical-site infection in nondiabetic orthopedic trauma patients admitted to the intensive care unit. J. Orthop. Trauma, 2013, 27(1), 16-21.
[http://dx.doi.org/10.1097/BOT.0b013e31825d60e5] [PMID: 22588532]
[6]
EdmistonJr, C.E.; Spencer, M.; Lewis, B.D. Brown, K.R.; Rossi, P.J.; Henen, C.R.; Smith, H.W.; Seabrook, G.R. Reducing the risk of surgical site infections: did we really think SCIP was going to lead us to the promised land? Surg. Infect. (Larchmt.), 2011, 12, 169-177.
[http://dx.doi.org/10.1089/sur.2011.036]
[7]
Pan, C.; Zhou, Z.; Yu, X. Coatings as the useful drug delivery system for the prevention of implant-related infections. J. Orthop. Surg. Res., 2018, 13(1), 220.
[http://dx.doi.org/10.1186/s13018-018-0930-y] [PMID: 30176886]
[8]
Ahire, J.J.; Robertson, D.D.; van Reenen, A.J.; Dicks, L.M.T. Surfactin-loaded polyvinyl alcohol (PVA) nanofibers alters adhesion of Listeria monocytogenes to polystyrene. Mater. Sci. Eng. C, 2017, 77, 27-33.
[http://dx.doi.org/10.1016/j.msec.2017.03.248] [PMID: 28532029]
[9]
Ahire, J.J.; Robertson, D.D.; Neveling, D.P.; van Reenen, A.J.; Dicks, L.M.T. Hyaluronic acid-coated poly(D,L-lactide) (PDLLA) nanofibers prepared by electrospinning and coating. RSC Advances, 2016, 6, 34791-34796.
[http://dx.doi.org/10.1039/C6RA01996J]
[10]
Ahire, J.J.; Robertson, D.D.; van Reenen, A.J.; Dicks, L.M.T. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes. Biomed. Pharmacother., 2017, 86, 143-148.
[http://dx.doi.org/10.1016/j.biopha.2016.12.006] [PMID: 27960136]
[11]
Ahire, J.J.; Dicks, L.M.T. Antimicrobial hyaluronic acid-cefoxitin sodium thin films produced by electrospraying. Curr. Microbiol., 2016, 73(2), 236-241.
[http://dx.doi.org/10.1007/s00284-016-1057-1] [PMID: 27146506]
[12]
Qiao, H.; Song, G.; Huang, Y.; Yang, H.; Han, S.; Zhang, X.; Wang, Z.; Ma, J.; Bu, X.; Fu, L. Si, Sr, Ag co-doped hydroxyapatite/TiO2 coating: enhancement of its antibacterial activity and osteoinductivity. RSC Advances, 2019, 9, 13348-13364.
[http://dx.doi.org/10.1039/C9RA01168D]
[13]
Zhang, C.; Lan, J.; Wang, S.; Han, S.; Yang, H.; Niu, Q.; Wang, J.; Wang, Q.; Xiang, Y.; Wu, Y.; Zhang, X.; Lin, H.; Zhang, X.; Qiao, H.; Huang, Y. Silver nanowires on acid-alkali-treated titanium surface: Bacterial attachment and osteogenic activity. Ceram. Int., 2019, 45, 24528-24537.
[http://dx.doi.org/10.1016/j.ceramint.2019.08.180]
[14]
Qiao, H.; Zhang, C.; Dang, X.; Yang, H.; Wang, Y.; Chen, Y.; Ma, L.; Han, S.; Lin, H.; Zhang, X.; Lan, J.; Huang, Y. Gallium loading into a polydopamine-functionalised SrTiO3 nanotube with combined osteoinductive and antimicrobial activities. Ceram. Int., 2019, 45, 22183-22195.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.240]
[15]
Chen, R.; Shi, C.; Xi, Y.; Zhao, P.; He, H. Fabrication of cationic polymer surface through plasma polymerization and layer-by-layer assembly. Mater. Manuf. Process., 2020, 35, 221-229.
[http://dx.doi.org/10.1080/10426914.2019.1675892]
[16]
Liu, T.; Wang, Y.; Zhong, W.; Li, B.; Mequanint, K.; Luo, G.; Xing, M. Biomedical applications of layer-by-layer self-assembly for cell encapsulation: Current status and future perspectives. Adv. Healthc. Mater., 2019, 8(1), e1800939.
[http://dx.doi.org/10.1002/adhm.201800939] [PMID: 30511822]
[17]
Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci., 2019, 89, 76-107.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.10.002]
[18]
Qu, Z.; Xu, H.; Ning, P.; Gu, H. A facile, one-step method for the determination of accessible surface primary amino groups on solid carriers. Surf. Interface Anal., 2012, 44, 1309-1313.
[http://dx.doi.org/10.1002/sia.4912]
[19]
Huang, X.; Xu, Y.J.; Yang, L.C.; Wu, J.Q.; Zheng, X.; Fei, J. Construction of a long-acting antibacterial surface on implanted titanium plate. Basic Clin. Pharmacol., 2017, 121, 18.
[20]
Wang, M.; Tang, T. Surface treatment strategies to combat implant-related infection from the beginning. J. Orthop. Translat., 2018, 17, 42-54.
[http://dx.doi.org/10.1016/j.jot.2018.09.001] [PMID: 31194031]
[21]
Steckiewicz, K.P.; Inkielewicz-Stepniak, I. Modified nanoparticles as potential agents in bone diseases: cancer and implant-related complications. Nanomaterials (Basel), 2020, 10(4), 658.
[http://dx.doi.org/10.3390/nano10040658] [PMID: 32244745]
[22]
Kiran, A.S.K.; Sireesha, M.; Ramalingam, R.; Kizhakeyil, A.; Verma, N.K.; Lakshminarayanan, R.; Kumar, T.S.S.; Doble, M.; Ramakrishna, S. Modulation of biological properties by grain refinement and surface modification on titanium surfaces for implant-related infections. J. Mater. Sci., 2019, 54, 13265-13282.
[http://dx.doi.org/10.1007/s10853-019-03811-2]
[23]
Müller, R.; Abke, J.; Schnell, E.; Scharnweber, D.; Kujat, R.; Englert, C.; Taheri, D.; Nerlich, M.; Angele, P. Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials, 2006, 27(22), 4059-4068.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.019] [PMID: 16580064]
[24]
Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater., 2019, 83, 37-54.
[http://dx.doi.org/10.1016/j.actbio.2018.10.036] [PMID: 30541702]
[25]
Chua, P.H.; Neoh, K.G.; Shi, Z.; Kang, E.T. Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates. J. Biomed. Mater. Res. A, 2008, 87(4), 1061-1074.
[http://dx.doi.org/10.1002/jbm.a.31854] [PMID: 18257066]
[26]
Hammond, P.T. Building biomedical materials layer-by-layer. Mater. Today, 2012, 15, 196-206.
[http://dx.doi.org/10.1016/S1369-7021(12)70090-1]
[27]
Gates, S.J.; Shukla, A. Layer-by-layer assembly of readily detachable chitosan and poly(acrylic acid) polyelectrolyte multilayer films. J. Polym. Sci., B, Polym. Phys., 2017, 55, 127-131.
[http://dx.doi.org/10.1002/polb.24234]
[28]
Santos, A.C.; Sequeira, J.A.D.; Pereira, I.; Cabral, C.; Collado Gonzallez, M.; Fontes-Ribeiro, C.; Ribeiro, A.J.; Lvov, Y.M.; Veiga, F.J. Sonication-assisted Layer-by-Layer self-assembly nanoparticles for resveratrol delivery. Mater. Sci. Eng. C, 2019, 105, 110022.
[http://dx.doi.org/10.1016/j.msec.2019.110022] [PMID: 31546400]
[29]
Jung, J.; Li, L.; Yeh, C.K.; Ren, X.; Sun, Y. Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials. Mater. Sci. Eng. C, 2019, 104, 109961.
[http://dx.doi.org/10.1016/j.msec.2019.109961] [PMID: 31500022]
[30]
Sydow, S.; Aniol, A.; Hadler, C.; Menzel, H. Chitosan-azide nanoparticle coating as a degradation barrier in multilayered polyelectrolyte drug delivery systems. Biomolecules, 2019, 9(10), 573.
[http://dx.doi.org/10.3390/biom9100573] [PMID: 31590366]
[31]
Ghiorghita, C.A.; Bucatariu, F.; Dragan, E.S. Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. Mater. Sci. Eng. C, 2019, 105, 110050.
[http://dx.doi.org/10.1016/j.msec.2019.110050] [PMID: 31546349]
[32]
Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev., 2014, 27(2), 302-345.
[http://dx.doi.org/10.1128/CMR.00111-13] [PMID: 24696437]
[33]
Busscher, H.J.; van der Mei, H.C.; Subbiahdoss, G.; Jutte, P.C.; van den Dungen, J.J.A.M.; Zaat, S.A.J.; Schultz, M.J.; Grainger, D.W. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci. Transl. Med., 2012, 4(153), 153rv10.
[http://dx.doi.org/10.1126/scitranslmed.3004528] [PMID: 23019658]
[34]
Huang, X.; Nisar, M.F.; Wang, M.; Wang, W.; Chen, L.; Lin, M.; Xu, W.; Diao, Q.; Zhong, J.L. UV-responsive AKBA@ZnO nanoparticles potential for polymorphous light eruption protection and therapy. Mater. Sci. Eng. C, 2020, 107, 110254.
[http://dx.doi.org/10.1016/j.msec.2019.110254] [PMID: 31761216]
[35]
Yu, K.; Liu, M.; Dai, H.; Huang, X. Targeted drug delivery systems for bladder cancer therapy. J. Drug Deliv. Sci. Technol., 2020, 56, 101535.
[http://dx.doi.org/10.1016/j.jddst.2020.101535]
[36]
Ali, M.; Elsherif, M.; Salih, A.E.; Ul-hamid, A.; Hussein, M.A.; Park, S.; Yetisen, A.K.; Butt, H. Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances. J. Alloys Compd., 2020, 825, 154140.
[http://dx.doi.org/10.1016/j.jallcom.2020.154140]
[37]
Yan, H.; Jiang, W.; Zhang, Y.; Liu, Y.; Wang, B.; Yang, L.; Deng, L.; Singh, G.K.; Pan, J. Novel multi-biotin grafted poly(lactic acid) and its self-assembling nanoparticles capable of binding to streptavidin. Int. J. Nanomedicine, 2012, 7, 457-465.
[PMID: 22334778]
[38]
Pan, J.; Zhao, M.; Liu, Y.; Wang, B.; Mi, L.; Yang, L. Development of a new poly(ethylene glycol)-graft-poly(D,L-lactic acid) as potential drug carriers. J. Biomed. Mater. Res. A, 2009, 89(1), 160-167.
[PMID: 18431784]
[39]
Wu, D.; Zhu, L.; Li, Y.; Zhang, X.; Xu, S.; Yang, G.; Delair, T. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: A review. Carbohydr. Polym., 2020, 238, 116126.
[http://dx.doi.org/10.1016/j.carbpol.2020.116126] [PMID: 32299572]
[40]
Kumar, A.; Kumar, A. The virtuous potential of chitosan oligosaccharide for promising biomedical applications. J. Mater. Res., 2020, 35, 1123-1134.
[http://dx.doi.org/10.1557/jmr.2020.76]
[41]
Ojeda-Hernández, D.D.; Canales-Aguirre, A.A.; Matias-Guiu, J.; Gomez-Pinedo, U.; Mateos-Díaz, J.C. Potential of chitosan and its derivatives for biomedical applications in the central nervous system. Front. Bioeng. Biotechnol., 2020, 8, 389.
[http://dx.doi.org/10.3389/fbioe.2020.00389] [PMID: 32432095]
[42]
Qin, Y.; Li, P. Antimicrobial chitosan conjugates: Current synthetic strategies and potential applications. Int. J. Mol. Sci., 2020, 21(2), 499.
[http://dx.doi.org/10.3390/ijms21020499] [PMID: 31941068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy