Review Article

Exploring the Role of Gene Therapy for Neurological Disorders

Author(s): Nidhi Puranik, Dhananjay Yadav, Pallavi Singh Chauhan, Minseok Kwak* and Jun-O Jin*

Volume 21, Issue 1, 2021

Published on: 17 September, 2020

Page: [11 - 22] Pages: 12

DOI: 10.2174/1566523220999200917114101

Price: $65

Abstract

Gene therapy is one of the frontier fields of medical breakthroughs that poses as an effective solution to previously incurable diseases. The delivery of the corrective genetic material or a therapeutic gene into the cell restores the missing gene function and cures a plethora of diseases, incurable by the conventional medical approaches. This discovery holds the potential to treat many neurodegenerative disorders such as muscular atrophy, multiple sclerosis, Parkinson’s disease (PD) and Alzheimer’s disease (AD), among others. Gene therapy proves as a humane, cost-effective alternative to the exhaustive often arduous and timely impossible process of finding matched donors and extensive surgery. It also overcomes the shortcoming of conventional methods to cross the blood-brain barrier. However, the use of gene therapy is only possible after procuring the in-depth knowledge of the immuno-pathogenesis and molecular mechanism of the disease. The process of gene therapy can be broadly categorized into three main steps: elucidating the target gene, culling the appropriate vector, and determining the best mode of transfer; each step mandating pervasive research. This review aims to dissertate and summarize the role, various vectors and methods of delivery employed in gene therapy with special emphasis on therapy directed at the central nervous system (CNS) associated with neurodegenerative diseases.

Keywords: Gene therapy, neurodegenerative disorder, neuropathy, CNS, AAV, vectors.

Graphical Abstract
[1]
Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES. Development and clinical translation of gene therapy for genetic disorders. Front Genet 2019; 10: 868.
[http://dx.doi.org/10.3389/fgene.2019.00868] [PMID: 31608113]
[2]
Cooney AL, McCray PB Jr, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018; 9(11): E538.
[http://dx.doi.org/10.3390/genes9110538] [PMID: 30405068]
[3]
Guo X-L, Chung T-H, Qin Y, et al. Hemophilia gene therapy: New development from bench to bed side. Curr Gene Ther 2019; 19(4): 264-73.
[http://dx.doi.org/10.2174/1566523219666190924121836] [PMID: 31549954]
[4]
Thrasher AJ, Williams DA. Evolving gene therapy in primary immunodeficiency. J Am Soc Gene Therap 2017; 25(5): 1132-41.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.018]
[5]
Lee JH, Wang J-H, Chen J, et al. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68: 31-53.
[http://dx.doi.org/10.1016/j.preteyeres.2018.08.003] [PMID: 30170104]
[6]
Ziccardi L, Cordeddu V, Gaddini L, et al. Gene therapy in retinal dystrophies. Int J Mol Sci 2019; 20(22): 5722.
[http://dx.doi.org/10.3390/ijms20225722] [PMID: 31739639]
[7]
Hoban MD, Orkin SH, Bauer DE. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 2016; 127(7): 839-48.
[http://dx.doi.org/10.1182/blood-2015-09-618587] [PMID: 26758916]
[8]
Al-Zaidy SA, Lloyd-Puryear M, Kennedy A, Lopez V, Mendell JR. A roadmap to newborn screening for duchenne muscular dystrophy. Int J Neonatal Screen 2017; 3(2): 8.
[http://dx.doi.org/10.3390/ijns3020008] [PMID: 31588416]
[9]
Duan D. Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Gene 2006; 15(2): 253-61.
[http://dx.doi.org/10.1093/hmg/ddl180]
[10]
Duan D. Duchenne muscular dystrophy gene therapy: Lost in translation? Res Rep Biol 2011; 2011(2): 31-42.
[http://dx.doi.org/10.2147/RRB.S13463] [PMID: 21691429]
[11]
Duan D. Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene Ther Clin Dev 2015; 26(1): 57-69.
[http://dx.doi.org/10.1089/humc.2015.006] [PMID: 25710459]
[12]
Wirth T, Ylä-Herttuala S. Gene therapy used in cancer treatment. Biomedicines 2014; 2(2): 149-62.
[http://dx.doi.org/10.3390/biomedicines2020149] [PMID: 28548065]
[13]
Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2016; 4(2): 169-83.
[http://dx.doi.org/10.1517/21678707.2016.1124039] [PMID: 27340611]
[14]
Mason D, Chen Y-Z, Krishnan HV, Sant S. Cardiac gene therapy: Recent advances and future directions. J Control Release 2015; 215: 101-11.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.001] [PMID: 26254712]
[15]
Misra S. Human gene therapy: a brief overview of the genetic revolution. J Assoc Physicians India 2013; 61(2): 127-33.
[PMID: 24471251]
[16]
Choong CJ, Baba K, Mochizuki H. Gene therapy for neurological disorders. Expert Opin Biol Ther 2016; 16(2): 143-59.
[http://dx.doi.org/10.1517/14712598.2016.1114096] [PMID: 26642082]
[17]
Aiuti A, Roncarolo MG, Naldini L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med 2017; 9(6): 737-40.
[http://dx.doi.org/10.15252/emmm.201707573] [PMID: 28396566]
[18]
Finer M, Glorioso J. A brief account of viral vectors and their promise for gene therapy. Gene Ther 2017; 24(1): 1-2.
[http://dx.doi.org/10.1038/gt.2016.71] [PMID: 28123184]
[19]
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5(11): 1642-61.
[http://dx.doi.org/10.1002/emmm.201202287] [PMID: 24106209]
[20]
Li Q, Verma A, Zhu P, et al. Gene therapy for diabetic retinopathy – targeting the renin-angiotensin system.Gene therapy-tools and potential applications, Martin F (Ed)IntechOpen. 2013.
[http://dx.doi.org/10.5772/52702]
[21]
O’Connor DM, Boulis NM. Gene therapy for neurodegenerative diseases. Trends Mol Med 2015; 21(8): 504-12.
[http://dx.doi.org/10.1016/j.molmed.2015.06.001] [PMID: 26122838]
[22]
Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 2019; 14(6): 931-8.
[http://dx.doi.org/10.4103/1673-5374.250570] [PMID: 30761996]
[23]
Blaese M, Blankenstein T, Brenner M, et al. Vectors in cancer therapy: how will they deliver? Cancer Gene Ther 1995; 2(4): 291-7.
[PMID: 8548583]
[24]
Liu W, Liu Z, Cao X, et al. Recombinant human foamy virus, a novel vector for neurological disorders gene therapy, drives production of GAD in cultured astrocytes. Mol Ther 2007; 15(10): 1834-41.
[http://dx.doi.org/10.1038/sj.mt.6300224] [PMID: 17579580]
[25]
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene Therapy for ALS-A Perspective. Int J Mol Sci 2019; 20(18): 4388.
[http://dx.doi.org/10.3390/ijms20184388] [PMID: 31500113]
[26]
Giau VV, Senanarong V, Bagyinszky E, An SSA, Kim S. Analysis of 50 neurodegenerative genes in clinically diagnosed early-onset Alzheimer’s disease. Int J Mol Sci 2019; 20(6): 1514.
[http://dx.doi.org/10.3390/ijms20061514] [PMID: 30917570]
[27]
Karim S, Mirza Z, A, Kamal M, et al. The role of viruses in neurodegenerative and neurobehavioral diseases. CNS Neurol Dis Drug Targ 2014; 13(7): 1213-23.
[http://dx.doi.org/10.2174/187152731307141015122638]
[28]
García JC, Bustos RH. The genetic diagnosis of neurodegenerative diseases and therapeutic perspectives. Brain Sci 2018; 8(12): E222.
[http://dx.doi.org/10.3390/brainsci8120222] [PMID: 30551598]
[29]
Ashim K, Tridip C. Progresses in gene therapy of neurodegenerative disorders. On J Neur Br Disord 2018; 1(1): 1-18.
[http://dx.doi.org/10.32474/OJNBD.2018.01.000103]
[30]
Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 2004; 10(10): 1055-63.
[http://dx.doi.org/10.1038/nm1113] [PMID: 15459709]
[31]
Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics 2019; 16(1): 166-75.
[http://dx.doi.org/10.1007/s13311-018-00694-0] [PMID: 30542906]
[32]
Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther 2017; 28(11): 988-1003.
[http://dx.doi.org/10.1089/hum.2017.160] [PMID: 29035118]
[33]
Gan Y, Jing Z, Stetler RA, Cao G. Gene delivery with viral vectors for cerebrovascular diseases. Front Biosci (Elite Ed) 2013; 5: 188-203.
[http://dx.doi.org/10.2741/E607] [PMID: 23276981]
[34]
Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: Challenges and new strategies. Neurotherapeutics 2014; 11(4): 817-39.
[http://dx.doi.org/10.1007/s13311-014-0299-5] [PMID: 25159276]
[35]
Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: Results and lessons from recent successes. Mol Ther Methods Clin Dev 2016; 3: 16034.
[http://dx.doi.org/10.1038/mtm.2016.34] [PMID: 27257611]
[36]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[37]
Gholizadeh-Ghaleh Aziz S, Pashaei-Asl F, Fardyazar Z, Pashaiasl M. Isolation, characterization, cryopreservation of human amniotic stem cells and differentiation to osteogenic and adipogenic cells. PloS One 2016; 11(7): e0158281.
[38]
Zare S, Zarei MA, Ghadimi T, Fathi F, Jalili A, Hakhamaneshi MS. Isolation, cultivation and transfection of human keratinocytes. Cell Biol Int 2014; 38(4): 444-51.
[http://dx.doi.org/10.1002/cbin.10218] [PMID: 24323435]
[39]
Farahzadi R, Fathi E, Vietor I. Mesenchymal stem cells could be considered as a candidate for further studies in cell-based therapy of Alzheimer’s disease via targeting the signaling pathways. ACS Chem Neurosci 2020; 11(10): 1424-35.
[http://dx.doi.org/10.1021/acschemneuro.0c00052] [PMID: 32310632]
[40]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19.
[http://dx.doi.org/10.21037/sci.2019.06.04] [PMID: 31463312]
[41]
Van der Perren A, Van den Haute C, Baekelandt V. Behavioral neurobiology of huntington’s disease and Parkinson’s disease Springer. 2014; pp. pp. 271-301.
[http://dx.doi.org/10.1007/7854_2014_310]
[42]
Shastry BS. Parkinson disease: Etiology, pathogenesis and future of gene therapy. Neurosci Res 2001; 41(1): 5-12.
[http://dx.doi.org/10.1016/S0168-0102(01)00254-1] [PMID: 11535288]
[43]
Chang JL, Hinrich AJ, Roman B, et al. Targeting amyloid-β precursor protein, APP, splicing with antisense oligonucleotides reduces toxic amyloid-β production. Mol Ther 2018; 26(6): 1539-51.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.029] [PMID: 29628304]
[44]
Chaudhary A, Maurya PK, Yadav BS, Singh S, Mani A. Current therapeutic targets for Alzheimer’s disease. J Biomed (Syd) 2018; 3: 74-84.
[http://dx.doi.org/10.7150/jbm.26783]
[45]
Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov Disord 2012; 27(9): 1083-91.
[http://dx.doi.org/10.1002/mds.25075] [PMID: 22692795]
[46]
Chen S, Sayana P, Zhang X, Le W. Genetics of amyotrophic lateral sclerosis: An update. Mol Neurodegener 2013; 8(1): 28.
[http://dx.doi.org/10.1186/1750-1326-8-28] [PMID: 23941283]
[47]
Lai Y, Duan D. Progress in gene therapy of dystrophic heart disease. Gene Ther 2012; 19(6): 678-85.
[http://dx.doi.org/10.1038/gt.2012.10] [PMID: 22318092]
[48]
Hosseini A, Estiri H, Niaki HA, et al. Multiple sclerosis gene therapy using recombinant viral vectors: Overexpression of IL-4, IL-10 and leukemia inhibitory factor in wharton’s jelly stem cells in the eae mice model. Cell 2017; 19(3): 361.
[PMID: 28836399]
[49]
Hamana A, Takahashi Y, Tanioka A, Nishikawa M, Takakura Y. Safe and effective interferon-beta gene therapy for the treatment of multiple sclerosis by regulating biological activity through the design of interferon-beta-galectin-9 fusion proteins. Int J Pharm 2018; 536(1): 310-7.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.010] [PMID: 29217470]
[50]
Burch PM, Pogoryelova O, Goldstein R, et al. Muscle-derived proteins as serum biomarkers for monitoring disease progression in three forms of muscular dystrophy. J Neuromuscul Dis 2015; 2(3): 241-55.
[http://dx.doi.org/10.3233/JND-140066] [PMID: 26870665]
[51]
Mata M, Chattopadhyay M, Fink DJ. Gene therapy for the treatment of diabetic neuropathy. Curr Diab Rep 2008; 8(6): 431-6.
[http://dx.doi.org/10.1007/s11892-008-0075-1] [PMID: 18990298]
[52]
Sandford E, Burmeister M. Genes and genetic testing in hereditary ataxias. Genes (Basel) 2014; 5(3): 586-603.
[http://dx.doi.org/10.3390/genes5030586] [PMID: 25055202]
[53]
Bowers WJ, Breakefield XO, Sena-Esteves M. Genetic therapy for the nervous system. Hum Mol Genet 2011; 20(R1): R28-41.
[http://dx.doi.org/10.1093/hmg/ddr110] [PMID: 21429918]
[54]
Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res 2019; 23(1): 8.
[http://dx.doi.org/10.1186/s40824-019-0156-z] [PMID: 30915230]
[55]
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[56]
Deglon N, Hantraye P. Viral vectors as tools to model and treat neurodegenerative disorders. J Gene Med 2005; 7(5): 530-9.
[http://dx.doi.org/10.1002/jgm.707]
[57]
Raoul C, Barker SD, Aebischer P. Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther 2006; 13(6): 487-95.
[http://dx.doi.org/10.1038/sj.gt.3302690] [PMID: 16319945]
[58]
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[59]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[60]
Mali S. Delivery systems for gene therapy. Indian J Hum Genet 2013; 19(1): 3-8.
[http://dx.doi.org/10.4103/0971-6866.112870] [PMID: 23901186]
[61]
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene therapy tools for brain diseases. Front Pharmacol 2019; 10: 724.
[http://dx.doi.org/10.3389/fphar.2019.00724] [PMID: 31312139]
[62]
Varga CM, Hong K, Lauffenburger DA. Quantitative analysis of synthetic gene delivery vector design properties. Mol Ther 2001; 4(5): 438-46.
[http://dx.doi.org/10.1006/mthe.2001.0475] [PMID: 11708880]
[63]
Jayant RD, Sosa D, Kaushik A, et al. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Deliv 2016; 13(10): 1433-45.
[http://dx.doi.org/10.1080/17425247.2016.1188802] [PMID: 27249310]
[64]
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm 2014; 459(1-2): 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]
[65]
Uchida M, Li XW, Mertens P, Alpar HO. Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim Biophys Acta 2009; 1790(8): 754-64.
[http://dx.doi.org/10.1016/j.bbagen.2009.05.013] [PMID: 19477233]
[66]
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009; 109(2): 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[67]
Al-Dosari MS, Gao X. Nonviral gene delivery: Principle, limitations, and recent progress. AAPS J 2009; 11(4): 671-81.
[http://dx.doi.org/10.1208/s12248-009-9143-y] [PMID: 19834816]
[68]
Patil S, Gao Y-G, Lin X, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci 2019; 20(21): 5491.
[http://dx.doi.org/10.3390/ijms20215491] [PMID: 31690044]
[69]
Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2012; 2(12): 1208-22.
[http://dx.doi.org/10.7150/thno.4306] [PMID: 23382777]
[70]
Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99(18): 11854-9.
[http://dx.doi.org/10.1073/pnas.182412299] [PMID: 12192090]
[71]
Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 2014; 1(1): 427-51.
[http://dx.doi.org/10.1146/annurev-virology-031413-085355] [PMID: 26958729]
[72]
Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success a personal perspective. Hum Gene Ther 2015; 26(5): 257-65.
[http://dx.doi.org/10.1089/hum.2015.025] [PMID: 25807962]
[73]
Naso MF, Tomkowicz B, Perry WL III, Strohl WR. Adeno-Associated Virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[74]
Escors D, Breckpot K. Lentiviral vectors in gene therapy: Their current status and future potential. Arch Immunol Ther Exp 2010; 58(2): 107-19.
[http://dx.doi.org/10.1007/s00005-010-0063-4] [PMID: 20143172]
[75]
Singer O, Marr RA, Rockenstein E, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 2005; 8(10): 1343-9.
[http://dx.doi.org/10.1038/nn1531] [PMID: 16136043]
[76]
Spencer B, Rockenstein E, Crews L, Marr R, Masliah E. Novel strategies for Alzheimer’s disease treatment. Expert Opin Biol Ther 2007; 7(12): 1853-67.
[http://dx.doi.org/10.1517/14712598.7.12.1853] [PMID: 18034651]
[77]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34: 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[78]
Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017; 120: 63-80.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.013] [PMID: 26905292]
[79]
Machida Y, Okada T, Kurosawa M, Oyama F, Ozawa K, Nukina N. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun 2006; 343(1): 190-7.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.141] [PMID: 16530728]
[80]
Pfister EL, DiNardo N, Mondo E, et al. Artificial miRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther 2018; 29(6): 663-73.
[http://dx.doi.org/10.1089/hum.2017.199] [PMID: 29207890]
[81]
Bush DL, Vogt VM. In vitro assembly of retroviruses. Annu Rev Virol 2014; 1(1): 561-80.
[http://dx.doi.org/10.1146/annurev-virology-031413-085427] [PMID: 26958734]
[82]
Saxena SK, Chitti SVP. Molecular biology and pathogenesis of retroviruses.Advances in molecular retrovirology Intechopen. 2016.
[http://dx.doi.org/10.5772/62885]
[83]
Kennedy PG. Potential use of herpes simplex virus (HSV) vectors for gene therapy of neurological disorders. Brain 1997; 120(Pt 7): 1245-59.
[http://dx.doi.org/10.1093/brain/120.7.1245] [PMID: 9236634]
[84]
Artusi S, Miyagawa Y, Goins WF, Cohen JB, Glorioso JC. Herpes simplex virus vectors for gene transfer to the central nervous system. Diseases 2018; 6(3): E74.
[http://dx.doi.org/10.3390/diseases6030074] [PMID: 30110885]
[85]
Goss JR, Krisky D, Wechuck J, Wolfe D. Herpes simplex virus-based nerve targeting gene therapy in pain management. J Pain Res 2014; 7: 71-9.
[PMID: 24470772]
[86]
Manservigi R, Argnani R, Marconi P. HSV recombinant vectors for gene therapy. Open Virol J 2010; 4: 123-56.
[PMID: 20835362]
[87]
Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[88]
Thakur V, Gonzalez M, Pennington K, Chattopadhyay M. Viral vector mediated continuous expression of interleukin-10 in DRG alleviates pain in type 1 diabetic animals. Mol Cell Neurosci 2016; 72: 46-53.
[http://dx.doi.org/10.1016/j.mcn.2016.01.006] [PMID: 26802537]
[89]
Lundstrom K. Alphavirus vectors as tools in neuroscience and gene therapy. Virus Res 2016; 216: 16-25.
[http://dx.doi.org/10.1016/j.virusres.2015.08.015] [PMID: 26307195]
[90]
Lundstrom K. Alphavirus-based vaccines. Curr Opin Mol Ther 2002; 4(1): 28-34.
[PMID: 11883692]
[91]
Lundstrom K. G Protein-coupled receptors in drug discovery Springer. 2009; pp. pp. 51-66.
[http://dx.doi.org/10.1007/978-1-60327-317-6_4]
[92]
Wahlfors JJ, Zullo SA, Loimas S, Nelson DM, Morgan RA. Evaluation of recombinant alphaviruses as vectors in gene therapy. Gene Ther 2000; 7(6): 472-80.
[http://dx.doi.org/10.1038/sj.gt.3301122] [PMID: 10757020]
[93]
Harrison IF, Crum WR, Vernon AC, Dexter DT. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors. Br J Pharmacol 2015; 172(16): 4200-15.
[http://dx.doi.org/10.1111/bph.13208] [PMID: 26040297]
[94]
Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int J Mol Sci 2016; 17(6): 904.
[http://dx.doi.org/10.3390/ijms17060904] [PMID: 27338353]
[95]
Triarhou LC. Madame Curie Bioscience Database Landes Bioscience. 2013.
[96]
Bowers WJ, Howard DF, Federoff HJ. Gene therapeutic strategies for neuroprotection: implications for Parkinson’s disease. Exp Neurol 1997; 144(1): 58-68.
[http://dx.doi.org/10.1006/exnr.1996.6389] [PMID: 9126153]
[97]
Axelsen TM, Woldbye DPD. Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis 2018; 8(2): 195-215.
[http://dx.doi.org/10.3233/JPD-181331] [PMID: 29710735]
[98]
Douglas M, Hazlehurst J. Gene therapy for Parkinson’s disease Towards new therapies for Parkinson's disease Intechopen. 2011; p. p. 255.
[http://dx.doi.org/10.5772/17420]
[99]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[100]
During MJ. Gene therapy in Parkinson’s disease. Expert Rev Neurother 2003; 3(6): 729-32.
[http://dx.doi.org/10.1586/14737175.3.6.729] [PMID: 19810875]
[101]
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease Exp Neurol 2017; 298(Pt B): 137-47.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.001]
[102]
Segura-Aguilar J. Commentary: gene therapy: A promising approach for neuroprotection in Parkinson’s Disease? Front Neuroanat 2017; 11: 40.
[http://dx.doi.org/10.3389/fnana.2017.00040] [PMID: 28579947]
[103]
Denyer R, Douglas MR. Gene therapy for Parkinson’s disease. Parkinsons Dis 2012; 2012: 757305.
[http://dx.doi.org/10.1155/2012/757305] [PMID: 22619738]
[104]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189]
[105]
Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 2008; 7(Suppl 1): 43-56.
[http://dx.doi.org/10.1111/j.1601-183X.2007.00378.x] [PMID: 18184369]
[106]
Tuszynski MH, Yang JH, Barba D, et al. Nerve growth factor gene therapy: Activation of neuronal responses in Alzheimer Disease. JAMA Neurol 2015; 72(10): 1139-47.
[http://dx.doi.org/10.1001/jamaneurol.2015.1807] [PMID: 26302439]
[107]
A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology 1999; 52(7): 1427-33.
[http://dx.doi.org/10.1212/WNL.52.7.1427] [PMID: 10227630]
[108]
Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: Where do we stand? Front Neurosci 2010; 4: 32.
[http://dx.doi.org/10.3389/fnins.2010.00032] [PMID: 20592948]
[109]
Suzuki M, McHugh J, Tork C, et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2007; 2(8): e689.
[http://dx.doi.org/10.1371/journal.pone.0000689] [PMID: 17668067]
[110]
Bohn MC, Connor B, Kozlowski DA, Mohajeri MH. Gene transfer for neuroprotection in animal models of Parkinson's disease and amyotrophic lateral sclerosis. Novartis Found Symp 2000; 231: 70-89.
[http://dx.doi.org/10.1002/0470870834.ch5]
[111]
Wang LJ, Lu YY, Muramatsu S, et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 2002; 22(16): 6920-8.
[http://dx.doi.org/10.1523/JNEUROSCI.22-16-06920.2002] [PMID: 12177190]
[112]
Dodge JC, Haidet AM, Yang W, et al. Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol Therap 2008; 16(6): 1056-64.
[http://dx.doi.org/10.1038/mt.2008.60] [PMID: 18388910]
[113]
Dodge JC, Treleaven CM, Fidler JA, et al. AAV4-mediated expression of IGF-1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice. Mol Therap 2010; 18(12): 2075-84.
[http://dx.doi.org/10.1038/mt.2010.206] [PMID: 20859261]
[114]
Stoica L, Sena-Esteves M. Adeno associated viral vector delivered rnai for gene therapy of SOD1 amyotrophic lateral sclerosis. Front Mol Neurosci 2016; 9(56): 56.
[http://dx.doi.org/10.3389/fnmol.2016.00056] [PMID: 27531973]
[115]
Gouel F, Rolland A-S, Devedjian J-C, Burnouf T, Devos D. Past and future of neurotrophic growth factors therapies in ALS: From single neurotrophic growth factor to stem cells and human platelet lysates. Front Neurol 2019; 10(835): 835.
[http://dx.doi.org/10.3389/fneur.2019.00835] [PMID: 31428042]
[116]
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70(24): 4729-45.
[http://dx.doi.org/10.1007/s00018-013-1415-0] [PMID: 23864030]
[117]
Glorioso JC, Cohen JB, Carlisle DL, Munoz-Sanjuan I, Friedlander RM. Moving toward a gene therapy for Huntington’s disease. Gene Ther 2015; 22(12): 931-3.
[http://dx.doi.org/10.1038/gt.2015.102] [PMID: 26633828]
[118]
Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 2004; 9(5): 682-8.
[http://dx.doi.org/10.1016/j.ymthe.2004.02.016] [PMID: 15120329]
[119]
Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: A gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 2010; 61(1): 14-26.
[http://dx.doi.org/10.1016/j.phrs.2009.10.002] [PMID: 19840853]
[120]
Lauterbach EC, Fontenelle LF, Teixeira AL. The neuroprotective disease-modifying potential of psychotropics in Parkinson’s disease. Parkinsons Dis 2012; 2012: 753548.
[http://dx.doi.org/10.1155/2012/753548] [PMID: 22254151]
[121]
Garcia P, Youssef I, Utvik JK, et al. Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 2010; 30(22): 7516-27.
[http://dx.doi.org/10.1523/JNEUROSCI.4182-09.2010] [PMID: 20519526]
[122]
Simonato M, Tongiorgi E, Kokaia M. Angels and demons: Neurotrophic factors and epilepsy. Trends Pharmacol Sci 2006; 27(12): 631-8.
[http://dx.doi.org/10.1016/j.tips.2006.10.002] [PMID: 17055067]
[123]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[124]
Noe FM, Sørensen AT, Kokaia M, Vezzani A. Jasper’s basic mechanisms of the epilepsies (4th ed), US: National Center for Biotechnology Information. 2012. Available at://www.ncbi.nlm.nih.gov/books/NBK50785/
[125]
Sørensen AT, Kokaia M, Vezzani A. Gene therapy of focal onset epilepsy using adeno-associated virus vector-mediated overexpression of neuropeptide Y. In: In Jasper’s basic mechanisms of the epilepsies. 4th ed, Noebels JL, Avoli M, Rogawski MA, et al. Editors. 2012. Available at://www.ncbi.nlm.nih.gov/books/NBK 98184/
[126]
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Front Physiol 2019; 10(486): 486.
[http://dx.doi.org/10.3389/fphys.2019.00486] [PMID: 31105589]
[127]
Weinberg MS, McCown TJ. Current prospects and challenges for epilepsy gene therapy. Exp Neurol 2013; 244: 27-35.
[http://dx.doi.org/10.1016/j.expneurol.2011.10.003] [PMID: 22008258]
[128]
Woldbye DP, Ängehagen M, Gøtzsche CR, et al. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain 2010; 133(9): 2778-88.
[http://dx.doi.org/10.1093/brain/awq219] [PMID: 20688813]
[129]
Sørensen AT, Kokaia M. Novel approaches to epilepsy treatment. Epilepsia 2013; 54(1): 1-10.
[http://dx.doi.org/10.1111/epi.12000] [PMID: 23106744]
[130]
Zhang WR, Sato K, Iwai M, Nagano I, Manabe Y, Abe K. Therapeutic time window of adenovirus-mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat. Brain Res 2002; 947(1): 140-5.
[http://dx.doi.org/10.1016/S0006-8993(02)02923-2] [PMID: 12144862]
[131]
Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y, Abe K. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 1998; 29(7): 1417-22.
[http://dx.doi.org/10.1161/01.STR.29.7.1417] [PMID: 9660398]
[132]
Katt ME, Mayo LN, Ellis SE, et al. The role of mutations associated with familial neurodegenerative disorders on blood-brain barrier function in an iPSC model. Fluids Barriers CNS 2019; 16(1): 20.
[http://dx.doi.org/10.1186/s12987-019-0139-4] [PMID: 31303172]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy