Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Review Article

Perspectives of Infrared Spectroscopy in Quantitative Estimation of Proteins

Author(s): Kritika Verma, Ankit Semwal, Pankaj Soni and Rohit Bhatia*

Volume 17, Issue 5, 2021

Published on: 17 September, 2020

Page: [689 - 707] Pages: 19

DOI: 10.2174/1573411016999200917113433

Price: $65

Abstract

Background: Infrared (IR) spectroscopy is a well-established technique for the structural elucidation of simple as well complex molecules. It has wide applications in the qualitative as well as quantitative determination of proteins in different samples. It provides a clear picture of the primary, secondary, or tertiary structure of a protein. Infrared radiations are used to assess different vibrational modes arise from variations in the structural components of a protein.

Methods: Various research reports were collected from search engines like Sciencedirect, Pubmed, Researchgate, and Google Scholar. They were further studied thoroughly and important findings/ data were compiled and represented with tables and figures. The procured data, which includes bandwidth, frequency and intensity, have been employed to elucidate the structure of a protein.

Results: It was found from various reports that Fourier transforms infrared spectroscopy (FT-IR) has widely been utilized to predict the secondary structure of the protein in the past few years. FTIR has the ability to trace out various structural modifications in the protein structure that originate due to interactions with other materials. It is also evident that it can be utilized to quantify the proteins in a variety of samples.

Conclusion: The present review describes the basic principle and the instrumentation of IR spectroscopy and its advancements. Beyond this, various applications of this technique in determining protein structure and quantification in different materials such as food stuffs, biotechnological products and biological fluids have also been summarized.

Keywords: Quantitative, vibrational modes, FT-IR, protein secondary structure, biological fluids, proteins.

Graphical Abstract
[1]
Cadet, F.; Garrigues, S.; de la Guardia, M. Quantitative analysis, infrared. Encyclopedia of Analytical Chemistry: Applications; Theory and Instrumentation, 2006.
[2]
Kumar, A.; Khandelwal, M.; Gupta, S.K.; Kumar, V.; Rani, R. Fourier transform infrared spectroscopy: Data interpretation and applications in structure elucidation and analysis of small molecules and nanostructures. Data Processing Handbook for Complex Biological Data Sources; Elsevier, 2019, pp. 77-96.
[http://dx.doi.org/10.1016/B978-0-12-816548-5.00006-X]
[3]
Dominguez, G.; Mcleod, A.S.; Gainsforth, Z.; Kelly, P.; Bechtel, H.A.; Keilmann, F.; Westphal, A.; Thiemens, M.; Basov, D.N. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat. Commun., 2014, 5(1), 5445.
[http://dx.doi.org/10.1038/ncomms6445] [PMID: 25487365]
[4]
Bhambhani, A.; Thakkar, S.; Joshi, S.B.; Middaugh, C.R. A formulation method to improve the physical stability of macromolecular-based drug products. Therapeutic Protein Drug Products; Elsevier, 2012, pp. 13-45.
[http://dx.doi.org/10.1533/9781908818102.13]
[5]
Navea, S.; Tauler, R.; de Juan, A. Application of the local regression method interval partial least-squares to the elucidation of protein secondary structure. Anal. Biochem., 2005, 336(2), 231-242.
[http://dx.doi.org/10.1016/j.ab.2004.10.016] [PMID: 15620888]
[6]
Bauer, R.; Nieuwoudt, H.; Bauer, F.F.; Kossmann, J.; Koch, K.R.; Esbensen, K.H. FTIR spectroscopy for grape and wine analysis; ACS Publications, 2008.
[http://dx.doi.org/10.1021/ac086051c]
[7]
Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to spectroscopy; Cengage Learning, 2008.
[8]
Barth, A. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-. Bioenergetics, 2007, 1767(9), 1073-1101.
[http://dx.doi.org/10.1016/j.bbabio.2007.06.004]
[9]
Mohamed, M.A.; Jaafar, J.; Ismail, A.; Othman, M.; Rahman, M. Fourier transform infrared (FTIR) spectroscopy.Membrane Characterization; Elsevier, 2017, pp. 3-29.
[http://dx.doi.org/10.1016/B978-0-444-63776-5.00001-2]
[10]
Amir, R.M.; Anjum, F.M.; Khan, M.I.; Khan, M.R.; Pasha, I.; Nadeem, M. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J. Food Sci. Technol., 2013, 50(5), 1018-1023.
[http://dx.doi.org/10.1007/s13197-011-0424-y] [PMID: 24426012]
[11]
Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for rapid authentication and detection of adulteration of food. Annu. Rev. Food Sci. Technol., 2011, 2, 467-483.
[http://dx.doi.org/10.1146/annurev-food-022510-133750] [PMID: 22129392]
[12]
Türker-Kaya, S.; Huck, C.W. A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules, 2017, 22(1), 168.
[http://dx.doi.org/10.3390/molecules22010168] [PMID: 28117673]
[13]
Karoui, R.; Downey, G.; Blecker, C. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships - a review. Chem. Rev., 2010, 110(10), 6144-6168.
[http://dx.doi.org/10.1021/cr100090k] [PMID: 20804166]
[14]
Garidel, P.; Schott, H. Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations. Bioprocess Int., 2006, 4(6), 48-55.
[15]
Ellis, D.I.; Goodacre, R. Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy. Analyst (Lond.), 2006, 131(8), 875-885.
[http://dx.doi.org/10.1039/b602376m] [PMID: 17028718]
[16]
Clarke, S. Essential Chemistry for Aromatherapy E-Book; Elsevier Health Sciences, 2009.
[17]
Dutta, A. Fourier Transform Infrared Spectroscopy., 2017, 73-93.
[http://dx.doi.org/10.1016/B978-0-323-46140-5.00004-2]
[18]
Zhuang, Y.; Liu, Q.; Kong, Y.; Shen, C.; Hao, H.; Dionysiou, D.D.; Shi, B. Enhanced antibiotic removal through a dual-reaction-center Fenton-like process in 3D graphene based hydrogels. Environ. Sci. Nano, 2019, 6(2), 388-398.
[http://dx.doi.org/10.1039/C8EN01339J]
[19]
Zhuang, Y.; Han, B.; Chen, R.; Shi, B. Structural transformation and potential toxicity of iron-based deposits in drinking water distribution systems. Water Res., 2019, 165114999
[http://dx.doi.org/10.1016/j.watres.2019.114999]] [PMID: 31465995]
[20]
Zhuang, Y.; Wang, X.; Zhang, L.; Kou, Z.; Shi, B. Confinement Fenton-like degradation of perfluorooctanoic acid by a three dimensional metal-free catalyst derived from waste. Appl. Catal. B, 2020, 2020119101
[http://dx.doi.org/10.1016/j.apcatb.2020.119101]
[21]
Subramanian, A.; Rodriguez-Saona, L. Fourier transform infrared (FTIR) spectroscopy. Infra. Spectr. Food Qual. Anal. Control, 2009, 2009, 145-178.
[22]
Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res., 2009, 101(2-3), 157-170.
[http://dx.doi.org/10.1007/s11120-009-9439-x] [PMID: 19513810]
[23]
Gerwert, K.; Kötting, C. Fourier Transform Infrared (FTIR). Spectroscopy (Springf.),. 2010.
[24]
Fabian, H.; Schultz, C.P. Fourier Transform Infrared Spectroscopy in Peptide and Protein Analysis. Encyclopedia of Analytical Chemistry: Applications; Theory and Instrumentation, 2006.
[25]
Miller, L. M.; Bourassa, M. W.; Smith, R. J. FTIR spectroscopic imaging of protein aggregation in living cells., Biochimica et biophysica acta (BBA)-biomembranes, 1828, 1828(10), 2339-2346..
[26]
Adochitei, A.; Drochioiu, G. Rapid characterization of peptide secondary structure by FT-IR spectroscopy. Rev. Roum. Chim., 2011, 56(8), 783-791.
[27]
Tamm, L.K.; Tatulian, S.A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Q. Rev. Biophys., 1997, 30(4), 365-429.
[http://dx.doi.org/10.1017/S0033583597003375] [PMID: 9634652]
[28]
Miller, L.M.; Wang, Q.; Telivala, T.P.; Smith, R.J.; Lanzirotti, A.; Miklossy, J. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. J. Struct. Biol., 2006, 155(1), 30-37.
[http://dx.doi.org/10.1016/j.jsb.2005.09.004] [PMID: 16325427]
[29]
Sacksteder, C.; Barry, B.A. Fourier transform infrared spectroscopy: A molecular approach to an organismal question. J. Phycol., 2001, 37(2), 197-199.
[http://dx.doi.org/10.1046/j.1529-8817.2001.037002197.x]
[30]
Consortti, L.; Salgado, H. Green method for quantification of sodium cefotaxime in lyophilized powder by infrared spectroscopy. J. Pharmaceut. Sci. Emerg. Drugs, 2017, 5(1), 2-6.
[http://dx.doi.org/10.4172/2380-9477.1000118]
[31]
Ruggeri, F.S.; Mannini, B.; Schmid, R.; Vendruscolo, M.; Knowles, T.P.J. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun., 2020, 11(1), 2945.
[http://dx.doi.org/10.1038/s41467-020-16728-1] [PMID: 32522983]
[32]
Kristoffersen, K.A.; van Amerongen, A.; Böcker, U.; Lindberg, D.; Wubshet, S.G.; de Vogel-van den Bosch, H.; Horn, S.J.; Afseth, N.K. Fourier-transform infrared spectroscopy for monitoring proteolytic reactions using dry-films treated with trifluoroacetic acid. Sci. Rep., 2020, 10(1), 7844.
[http://dx.doi.org/10.1038/s41598-020-64583-3] [PMID: 32398689]
[33]
Tatulian, S.A. FTIR Analysis of Proteins and Protein-Membrane Interactions. Lipid-Protein Interactions. Methods in Molecular Biology 2020; Kleinschmidt, J., Ed.; , 2003, pp. 281-325.
[34]
Szentirmai, V.; Wacha, A.; Németh, C.; Kitka, D.; Rácz, A.; Héberger, K.; Mihály, J.; Varga, Z. Reagent-free total protein quantification of intact extracellular vesicles by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Anal. Bioanal. Chem., 2020, 412(19), 4619-4628.
[http://dx.doi.org/10.1007/s00216-020-02711-8] [PMID: 32472144]
[35]
Dole, M.N.; Patel, P.A.; Sawant, S.D.; Shedpure, P.S. Advance applications of Fourier transform infrared spectroscopy. Int. J. Pharm. Sci. Rev. Res., 2011, 7(2), 159-166.
[36]
Griffiths, P.R.; De Haseth, J.A. Fourier transform infrared spectrometry; John Wiley & Sons, 2007, Vol. 171, 1..
[http://dx.doi.org/10.1002/047010631X]
[37]
Chandy, N.G. Time-resolved investigation of fast pyrolysis using FTIR spectroscopy., 2014.
[http://dx.doi.org/10.31274/etd-180810-3660]
[38]
Gaffney, J. S.; Marley, N. A.; Jones, D. E. Fourier transform infrared (FTIR) spectroscopy. Characterization of Materials, 2002, 1- 33..
[39]
Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; Hughes, C.; Lasch, P.; Martin-Hirsch, P.L.; Obinaju, B.; Sockalingum, G.D.; Sulé-Suso, J.; Strong, R.J.; Walsh, M.J.; Wood, B.R.; Gardner, P.; Martin, F.L. Using fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc., 2014, 9(8), 1771-1791.
[http://dx.doi.org/10.1038/nprot.2014.110] [PMID: 24992094]
[40]
López-Lorente, Á.I.; Mizaikoff, B. Mid-infrared spectroscopy for protein analysis: Potential and challenges. Anal. Bioanal. Chem., 2016, 408(11), 2875-2889.
[http://dx.doi.org/10.1007/s00216-016-9375-5] [PMID: 26879650]
[41]
Van Gulik, W.M.; Canelas, A.B.; Taymaz-Nikerel, H.; Douma, R.D.; de Jonge, L.P.; Heijnen, J.J. Fast sampling of the cellular metabolome. Microbial Systems Biology; Springer, 2012, pp. 279-306.
[http://dx.doi.org/10.1007/978-1-61779-827-6_10]
[42]
Dayal, G.; Chin, X.Y.; Soci, C.; Singh, R. High‐Q plasmonic fano resonance for multiband surface‐enhanced infrared absorption of molecular vibrational sensing. Adv. Opt. Mater., 2017, 5(2)1600559
[http://dx.doi.org/10.1002/adom.201600559]
[43]
Ganim, Z.; Chung, H.S.; Smith, A.W.; Deflores, L.P.; Jones, K.C.; Tokmakoff, A. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res., 2008, 41(3), 432-441.
[http://dx.doi.org/10.1021/ar700188n] [PMID: 18288813]
[44]
Accardo, G.; Cioffi, R.; Colangelo, F.; d’Angelo, R.; De Stefano, L.; Paglietti, F. Diffuse reflectance infrared fourier transform spectroscopy for the determination of asbestos species in bulk building materials. Materials (Basel), 2014, 7(1), 457-470.
[http://dx.doi.org/10.3390/ma7010457] [PMID: 28788467]
[45]
Bageshwar, D.V.; Pawar, A.S.; Khanvilkar, V.V.; Kadam, V.J. Photoacoustic spectroscopy and its applications-a tutorial review. Eur. J. Anal. Chem., 2010, 5(2), 187-203.
[46]
Miller, L.M.; Dumas, P. Chemical imaging of biological tissue with synchrotron infrared light. Biochim. Biophys. Acta, 2006, 1758(7), 846-857.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.010] [PMID: 16781664]
[47]
Yu, P. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy, 2006, 20(5, 6), 229-251..
[48]
Fukushima, D. Recent progress of soybean protein foods: chemistry, technology, and nutrition. Food Rev. Int., 1991, 7(3), 323-351.
[http://dx.doi.org/10.1080/87559129109540915]
[49]
Zhao, X.; Chen, F.; Xue, W.; Lee, L. FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocoll., 2008, 22(4), 568-575.
[http://dx.doi.org/10.1016/j.foodhyd.2007.01.019]
[50]
Jaiswal, P.; Jha, S.N.; Borah, A.; Gautam, A.; Grewal, M.K.; Jindal, G. Detection and quantification of soymilk in cow-buffalo milk using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). Food Chem., 2015, 168, 41-47.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.010] [PMID: 25172681]
[51]
Khanmohammadi, M.; Garmarudi, A.B.; Ghasemi, K.; Garrigues, S.; de la Guardia, M. Artificial neural network for quantitative determination of total protein in yogurt by infrared spectrometry. Microchem. J., 2009, 91(1), 47-52.
[http://dx.doi.org/10.1016/j.microc.2008.07.003]
[52]
Baum, A.; Hansen, P.W.; Nørgaard, L.; Sørensen, J.; Mikkelsen, J.D. Rapid quantification of casein in skim milk using Fourier transform infrared spectroscopy, enzymatic perturbation, and multiway partial least squares regression: Monitoring chymosin at work. J. Dairy Sci., 2016, 99(8), 6071-6079.
[http://dx.doi.org/10.3168/jds.2016-10947] [PMID: 27265175]
[53]
Lozano, M.; Rodríguez-Ulibarri, P.; Echeverría, J.; Beruete, M.; Sorolla, M.; Beriain, M. Mid-infrared spectroscopy (MIR) for simultaneous determination of fat and protein content in meat of several animal species. Food Anal. Methods, 2017, 10(10), 3462-3470.
[http://dx.doi.org/10.1007/s12161-017-0879-1]
[54]
Vonhoff, S.; Condliffe, J.; Schiffter, H. Implementation of an FTIR calibration curve for fast and objective determination of changes in protein secondary structure during formulation development. J. Pharm. Biomed. Anal., 2010, 51(1), 39-45.
[http://dx.doi.org/10.1016/j.jpba.2009.07.031] [PMID: 19726151]
[55]
Wang, Y.; Boysen, R.I.; Wood, B.R.; Kansiz, M.; McNaughton, D.; Hearn, M.T. Determination of the secondary structure of proteins in different environments by FTIR-ATR spectroscopy and PLS regression. Biopolymers, 2008, 89(11), 895-905.
[http://dx.doi.org/10.1002/bip.21022] [PMID: 18488986]
[56]
Hering, J.A.; Innocent, P.R.; Haris, P.I. Automatic amide I frequency selection for rapid quantification of protein secondary structure from Fourier transform infrared spectra of proteins. In: PROTEOMICS: International Edition; 2002; 2, p.(7), 839-849. (200207)2:7<839::AIDPROT839>3.0.CO;2-L
[http://dx.doi.org/10.1002/1615-9861]
[57]
Hering, J.A.; Innocent, P.R.; Haris, P.I. An alternative method for rapid quantification of protein secondary structure from FTIR spectra using neural networks. Spectroscopy (Springf.), 2002, 16(2), 53-69.
[http://dx.doi.org/10.1155/2002/503989]
[58]
Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc., 2015, 10(3), 382-396.
[http://dx.doi.org/10.1038/nprot.2015.024] [PMID: 25654756]
[59]
Baiz, C.R.; Peng, C.S.; Reppert, M.E.; Jones, K.C.; Tokmakoff, A. Coherent two-dimensional infrared spectroscopy: Quantitative analysis of protein secondary structure in solution. Analyst (Lond.), 2012, 137(8), 1793-1799.
[http://dx.doi.org/10.1039/c2an16031e] [PMID: 22398665]
[60]
Lewis, S.; Lewis, A.; Lewis, P. Prediction of glycoprotein secondary structure using ATR-FTIR. Vib. Spectrosc., 2013, 69, 21-29.
[http://dx.doi.org/10.1016/j.vibspec.2013.09.001]
[61]
Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules, 2019, 9(8), 359.
[http://dx.doi.org/10.3390/biom9080359] [PMID: 31409012]
[62]
Abrosimova, K.; Shulenina, O.; Paston, S. In FTIR study of secondary structure of bovine serum albumin and ovalbumin. J. Phys. Conf. Ser., 2016, 01, 2016.
[http://dx.doi.org/10.1088/1742-6596/769/1/012016]]
[63]
Cardamone, J.M. Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J. Mol. Struct., 2010, 969(1-3), 97-105.
[http://dx.doi.org/10.1016/j.molstruc.2010.01.048]
[64]
Bouhekka, A.; Bürgi, T. In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO2. Appl. Surf. Sci., 2012, 261, 369-374.
[http://dx.doi.org/10.1016/j.apsusc.2012.08.017]
[65]
Zhang, J.; Zhang, X.; Zhang, F.; Yu, S. Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy. Anal. Bioanal. Chem., 2017, 409(18), 4459-4465.
[http://dx.doi.org/10.1007/s00216-017-0390-y] [PMID: 28526999]
[66]
Mirmehrabi, M.; Rohani, S.; Perry, L. Thermodynamic modeling of activity coefficient and prediction of solubility: Part 2. Semipredictive or semiempirical models. J. Pharm. Sci., 2006, 95(4), 798-809.
[http://dx.doi.org/10.1002/jps.20576] [PMID: 16493593]
[67]
Gross-Selbeck, S.; Margreiter, G.; Obinger, C.; Bayer, K. Fast quantification of recombinant protein inclusion bodies within intact cells by FT-IR spectroscopy. Biotechnol. Prog., 2007, 23(3), 762-766.
[http://dx.doi.org/10.1021/bp070022q] [PMID: 17492833]
[68]
Dudkiewicz, M.; Berłowska, J.; Kręgiel, D. Oznaczanie białek metodą FTIR w produktach spożywczych i biotechnologicznych-cz; I; Laboratorium-Przegląd Ogólnopolski, 2015.
[69]
Ferro, L.; Gojkovic, Z.; Gorzsás, A.; Funk, C. Statistical methods for rapid quantification of proteins, lipids, and carbohydrates in nordic microalgal species using ATR-FTIR Spectroscopy. Molecules, 2019, 24(18), 3237.
[http://dx.doi.org/10.3390/molecules24183237] [PMID: 31492012]
[70]
Tao, P.; Aihong, P.; Wenjie, H.; Hao, Y.; Yun, H. FTIR/ATR spectroscopy applied to the rapid analysis for hemoglobin in human soluble blood samples 2011 Third International Conference on Measuring Technology and Mechatronics Automation, 2011, pp. 268-271.
[71]
Spalding, K.; Bonnier, F.; Bruno, C.; Blasco, H.; Board, R.; Benz-de Bretagne, I.; Byrne, H.J.; Butler, H.J.; Chourpa, I.; Radhakrishnan, P. Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Vib. Spectrosc., 2018, 99, 50-58.
[http://dx.doi.org/10.1016/j.vibspec.2018.08.019]
[72]
Sasić, S.; Ozaki, Y. Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment. Anal. Chem., 2001, 73(1), 64-71.
[http://dx.doi.org/10.1021/ac000469c] [PMID: 11195513]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy