Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Role of Nicotinic Acetylcholine Receptors in Cardiovascular Physiology and Pathophysiology: Current Trends and Perspectives

Author(s): Jielin Deng and Hong Jiang*

Volume 19 , Issue 4 , 2021

Published on: 17 September, 2020

Page: [370 - 378] Pages: 9

DOI: 10.2174/1386207323666200917104920

Price: $65

Abstract

Nicotinic acetylcholine receptors (nAChRs) comprise a large family of ligand-gated ion channels that have a broad distribution in neurons and non-neuronal cells throughout the body. Native nAChRs, activated by acetylcholine (ACh) endogenously, are involved in a variety of physiological and pathophysiological processes. They regulate processes necessary for network operations through neurotransmitter release, cell excitability and neuronal integration.

Emerging evidence suggests that nAChRs are capable of regulating cardiovascular (CV) functions in a cell type-specific manner, through the nervous system and non-neuronal tissues. The aim of this review is to describe the most recent findings regarding the role of nAChRs inside and outside the nervous system in the regulation of CV activities.

Keywords: Cardiovascular effects, nicotinic acetylcholine receptors, nervous system, non-neuronal tissue, mammalian cells, neuronal growth.

Graphical Abstract
[1]
Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol 2015; 124: 3-19.
[http://dx.doi.org/10.1016/bs.irn.2015.07.001] [PMID: 26472524]
[2]
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol 2018; 16(4): 338-49.
[http://dx.doi.org/10.2174/1570159X15666170912110450] [PMID: 28901280]
[3]
Rollema H, Russ C, Lee TC, Hurst RS, Bertrand D. Functional interactions of varenicline and nicotine with nAChR subtypes implicated in cardiovascular control. Nicotine Tob Res 2014; 16(6): 733-42.
[http://dx.doi.org/10.1093/ntr/ntt208] [PMID: 24406270]
[4]
Li YF, LaCroix C, Freeling J. Specific subtypes of nicotinic cholinergic receptors involved in sympathetic and parasympathetic cardiovascular responses. Neurosci Lett 2009; 462(1): 20-3.
[http://dx.doi.org/10.1016/j.neulet.2009.06.081] [PMID: 19573576]
[5]
Machaalani R, Kashi PK, Waters KA. Distribution of nicotinic acetylcholine receptor subunits alpha7 and beta2 in the human brainstem and hippocampal formation. J Chem Neuroanat 2010; 40(3): 223-31.
[http://dx.doi.org/10.1016/j.jchemneu.2010.05.009] [PMID: 20566330]
[6]
Skok VI. Nicotinic acetylcholine receptors in autonomic ganglia. Auton Neurosci 2002; 97(1): 1-11.
[http://dx.doi.org/10.1016/S1566-0702(01)00386-1] [PMID: 12036180]
[7]
Santanam N, Thornhill BA, Lau JK, et al. Nicotinic acetylcholine receptor signaling in atherogenesis. Atherosclerosis 2012; 225(2): 264-73.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.07.041] [PMID: 22929083]
[8]
Zhao Y. The Oncogenic Functions of Nicotinic Acetylcholine Receptors. J Oncol 2016; 2016: 9650481.
[http://dx.doi.org/10.1155/2016/9650481] [PMID: 26981122]
[9]
Picciotto MR, Zoli M. Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Front Biosci 2008; 13: 492-504.
[http://dx.doi.org/10.2741/2695] [PMID: 17981563]
[10]
Posadas I, López-Hernández B, Ceña V. Nicotinic receptors in neurodegeneration. Curr Neuropharmacol 2013; 11(3): 298-314.
[http://dx.doi.org/10.2174/1570159X11311030005] [PMID: 24179465]
[11]
Fujii T, Mashimo M, Moriwaki Y, et al. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134(1): 1-21.
[http://dx.doi.org/10.1016/j.jphs.2017.05.002] [PMID: 28552584]
[12]
Brejc K, van Dijk WJ, Klaassen RV, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 2001; 411(6835): 269-76.
[http://dx.doi.org/10.1038/35077011] [PMID: 11357122]
[13]
Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 1993; 16: 403-43.
[http://dx.doi.org/10.1146/annurev.ne.16.030193.002155] [PMID: 7681637]
[14]
Wilson G, Karlin A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc Natl Acad Sci USA 2001; 98(3): 1241-8.
[http://dx.doi.org/10.1073/pnas.98.3.1241] [PMID: 11158624]
[15]
McKay BE, Placzek AN, Dani JA. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2007; 74(8): 1120-33.
[http://dx.doi.org/10.1016/j.bcp.2007.07.001] [PMID: 17689497]
[16]
McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269(5231): 1692-6.
[http://dx.doi.org/10.1126/science.7569895] [PMID: 7569895]
[17]
Vidal C, Changeux JP. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 1993; 56(1): 23-32.
[http://dx.doi.org/10.1016/0306-4522(93)90558-W] [PMID: 7901807]
[18]
Wang BW, Liao WN, Chang CT, Wang SJ. Facilitation of glutamate release by nicotine involves the activation of a Ca2+/calmodulin signaling pathway in rat prefrontal cortex nerve terminals. Synapse 2006; 59(8): 491-501.
[http://dx.doi.org/10.1002/syn.20267] [PMID: 16565963]
[19]
Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin 2009; 30(6): 673-80.
[http://dx.doi.org/10.1038/aps.2009.64] [PMID: 19448647]
[20]
Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76(1): 116-29.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[21]
Mansvelder HD, McGehee DS. Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 2002; 53(4): 606-17.
[http://dx.doi.org/10.1002/neu.10148] [PMID: 12436424]
[22]
Grady SR, Meinerz NM, Cao J, et al. Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum. J Neurochem 2001; 76(1): 258-68.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00019.x] [PMID: 11145999]
[23]
Parikh V, Ji J, Decker MW, Sarter M. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 2010; 30(9): 3518-30.
[http://dx.doi.org/10.1523/JNEUROSCI.5712-09.2010] [PMID: 20203212]
[24]
Schneider DA, Galligan JJ. Presynaptic nicotinic acetylcholine receptors in the myenteric plexus of guinea pig intestine. Am J Physiol Gastrointest Liver Physiol 2000; 279(3): G528-35.
[http://dx.doi.org/10.1152/ajpgi.2000.279.3.G528] [PMID: 10960351]
[25]
Cooper E, Couturier S, Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 1991; 350(6315): 235-8.
[http://dx.doi.org/10.1038/350235a0] [PMID: 2005979]
[26]
Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 2002; 3(2): 102-14.
[http://dx.doi.org/10.1038/nrn731] [PMID: 11836518]
[27]
Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006; 27(9): 482-91.
[http://dx.doi.org/10.1016/j.tips.2006.07.004] [PMID: 16876883]
[28]
Luo S, Kulak JM, Cartier GE, et al. alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J Neurosci 1998; 18(21): 8571-9.
[http://dx.doi.org/10.1523/JNEUROSCI.18-21-08571.1998] [PMID: 9786965]
[29]
Vernino S, Hopkins S, Wang Z. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy. Auton Neurosci 2009; 146(1-2): 3-7.
[http://dx.doi.org/10.1016/j.autneu.2008.09.005] [PMID: 18951069]
[30]
Hone AJ, Meyer EL, McIntyre M, McIntosh JM. Nicotinic acetylcholine receptors in dorsal root ganglion neurons include the α6β4* subtype. FASEB J 2012; 26(2): 917-26.
[http://dx.doi.org/10.1096/fj.11-195883] [PMID: 22024738]
[31]
Egleton RD, Brown KC, Dasgupta P. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther 2009; 121(2): 205-23.
[http://dx.doi.org/10.1016/j.pharmthera.2008.10.007] [PMID: 19063919]
[32]
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2004; 74(6): 363-96.
[http://dx.doi.org/10.1016/j.pneurobio.2004.09.006] [PMID: 15649582]
[33]
Wada T, Naito M, Kenmochi H, Tsuneki H, Sasaoka T. Chronic nicotine exposure enhances insulin-induced mitogenic signaling via up-regulation of alpha7 nicotinic receptors in isolated rat aortic smooth muscle cells. Endocrinology 2007; 148(2): 790-9.
[http://dx.doi.org/10.1210/en.2006-0907] [PMID: 17068140]
[34]
Schedel A, Thornton S, Schloss P, Klüter H, Bugert P. Human platelets express functional alpha7-nicotinic acetylcholine receptors. Arterioscler Thromb Vasc Biol 2011; 31(4): 928-34.
[http://dx.doi.org/10.1161/ATVBAHA.110.218297] [PMID: 21051662]
[35]
Zhang G, Kernan KA, Thomas A, et al. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem 2009; 284(42): 29050-64.
[http://dx.doi.org/10.1074/jbc.M109.010249] [PMID: 19690163]
[36]
Perry DC, Xiao Y, Nguyen HN, Musachio JL, Dávila-García MI, Kellar KJ. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem 2002; 82(3): 468-81.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00951.x] [PMID: 12153472]
[37]
Del Signore A, Gotti C, Rizzo A, Moretti M, Paggi P. Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush. J Neuropathol Exp Neurol 2004; 63(2): 138-50.
[http://dx.doi.org/10.1093/jnen/63.2.138] [PMID: 14989600]
[38]
Mao D, Yasuda RP, Fan H, Wolfe BB, Kellar KJ. Heterogeneity of nicotinic cholinergic receptors in rat superior cervical and nodose Ganglia. Mol Pharmacol 2006; 70(5): 1693-9.
[http://dx.doi.org/10.1124/mol.106.027458] [PMID: 16882879]
[39]
Genzen JR, Van Cleve W, McGehee DS. Dorsal root ganglion neurons express multiple nicotinic acetylcholine receptor subtypes. J Neurophysiol 2001; 86(4): 1773-82.
[http://dx.doi.org/10.1152/jn.2001.86.4.1773] [PMID: 11600638]
[40]
Feldberg W, Guertzenstein PG, Rocha e Silva M Jr. Vasopressin release by nicotine: the site of action. Br J Pharmacol 1975; 54(4): 463-74.
[http://dx.doi.org/10.1111/j.1476-5381.1975.tb07592.x] [PMID: 1236754]
[41]
Ashworth-Preece M, Jarrott B, Lawrence AJ. Nicotinic acetylcholine receptors in the rat and primate nucleus tractus solitarius and on rat and human inferior vagal (nodose) ganglia: evidence from in vivo microdialysis and [125I]alpha-bungarotoxin autoradiography. Neuroscience 1998; 83(4): 1113-22.
[http://dx.doi.org/10.1016/S0306-4522(97)00476-4] [PMID: 9502250]
[42]
Jordan D, Spyer KM. Brainstem integration of cardiovascular and pulmonary afferent activity. Prog Brain Res 1986; 67: 295-314.
[http://dx.doi.org/10.1016/S0079-6123(08)62769-7] [PMID: 3823479]
[43]
Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994; 74(2): 323-64.
[http://dx.doi.org/10.1152/physrev.1994.74.2.323] [PMID: 8171117]
[44]
Schreihofer AM, Guyenet PG. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 2002; 29(5-6): 514-21.
[http://dx.doi.org/10.1046/j.1440-1681.2002.03665.x] [PMID: 12010201]
[45]
Tseng CJ, Appalsamy M, Robertson D, Mosqueda-Garcia R. Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther 1993; 265(3): 1511-8.
[PMID: 8099622]
[46]
Moore C, Wang Y, Ramage AG. Cardiovascular effects of activation of central alpha7 and alpha4beta2 nAChRs: a role for vasopressin in anaesthetized rats. Br J Pharmacol 2008; 153(8): 1728-38.
[http://dx.doi.org/10.1038/bjp.2008.47] [PMID: 18297099]
[47]
Aberger K, Chitravanshi VC, Sapru HN. Cardiovascular responses to microinjections of nicotine into the caudal ventrolateral medulla of the rat. Brain Res 2001; 892(1): 138-46.
[http://dx.doi.org/10.1016/S0006-8993(00)03250-9] [PMID: 11172759]
[48]
Buccafusco JJ. The role of central cholinergic neurons in the regulation of blood pressure and in experimental hypertension. Pharmacol Rev 1996; 48(2): 179-211.
[PMID: 8804103]
[49]
Sved A, Gordon F. Amino Acids as Central Neurotransmitters in the Baroreceptor Reflex Pathway. Physiology (Bethesda) 1994; 9(6): 243-6.
[http://dx.doi.org/10.1152/physiologyonline.1994.9.6.243]
[50]
Lin HC, Wan FJ, Kang BH, Wu CC, Tseng CJ. Systemic administration of lipopolysaccharide induces release of nitric oxide and glutamate and c-fos expression in the nucleus tractus solitarii of rats. Hypertension 1999; 33(5): 1218-24.
[http://dx.doi.org/10.1161/01.HYP.33.5.1218] [PMID: 10334815]
[51]
Chan SH, Wu KL, Wang LL, Chan JY. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radic Biol Med 2005; 39(5): 603-18.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.012] [PMID: 16085179]
[52]
Sallam MY, El-Gowilly SM, Fouda MA, Abd-Alhaseeb MM, El-Mas MM. Brainstem cholinergic pathways diminish cardiovascular and neuroinflammatory actions of endotoxemia in rats: Role of NFκB/α7/α4β2AChRs signaling. Neuropharmacology 2019; 157: 107683.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107683] [PMID: 31247270]
[53]
Khan IM, Taylor P, Yaksh TL. Stimulatory pathways and sites of action of intrathecally administered nicotinic agents. J Pharmacol Exp Ther 1994; 271(3): 1550-7.
[PMID: 7996469]
[54]
Garibotto V, Corpataux T, Dupuis-Lozeron E, Haller S, Fontolliet T, Picard F. Higher nicotinic receptor availability in the cingulo-insular network is associated with lower cardiac parasympathetic tone. J Comp Neurol 2019; 527(18): 3014-22.
[http://dx.doi.org/10.1002/cne.24726] [PMID: 31168797]
[55]
Blomquist TM, Priola DV, Romero AM. Source of intrinsic innervation of canine ventricles: a functional study. Am J Physiol 1987; 252(3 Pt 2): H638-44.
[PMID: 3826405]
[56]
Ji S, Tosaka T, Whitfield BH, et al. Differential rate responses to nicotine in rat heart: evidence for two classes of nicotinic receptors. J Pharmacol Exp Ther 2002; 301(3): 893-9.
[http://dx.doi.org/10.1124/jpet.301.3.893] [PMID: 12023516]
[57]
Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Korczyn AD. Deficiency of nicotinic acetylcholine receptor beta 4 subunit causes autonomic cardiac and intestinal dysfunction. Mol Pharmacol 2003; 63(3): 574-80.
[http://dx.doi.org/10.1124/mol.63.3.574] [PMID: 12606764]
[58]
Xu W, Orr-Urtreger A, Nigro F, et al. Multiorgan autonomic dysfunction in mice lacking the β2 and the β4 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci 1999; 19(21): 9298-305.
[http://dx.doi.org/10.1523/JNEUROSCI.19-21-09298.1999] [PMID: 10531434]
[59]
Bibevski S, Zhou Y, McIntosh JM, Zigmond RE, Dunlap ME. Functional nicotinic acetylcholine receptors that mediate ganglionic transmission in cardiac parasympathetic neurons. J Neurosci 2000; 20(13): 5076-82.
[http://dx.doi.org/10.1523/JNEUROSCI.20-13-05076.2000] [PMID: 10864965]
[60]
Kamendi HW, Cheng Q, Dergacheva O, et al. Abolishment of serotonergic neurotransmission to cardiac vagal neurons during and after hypoxia and hypercapnia with prenatal nicotine exposure. J Neurophysiol 2009; 101(3): 1141-50.
[http://dx.doi.org/10.1152/jn.90680.2008] [PMID: 19091927]
[61]
De Biasi M. Nicotinic mechanisms in the autonomic control of organ systems. J Neurobiol 2002; 53(4): 568-79.
[http://dx.doi.org/10.1002/neu.10145] [PMID: 12436421]
[62]
Franceschini D, Orr-Urtreger A, Yu W, et al. Altered baroreflex responses in alpha7 deficient mice. Behav Brain Res 2000; 113(1-2): 3-10.
[http://dx.doi.org/10.1016/S0166-4328(00)00195-9] [PMID: 10942027]
[63]
Deck J, Bibevski S, Gnecchi-Ruscone T, Bellina V, Montano N, Dunlap ME. Alpha7-nicotinic acetylcholine receptor subunit is not required for parasympathetic control of the heart in the mouse. Physiol Genomics 2005; 22(1): 86-92.
[http://dx.doi.org/10.1152/physiolgenomics.00085.2004] [PMID: 15797970]
[64]
El-Mas MM, Fouda MA, El-Gowilly SM, Saad EI. Central estrogenic pathways protect against the depressant action of acute nicotine on reflex tachycardia in female rats. Toxicol Appl Pharmacol 2012; 258(3): 410-7.
[http://dx.doi.org/10.1016/j.taap.2011.12.011] [PMID: 22200407]
[65]
Kawasaki H, Eguchi S, Miyashita S, et al. Proton acts as a neurotransmitter for nicotine-induced adrenergic and calcitonin gene-related peptide-containing nerve-mediated vasodilation in the rat mesenteric artery. J Pharmacol Exp Ther 2009; 330(3): 745-55.
[http://dx.doi.org/10.1124/jpet.108.149435] [PMID: 19483072]
[66]
Si ML, Lee TJ. Alpha7-nicotinic acetylcholine receptors on cerebral perivascular sympathetic nerves mediate choline-induced nitrergic neurogenic vasodilation. Circ Res 2002; 91(1): 62-9.
[http://dx.doi.org/10.1161/01.RES.0000024417.79275.23] [PMID: 12114323]
[67]
Si ML, Lee TJ. Pb2+ inhibition of sympathetic alpha 7-nicotinic acetylcholine receptor-mediated nitrergic neurogenic dilation in porcine basilar arteries. J Pharmacol Exp Ther 2003; 305(3): 1124-31.
[http://dx.doi.org/10.1124/jpet.102.046854] [PMID: 12626657]
[68]
Bibevski S, Dunlap ME. Evidence for impaired vagus nerve activity in heart failure. Heart Fail Rev 2011; 16(2): 129-35.
[http://dx.doi.org/10.1007/s10741-010-9190-6] [PMID: 20820912]
[69]
Nakane S, Higuchi O, Koga M, et al. Clinical features of autoimmune autonomic ganglionopathy and the detection of subunit-specific autoantibodies to the ganglionic acetylcholine receptor in Japanese patients. PLoS One 2015; 10(3): e0118312.
[http://dx.doi.org/10.1371/journal.pone.0118312] [PMID: 25790156]
[70]
Ng MK, Wu J, Chang E, et al. A central role for nicotinic cholinergic regulation of growth factor-induced endothelial cell migration. Arterioscler Thromb Vasc Biol 2007; 27(1): 106-12.
[http://dx.doi.org/10.1161/01.ATV.0000251517.98396.4a] [PMID: 17082486]
[71]
Fenster CP, Whitworth TL, Sheffield EB, Quick MW, Lester RA. Upregulation of surface α4β2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 1999; 19(12): 4804-14.
[http://dx.doi.org/10.1523/JNEUROSCI.19-12-04804.1999] [PMID: 10366615]
[72]
Fenster CP, Beckman ML, Parker JC, et al. Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 1999; 55(3): 432-43.
[PMID: 10051526]
[73]
Bauwens M, Mottaghy FM, Bucerius J. PET Imaging of the Human Nicotinic Cholinergic Pathway in Atherosclerosis. Curr Cardiol Rep 2015; 17(8): 67.
[http://dx.doi.org/10.1007/s11886-015-0614-8] [PMID: 26183620]
[74]
Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 2003; 107(4): 604-11.
[http://dx.doi.org/10.1161/01.CIR.0000047279.42427.6D] [PMID: 12566374]
[75]
Hosur V, Loring RH. α4β2 nicotinic receptors partially mediate anti-inflammatory effects through Janus kinase 2-signal transducer and activator of transcription 3 but not calcium or cAMP signaling. Mol Pharmacol 2011; 79(1): 167-74.
[http://dx.doi.org/10.1124/mol.110.066381] [PMID: 20943775]
[76]
Kiguchi N, Saika F, Kobayashi Y, Ko MC, Kishioka S. TC-2559, an α4β2 nicotinic acetylcholine receptor agonist, suppresses the expression of CCL3 and IL-1β through STAT3 inhibition in cultured murine macrophages. J Pharmacol Sci 2015; 128(2): 83-6.
[http://dx.doi.org/10.1016/j.jphs.2015.04.009] [PMID: 26012743]
[77]
Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol 2012; 8(12): 743-54.
[http://dx.doi.org/10.1038/nrendo.2012.189] [PMID: 23169440]
[78]
Wedn AM, El-Gowilly SM, El-Mas MM. The α7-nAChR/heme oxygenase-1/carbon monoxide pathway mediates the nicotine counteraction of renal inflammation and vasoconstrictor hyporeactivity in endotoxic male rats. Inflamm Res 2020; 69(2): 217-31.
[http://dx.doi.org/10.1007/s00011-019-01309-w] [PMID: 31897506]
[79]
Wedn AM, El-Gowilly SM, El-Mas MM. Nicotine reverses the enhanced renal vasodilator capacity in endotoxic rats: Role of α7/α4β2 nAChRs and HSP70. Pharmacol Rep 2019; 71(5): 782-93.
[http://dx.doi.org/10.1016/j.pharep.2019.04.013] [PMID: 31377559]
[80]
Wedn AM, El-Gowilly SM, El-Mas MM. Nicotine Improves Survivability, Hypotension, and Impaired Adenosinergic Renal Vasodilations in Endotoxic Rats: Role of α7-nAChRs/HO-1 Pathway. Shock 2020; 53(4): 503-13.
[http://dx.doi.org/10.1097/SHK.0000000000001384] [PMID: 31135706]
[81]
el-Mas MM, el-Gowilly SM, Gohar EY, Ghazal AR, Abdel-Rahman AA. Estrogen dependence of the renal vasodilatory effect of nicotine in rats: role of α7 nicotinic cholinergic receptor/eNOS signaling. Life Sci 2011; 88(3-4): 187-93.
[http://dx.doi.org/10.1016/j.lfs.2010.11.009] [PMID: 21092740]
[82]
El-Mas MM, El-Gowilly SM, Gohar EY, Ghazal AR. Pharmacological characterization of cellular mechanisms of the renal vasodilatory effect of nicotine in rats. Eur J Pharmacol 2008; 588(2-3): 294-300.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.048] [PMID: 18533147]
[83]
Li DJ, Evans RG, Yang ZW, et al. Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension 2011; 57(2): 298-307.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.160077] [PMID: 21173343]
[84]
Abboud FM, Harwani SC, Chapleau MW. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension 2012; 59(4): 755-62.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.186833] [PMID: 22331383]
[85]
Frontoni S, Bracaglia D, Gigli F. Relationship between autonomic dysfunction, insulin resistance and hypertension, in diabetes. Nutr Metab Cardiovasc Dis 2005; 15(6): 441-9.
[http://dx.doi.org/10.1016/j.numecd.2005.06.010] [PMID: 16314230]
[86]
Porter TR, Eckberg DL, Fritsch JM, et al. Autonomic pathophysiology in heart failure patients. Sympathetic-cholinergic interrelations. J Clin Invest 1990; 85(5): 1362-71.
[http://dx.doi.org/10.1172/JCI114580] [PMID: 2332495]
[87]
Liu C, Su D. Nicotinic acetylcholine receptor α7 subunit: a novel therapeutic target for cardiovascular diseases. Front Med 2012; 6(1): 35-40.
[http://dx.doi.org/10.1007/s11684-012-0171-0] [PMID: 22460446]
[88]
Sallam MY, El-Gowilly SM, El-Gowelli HM, El-Lakany MA, El-Mas MM. Additive counteraction by α7 and α4β2-nAChRs of the hypotension and cardiac sympathovagal imbalance evoked by endotoxemia in male rats. Eur J Pharmacol 2018; 834: 36-44.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.008] [PMID: 30009813]
[89]
da Silva Gonçalves Bós D, Van Der Bruggen CEE, Kurakula K, et al. Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation 2018; 137(9): 910-24.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027451] [PMID: 29167228]
[90]
Marrero MB, Lucas R, Salet C, et al. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther 2010; 332(1): 173-80.
[http://dx.doi.org/10.1124/jpet.109.154633] [PMID: 19786623]
[91]
Mineur YS, Abizaid A, Rao Y, et al. Nicotine decreases food intake through activation of POMC neurons. Science 2011; 332(6035): 1330-2.
[http://dx.doi.org/10.1126/science.1201889] [PMID: 21659607]
[92]
Grundy SM, Cleeman JI, Daniels SR, et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112(17): 2735-52.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.169404] [PMID: 16157765]
[93]
Li H, Zhang G, Zhou L, et al. Adrenergic Autoantibody-Induced Postural Tachycardia Syndrome in Rabbits. J Am Heart Assoc 2019; 8(19): e013006.
[http://dx.doi.org/10.1161/JAHA.119.013006] [PMID: 31547749]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy