Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Acetogenin Extracted from Annona muricata Prevented the Actions of EGF in PA-1 Ovarian Cancer Cells

Author(s): Loganayaki Periyasamy, Bharathi Muruganantham, Malarvizhi Deivasigamani, Hariprasath Lakshmanan and Sridhar Muthusami*

Volume 28, Issue 3, 2021

Published on: 16 September, 2020

Page: [304 - 314] Pages: 11

DOI: 10.2174/0929866527666200916141730

Price: $65

Abstract

Background: In individuals with ovarian cancer, an increase in the circulating level of the epidermal growth factor (EGF) is readily apparent. Ovarian cancer cells exhibit signaling pathway of the epidermal growth factor (EGFR) and respond to the EGF. Annona muricata (AM) has been shown to decrease ovarian cell proliferation however, role of AM in regulating EGF actions is not yet to be reported.

Objective: In this study, we proposed that the fractionated compound acetogenin can inhibit the activation of EGFR-regulated signaling cascades such as MAPK7 / PI3K-Akt / mTOR / STAT upon EGF stimulation.

Methods: Ethanolic extract was prepared for the whole AM plant and Thin Layer Chromatography (TLC) was performed to characterize the secondary metabolites and each fraction was assessed using kedde reagent for the presence of acetogenin. The effects of acetogenins were then tested on the survival of PA-1 ovarian cancer cells under basal and EGF stimulated conditions. To delineate the role of acetogenin in EGFR signaling cascades, the in silico docking studies were conducted.

Results: The fraction of acetogenin decreased the viability of EGF induced PA-1 ovarian cancer cells that indicating the EGF inhibitory effects of acetogenin. The docking studies specifically illustrated that when the acetogenin binding with tyrosine kinase (TK) and regulatory unit (RU) which subsequently resulted in a reduction in EGF induced the survival of PA-1 ovarian cancer cells.

Discussion: The vital regulatory role of acetogenin reported in this study indicate significant anticancer activities of acetogenin from AM. The in silico study of the acetogenin function predicted that it binds specifically to Asp837 (phosphor-acceptor site) of EGFR, essential for phosphorylation of substrates in the TK domain and RU which promote downstream signaling.

Conclusion: Acetogenin isolated from AM effectively inhibited the survival of PA-1 ovarian cancer cells through impaired EGF signaling.

Keywords: Annona muricata, fractionation, acetogenin, EGF, EGFR, PA-1 cells, in silico.

Graphical Abstract
[1]
Rieser, M.J.; Gu, Z.M.; Fang, X.P.; Zeng, L.; Wood, K.V.; McLaughlin, J.L. Five novel mono-tetrahydrofuran ring acetogenins from the seeds of Annona muricata. J. Nat. Prod., 1996, 59(2), 100-108.
[http://dx.doi.org/10.1021/np960037q] [PMID: 8991944]
[2]
Liaw, C.C.; Chang, F.R.; Lin, C.Y.; Chou, C.J.; Chiu, H.F.; Wu, M.J.; Wu, Y.C. New cytotoxic monotetrahydrofuran annonaceous acetogenins from Annona muricata. J. Nat. Prod., 2002, 65(4), 470-475.
[http://dx.doi.org/10.1021/np0105578] [PMID: 11975482]
[3]
Chang, F.R.; Liaw, C.C.; Lin, C.Y.; Chou, C.J.; Chiu, H.F.; Wu, Y.C. New adjacent Bis-tetrahydrofuran Annonaceous acetogenins from Annona muricata. Planta Med., 2003, 69(3), 241-246.
[http://dx.doi.org/10.1055/s-2003-38485] [PMID: 12677528]
[4]
Abuharbeid, S.; Apel, J.; Sander, M.; Fiedler, B.; Langer, M.; Zuzarte, M.L.; Czubayko, F.; Aigner, A. Cytotoxicity of the novel anti-cancer drug rViscumin depends on HER-2 levels in SKOV-3 cells. Biochem. Biophys. Res. Commun., 2004, 321(2), 403-412.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.160] [PMID: 15358191]
[5]
Dai, Y.; Hogan, S.; Schmelz, E.M.; Ju, Y.H.; Canning, C.; Zhou, K. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression. Nutr. Cancer, 2011, 63(5), 795-801.
[http://dx.doi.org/10.1080/01635581.2011.563027] [PMID: 21767082]
[6]
Torres, M.P.; Rachagani, S.; Purohit, V.; Pandey, P.; Joshi, S.; Moore, E.D.; Johansson, S.L.; Singh, P.K.; Ganti, A.K.; Batra, S.K. Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett., 2012, 323(1), 29-40.
[http://dx.doi.org/10.1016/j.canlet.2012.03.031] [PMID: 22475682]
[7]
Do, M.T.; Hwang, Y.P.; Kim, H.G.; Na, M.; Jeong, H.G. Mollugin inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. J. Cell. Physiol., 2013, 228(5), 1087-1097.
[http://dx.doi.org/10.1002/jcp.24258] [PMID: 23065756]
[8]
Zorofchian Moghadamtousi, S; Karimian, H; Rouhollahi, E; Paydar, M; Fadaeinasab, M Annona muricata leaves induce G cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells J Ethnopharmacol, 2014, 156, 277-89.
[9]
Wang, Y.; Han, A.; Chen, E.; Singh, R.K.; Chichester, C.O.; Moore, R.G.; Singh, A.P.; Vorsa, N. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int. J. Oncol., 2015, 46(5), 1924-1934.
[http://dx.doi.org/10.3892/ijo.2015.2931] [PMID: 25776829]
[10]
Prabhakaran, K.; Ramasamy, G.; Doraisamy, U.; Mannu, J.; K, R.; Murugesan, J.R. Polyketide natural products, acetogenins from graviola (Annona muricata L), its biochemical, cytotoxic activity and various analyses through computational and bio-programming methods. Curr. Pharm. Des., 2016, 22(34), 5204-5210.
[http://dx.doi.org/10.2174/1381612822666160531163144] [PMID: 27262333]
[11]
Kaufmann, M.; Von Minckwitz, G.; Kühn, W.; Schmid, H.; Costa, S.; Goerttler, K.; Bastert, G. Combination of new biologic parameters as a prognostic index in epithelial ovarian carcinoma. Int. J. Gynecol. Cancer, 1995, 5(1), 49-55.
[http://dx.doi.org/10.1046/j.1525-1438.1995.05010049.x] [PMID: 11578453]
[12]
Xia, W.; Wei, Y.; Du, Y.; Liu, J.; Chang, B.; Yu, Y.L.; Huo, L.F.; Miller, S.; Hung, M.C. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol. Carcinog., 2009, 48(7), 610-617.
[http://dx.doi.org/10.1002/mc.20504] [PMID: 19058255]
[13]
Cinghu, S.; Anandharaj, A.; Lee, H.C.; Yu, J.R.; Park, W.Y. FTS (fused toes homolog) a novel oncoprotein involved in uterine cervical carcinogenesis and a potential diagnostic marker for cervical cancer. J. Cell. Physiol., 2011, 226(6), 1564-1572.
[http://dx.doi.org/10.1002/jcp.22486] [PMID: 20945372]
[14]
Muthusami, S.; Prabakaran, D.S.; Yu, J.R.; Park, W.Y. FTS is responsible for radiation-induced nuclear phosphorylation of EGFR and repair of DNA damage in cervical cancer cells. J. Cancer Res. Clin. Oncol., 2015, 141(2), 203-210.
[http://dx.doi.org/10.1007/s00432-014-1802-4] [PMID: 25151576]
[15]
Wei, L.Q.; Liang, H.T.; Qin, D.C.; Jin, H.F.; Zhao, Y.; She, M.C. MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF. Tumour Biol., 2014, 35(12), 12427-12434.
[http://dx.doi.org/10.1007/s13277-014-2560-2] [PMID: 25201063]
[16]
Izuchi, D.; Fukagawa, S.; Yotsumoto, F.; Shigekawa, K.; Yoshikawa, K.; Hirakawa, T.; Kiyoshima, C.; Ouk, N.S.; Urushiyama, D.; Katsuda, T.; Miyata, K.; Ito, T.; Kurakazu, M.; Araki, R.; Sanui, A.; Miyahara, D.; Murata, M.; Ito, H.; Shirota, K.; Kuroki, M.; Yasunaga, S.; Miyamoto, S. Association of Serum HB-EGF value and response to chemotherapy in patients with recurrent ovarian cancer. Anticancer Res., 2018, 38(7), 4347-4351.
[http://dx.doi.org/10.21873/anticanres.12735] [PMID: 29970572]
[17]
Miyata, K.; Yotsumoto, F.; Fukagawa, S.; Kiyoshima, C.; Ouk, N.S.; Urushiyama, D.; Ito, T.; Katsuda, T.; Kurakazu, M.; Araki, R.; Sanui, A.; Miyahara, D.; Murata, M.; Shirota, K.; Yagi, H.; Takono, T.; Kato, K.; Yaegashi, N.; Akazawa, K.; Kuroki, M.; Yasunaga, S.; Miyamoto, S. Serum Heparin-binding Epidermal growth factor-like growth factor (HB-EGF) as a biomarker for primary ovarian cancer. Anticancer Res., 2017, 37(7), 3955-3960.
[PMID: 28668900]
[18]
Cong, J.; Liu, R.; Hou, J.; Wang, X.; Jiang, H.; Wang, J. Effects of trastuzumab on the proliferation and apoptosis of ovarian cancer cells. Neoplasma, 2019, 66(2), 240-244.
[http://dx.doi.org/10.4149/neo_2018_180724N524] [PMID: 30509111]
[19]
Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a full periodictable force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 1992, 114, 10024-10035.
[http://dx.doi.org/10.1021/ja00051a040]
[20]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[21]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[22]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[23]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[24]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[25]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[26]
Ogawa, M.; Kojima, T.; Someya, M.; Nomura, K.; Takasawa, A.; Murata, M.; Tanaka, S.; Saito, T.; Sawada, N. Epidermal growth factor modulates claudins and tight junctional functions in ovarian cancer cell lines. Histochem. Cell Biol., 2012, 138(2), 323-338.
[http://dx.doi.org/10.1007/s00418-012-0956-x] [PMID: 22544349]
[27]
Jacobo-Herrera, N.; Pérez-Plasencia, C.; Castro-Torres, V.A.; Martínez-Vázquez, M.; González-Esquinca, A.R.; Zentella-Dehesa, A. Selective acetogenins and their potential as anticancer agents. Front. Pharmacol., 2019, 10, 783.
[http://dx.doi.org/10.3389/fphar.2019.00783] [PMID: 31379567]
[28]
Zeng, L.; Wu, F.E.; Oberlies, N.H.; McLaughlin, J.L.; Sastrodihadjo, S. Five new monotetrahydrofuran ring acetogenins from the leaves of Annona muricata. J. Nat. Prod., 1996, 59(11), 1035-1042.
[http://dx.doi.org/10.1021/np960447e] [PMID: 8946744]
[29]
Yuan, F.; Bai, G.; Chen, Y.; Miao, Y.; Chen, J.; Li, X. Structure-activity relationships of diverse ACGs against multidrug resistant human lung cancer cell line A549/Taxol. Bioorg. Med. Chem. Lett., 2015, 25(4), 787-790.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.088] [PMID: 25582602]
[30]
Mangal, M.; Khan, M.I.; Agarwal, S.M. Acetogenins as potential anticancer agents. Anticancer. Agents Med. Chem., 2015, 16(2), 138-159.
[http://dx.doi.org/10.2174/1871520615666150629101827] [PMID: 26118710]
[31]
Liu, G.; Ruan, G.; Huang, M.; Chen, L.; Sun, P. Genome-wide DNA copy number profiling and bioinformatics analysis of ovarian cancer reveals key genes and pathways associated with distinct invasive/migratory capabilities. Aging (Albany NY), 2020, 12(1), 178-192.
[http://dx.doi.org/10.18632/aging.102608] [PMID: 31895688]
[32]
Marquard, F.E.; Jücker, M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem. Pharmacol., 2020, 172, 113729.
[http://dx.doi.org/10.1016/j.bcp.2019.113729] [PMID: 31785230]
[33]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 52.
[PMID: 28513565]
[34]
Zanini, E.; Louis, L.S.; Antony, J.; Karali, E.; Okon, I.S.; McKie, A.B.; Vaughan, S.; El-Bahrawy, M.; Stebbing, J.; Recchi, C.; Gabra, H. The Tumor-suppressor protein OPCML potentiates Anti-EGFR- and Anti-HER2-targeted therapy in HER2-positive ovarian and breast cancer. Mol. Cancer Ther., 2017, 16(10), 2246-2256.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0081] [PMID: 28775148]
[35]
Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875.
[http://dx.doi.org/10.1517/17460441.2012.714363] [PMID: 22992175]
[36]
Lee, Y.; Choi, S.Q. Quantitative analysis for lipophilic drug transport through a model lipid membrane with membrane retention. Eur. J. Pharm. Sci., 2019, 134(15), 176-184.
[http://dx.doi.org/10.1016/j.ejps.2019.04.020] [PMID: 31022441]
[37]
Bennion, B.J.; Be, N.A.; McNerney, M.W.; Lao, V.; Carlson, E.M..; Valdez, C.A.; Malfatti, M.A.; Enright, H.A.; Nguyen, T.H.; Lightstone, F.C.; Carpenter, T.S. Predicting a drug's membrane permeability: a computational model validated with in vitro permeability assay data J. phy. chem., 2017.
[38]
Matsson, P.; Kihlberg, J. How Big Is Too Big for Cell Permeability? J. Med. Chem., 2017, 60(5), 1662-1664.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00237] [PMID: 28234469]
[39]
Whitty, A.; Zhong, M.; Viarengo, L.; Beglov, D.; Hall, D.R.; Vajda, S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov. Today, 2016, 21(5), 712-717.
[http://dx.doi.org/10.1016/j.drudis.2016.02.005] [PMID: 26891978]
[40]
Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model., 2009, 49(2), 444-460.
[http://dx.doi.org/10.1021/ci800293n] [PMID: 19434845]
[41]
García-Godoy, M.J.; López-Camacho, E.; García-Nieto, J.; Nebro, A.J.; Aldana-Montes, J.F. Molecular docking optimization in the context of multi-drug resistant and sensitive EGFR mutants. Molecules, 2016, 21(11), 1575.
[http://dx.doi.org/10.3390/molecules21111575] [PMID: 27869781]
[42]
Tavakoli, F.; Ganjalikhany, M.R. Structure-based inhibitory peptide design targeting peptide-substrate binding site in EGFR tyrosine kinase. PLoS One, 2019, 14(5), e0217031.
[http://dx.doi.org/10.1371/journal.pone.0217031] [PMID: 31116768]
[43]
Hasenahuer, M.A.; Barletta, G.P.; Fernandez-Alberti, S.; Parisi, G.; Fornasari, M.S. Pockets as structural descriptors of EGFR kinase conformations. PLoS One, 2017, 12(12), e0189147.
[http://dx.doi.org/10.1371/journal.pone.0189147] [PMID: 29228029]
[44]
Park, E.; Kim, N.; Ficarro, S.B.; Zhang, Y.; Lee, B.I.; Cho, A.; Kim, K.; Park, A.K.J.; Park, W.Y.; Murray, B.; Meyerson, M.; Beroukhim, R.; Marto, J.A.; Cho, J.; Eck, M.J. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat. Struct. Mol. Biol., 2015, 22(9), 703-711.
[http://dx.doi.org/10.1038/nsmb.3074] [PMID: 26280531]
[45]
Sarkar, A.; Kellogg, G.E. Hydrophobicity--shake flasks, protein folding and drug discovery. Curr. Top. Med. Chem., 2010, 10(1), 67-83.
[http://dx.doi.org/10.2174/156802610790232233] [PMID: 19929828]
[46]
Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 2010, 5(8), e12029.
[http://dx.doi.org/10.1371/journal.pone.0012029] [PMID: 20808434]
[47]
Chakroborty, D; Kurppa, KJ; Paatero, I; Ojala, VK; Koivu, M; Tamirat, MZ; Koivunen, JP; Jänne, PA; Johnson, MS; Elo, LL; Elenius, K An unbiased in vitro screen for activating epidermal growth factor receptor mutations J. Biol. Chem., 2019. [Epub ahead of Print]
[48]
Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; Shah, R.; Cobo, M.; Lee, K.H.; Cheema, P.; Tiseo, M.; John, T.; Lin, M.C.; Imamura, F.; Kurata, T.; Todd, A.; Hodge, R.; Saggese, M.; Rukazenkov, Y.; Soria, J.C. FLAURA Investigators. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med., 2020, 382(1), 41-50.
[http://dx.doi.org/10.1056/NEJMoa1913662] [PMID: 31751012]
[49]
Zou, B.; Lee, V.H.F.; Yan, H. Prediction of sensitivity to gefitinib/erlotinib for EGFR mutations in NSCLC based on structural interaction fingerprints and multilinear principal component analysis. BMC Bioinformatics, 2018, 19(1), 88.
[http://dx.doi.org/10.1186/s12859-018-2093-6] [PMID: 29514601]
[50]
Leighl, N.B.; Karaseva, N.; Nakagawa, K.; Cho, B.C.; Gray, J.E.; Hovey, T.; Walding, A.; Rydén, A.; Novello, S. Patient-reported outcomes from FLAURA: Osimertinib versus erlotinib or gefitinib in patients with EGFR-mutated advanced non-small-cell lung cancer. Eur. J. Cancer, 2020, 125, 49-57.
[http://dx.doi.org/10.1016/j.ejca.2019.11.006] [PMID: 31838405]
[51]
Yang, J.C.; Cheng, Y.; Murakami, H.; Yang, P.C.; He, J.; Nakagawa, K.; Kang, J.H.; Kim, J.H.; Hozak, R.R.; Nguyen, T.S.; Zhang, W.L.; Enatsu, S.; Puri, T.; Orlando, M. A Randomized phase 2 study of gefitinib with or without pemetrexed as first-line treatment in nonsquamous NSCLC with EGFR mutation: final overall survival and biomarker analysis. J. Thorac. Oncol., 2020, 15(1), 91-100.
[http://dx.doi.org/10.1016/j.jtho.2019.09.008] [PMID: 31605797]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy