Review Article

可生物降解的纳米颗粒:一种最新的方法和应用

卷 21, 期 16, 2020

页: [1722 - 1732] 页: 11

弟呕挨: 10.2174/1389450121666200916091659

价格: $65

摘要

可生物降解的纳米颗粒(NPs)是用于药物分子给药的新型载体。可生物降解的纳米颗粒由于其特殊功能(例如靶向药物递送,提高的生物利用度和更好的治疗效果,以恒定速率给药)最近变得流行。聚合物NP是非常小的聚合物胶体元素,其中感兴趣的药物可以被封装或掺入其聚合物网络中,或者被缀合或吸附在该层上。在纳米粒子的制造中使用了各种聚合物,一些常用的聚合物是试剂,壳聚糖,纤维素,明胶,麦醇溶蛋白,聚乳酸,聚乳酸-乙醇酸共聚物和支链淀粉。纳米颗粒已被逐步探索用于将靶向的ARV递送至感染HIV的细胞,并已进行了延长的动力学释放。嵌入该系统中的药物可以提供更好的效果,减少药物的耐药性,减少全身毒性和症状,还可以增强患者的依从性。本综述着重介绍了可生物降解的纳米颗粒,各种聚合物的常用制造方法及其在抗逆转录病毒疗法中的应用。此外,还介绍了用于检查纳米颗粒纯度的通用评估参数,正在进行的和最近结束的临床试验以及各种研究人员提供的专利,以及可生物降解NP在创新药物输送系统中的未来应用。可生物降解的NPs是用于管理包括抗逆转录病毒药物在内的多种药物的有前途的系统,因此可生物降解的纳米颗粒可在未来用于治疗多种疾病和病症。

关键词: 抗逆转录病毒疗法,可生物降解的纳米颗粒,临床研究,未来影响,制造方法,专利,使用的聚合物。

图形摘要
[1]
Brzoska M, Langer K, Coester C, Loitsch S, Wagner TOF, Mallinckrodt Cv. Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun 2004; 318(2): 562-70.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.067] [PMID: 15120637]
[2]
Bender AR, von Briesen H, Kreuter J, Duncan IB, Rübsamen-Waigmann H. Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother 1996; 40(6): 1467-71.
[http://dx.doi.org/10.1128/AAC.40.6.1467] [PMID: 8726020]
[3]
Rhaese S, von Briesen H, Rübsamen-Waigmann H, Kreuter J, Langer K. Human serum albumin-polyethylenimine nanoparticles for gene delivery. J Control Release 2003; 92(1-2): 199-208.
[http://dx.doi.org/10.1016/S0168-3659(03)00302-X] [PMID: 14499197]
[4]
Roy K, Mao H-Q, Huang S-K, Leong KW. Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999; 5(4): 387-91.
[http://dx.doi.org/10.1038/7385] [PMID: 10202926]
[5]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6(4): 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[6]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[7]
Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005; 293(1-2): 261-70.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010] [PMID: 15778064]
[8]
Raghuvanshi RS, Katare YK, Lalwani K, Ali MM, Singh O, Panda AK. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm 2002; 245(1-2): 109-21.
[http://dx.doi.org/10.1016/S0378-5173(02)00342-3] [PMID: 12270248]
[9]
Fassas A, Buffels R, Kaloyannidis P, Anagnostopoulos A. Safety of high-dose liposomal daunorubicin (daunoxome) for refractory or relapsed acute myeloblastic leukaemia. Br J Haematol 2003; 122(1): 161-3.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04395_3.x] [PMID: 12823360]
[10]
Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology 2011; 9(1): 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[11]
Labhasetwar V, Song C, Levy RJ. Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Rev 1997; 24(1): 63-85.
[http://dx.doi.org/10.1016/S0169-409X(96)00483-8]
[12]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[13]
Zhang J, Saltzman M. Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog 2013; 109(3): 25-30.
[PMID: 25374435]
[14]
Mamo T, Moseman EA, Kolishetti N, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5(2): 269-85.
[http://dx.doi.org/10.2217/nnm.10.1] [PMID: 20148638]
[15]
Furin JJ, Behforouz HL, Shin SS, et al. Expanding global HIV treatment: case studies from the field. Ann N Y Acad Sci 2008; 1136(1): 12-20.
[http://dx.doi.org/10.1196/annals.1425.004] [PMID: 17954668]
[16]
Cunha-Reis C, Machado A, Barreiros L, et al. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J Control Release 2016; 243(243): 43-53.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.020] [PMID: 27664327]
[17]
Song CX, Labhasetwar V, Murphy H, et al. Formulation and Characterization of Biodegradable Nanoparticles for Intravascular Local Drug Delivery. J Control Release 1997; 43(2): 197-212.
[http://dx.doi.org/10.1016/S0168-3659(96)01484-8]
[18]
Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 2005; 108(1): 84-96.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.013] [PMID: 16154222]
[19]
Lamprecht A, Ubrich N, Yamamoto H, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2001; 299(2): 775-81.
[PMID: 11602694]
[20]
Brannon-Peppas L. Recent Advances on the Use of Biodegradable Microparticles and Nanoparticles in Controlled Drug Delivery. Int J Pharm 1995; 116(1): 1-9.
[http://dx.doi.org/10.1016/0378-5173(94)00324-X]
[21]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[22]
Marto J, Gouveia LF, Gonçalves LM, et al. A Quality by design (QbD) approach on starch-based nanocapsules: A promising platform for topical drug delivery. Colloids Surf B Biointerfaces 2016; 143: 177-85.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.039] [PMID: 27003468]
[23]
Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 2006; 97(6): 1184-90.
[http://dx.doi.org/10.1002/jcb.20796] [PMID: 16440317]
[24]
Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol 2015; 43(2): 71-86.
[http://dx.doi.org/10.3109/21691401.2014.883400] [PMID: 24564348]
[25]
Amiji MM, Vyas TK, Shah LK. Role of nanotechnology in HIV/AIDS treatment: potential to overcome the viral reservoir challenge. Discov Med 2006; 6(34): 157-62.
[PMID: 17234137]
[26]
Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res 2006; 23(11): 2638-45.
[http://dx.doi.org/10.1007/s11095-006-9101-7] [PMID: 16969696]
[27]
Chakravarthi SS, Robinson DH. Biodegradable nanoparticles. Pharmaceutical sciences encyclopedia American Cancer Society. 2010; pp. pp. 1-30.
[http://dx.doi.org/10.1002/9780470571224.pse353]
[28]
Sánchez-Machado DI, López-Cervantes J, López-Hernández J, Paseiro-Losada P, Simal-Lozano J. Determination of the uronic acid composition of seaweed dietary fibre by HPLC. Biomed Chromatogr 2004; 18(2): 90-7.
[http://dx.doi.org/10.1002/bmc.297] [PMID: 15039960]
[29]
Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci 1993; 82(9): 912-7.
[http://dx.doi.org/10.1002/jps.2600820909] [PMID: 8229689]
[30]
Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005; 109(1-3): 256-74.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.023] [PMID: 16266768]
[31]
Ikada Y, Tabata Y. Protein release from gelatin matrices. Adv Drug Deliv Rev 1998; 31(3): 287-301.
[http://dx.doi.org/10.1016/S0169-409X(97)00125-7] [PMID: 10837630]
[32]
Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects--an update. J Pharm Pharmacol 2001; 53(8): 1047-67.
[http://dx.doi.org/10.1211/0022357011776441] [PMID: 11518015]
[33]
Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology 2005; 41(6): 1211-9.
[http://dx.doi.org/10.1002/hep.20720] [PMID: 15915465]
[34]
Lin W, Garnett MC, Davis SS, Schacht E, Ferruti P, Illum L. Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. J Control Release 2001; 71(1): 117-26.
[http://dx.doi.org/10.1016/S0168-3659(01)00209-7] [PMID: 11245913]
[35]
Garg A, Visht S. Sharma; P. & Kumar; N. Formulation, Characterization and Application on Nanoparticle: A Review. Pharm Sin 2011; 2(2): 17-26.
[36]
Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release 1993; 25(1-2): 89-98.
[http://dx.doi.org/10.1016/0168-3659(93)90097-O]
[37]
Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An Overview of Preparation and Characterization. J Appl Pharm Sci 2011; 1(6): 228-34.
[38]
Graves RA, Ledet GA, Glotser EY, Mitchner DM, Bostanian LA, Mandal TK. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide. Eur J Pharm Sci 2015; 76: 1-9.
[http://dx.doi.org/10.1016/j.ejps.2015.04.024] [PMID: 25933716]
[39]
Kokate A, Li X, Jasti B. Transport of a novel anti-cancer agent, fenretinide across Caco-2 monolayers. Invest New Drugs 2007; 25(3): 197-203.
[http://dx.doi.org/10.1007/s10637-006-9026-3] [PMID: 17146731]
[40]
Buckley ST, Fischer SM, Fricker G, Brandl M. In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives European Journal of Pharmaceutical Sciences 2012; 45(3): 235-50.
[41]
Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2006; 5(1): 561-73.
[42]
Kumar; V. D., Verma, P. R. P., & Singh, S. K. Development and Evaluation of Biodegradable Polymeric Nanoparticles for the Effective Delivery of Quercetin Using a Quality by Design Approach - LWT-. Food Sci Technol (Campinas) 2015; 61(2): 330-8.
[43]
Muthu MS, Rawat MK, Mishra A, Singh S. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine (Lond) 2009; 5(3): 323-33.
[http://dx.doi.org/10.1016/j.nano.2008.12.003] [PMID: 19523427]
[44]
Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 2002; 19(2): 99-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10] [PMID: 12197610]
[55]
Gültekin HE. DEĞİM, Z. Biodegradable Polymeric Nanoparticles Are Effective Systems for Controlled Drug Delivery. FABAD J Pharm Sci 2013; 38(2): 107-18.
[56]
Nobs L, Buchegger F, Gurny R, Allémann E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 2006; 17(1): 139-45.
[http://dx.doi.org/10.1021/bc050137k] [PMID: 16417262]
[57]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[58]
Damge C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP. Nanocapsules as Carriers for Oral Peptide Delivery. J Control Release 1990; 13(2–3): 233-9.
[http://dx.doi.org/10.1016/0168-3659(90)90013-J]
[59]
Ramtoola Z. Controlled release biodegradable nanoparticles containing insulin U.S. Patent 5,641,515, 1997.
[60]
Grandfils C, Jerome R, Nihant N, Teyssie P. Biocompatible and biodegradable nanoparticles designed for proteinaceous drugs absorption and delivery U.S. Patent 5, 962, 566, 1999.
[61]
Erathodiyil N, Reddy G, Ham Y. Biodegradable nanoparticles U.S. 11/176,595, 2007.
[62]
Popescu C, Onyuksel H. Biodegradable nanoparticles incorporating highly hydrophilic positively charged drugs U.S Patent 10/832,136, 2004.
[63]
Popescu C, Onyuksel H. Biodegradable nanoparticles incorporating highly hydrophilic positively charged drugs U.S Patent 12/059,483, 2008.
[64]
Youngs WJ, Hindi K, Medvetz D. Metal complexes incorporated within biodegradable nanoparticles and their use U.S. Patent 8,282,944, 2012.
[65]
Gref R, Minamitake Y, Langer RS. Biodegradable injectable nanoparticles U.S. Patent 5,543,158, 1996.
[66]
Ghoroghchian P, Ostertag E. Biodegradable Nanoparticles as Novel Hemoglobin-Based Oxygen Carriers and Methods of Using the Same U.S. Patent 8808748B2, 2014.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy