Generic placeholder image

Current Catalysis


ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Urea-SCR System Development in the Mitigation of NOx Emissions from Diesel Engines – A Review Study

Author(s): Mina Mehregan*

Volume 9 , Issue 2 , 2020

Page: [102 - 110] Pages: 9

DOI: 10.2174/2211544709999200915151156

Price: $65


Introduction: Due to energy demand concerns, diesel engines have gained much attraction recently compared to petrol engines because of their higher thermal efficiencies. However, they emit a larger amount of NOx emissions into the atmosphere.

Objective: Nitrogen oxides are known as important ambient air pollutants that are responsible for health problems, forest damage, and buildings corrosion. Therefore, using emissions control strategies for diesel engines is required in order to have a cleaner environment. Urea-SCR (selective catalytic reduction of NOx by urea) after-treatment system is considered as one of the most efficient techniques available to reduce engine-out NOx emissions sufficiently.

Conclusion: This review article discusses all the methods suggested to diminish nitrogen oxides emissions and then presents a comprehensive survey on developing urea-SCR unit -whether from catalyst development aspect or from injection system modification point of view- in diesel engines to meet strict emissions regulations.

Keywords: NOx abatement, selective catalytic reduction, diesel engines, urea, environmental catalyst, clean air.

Graphical Abstract
Hsieh, M.F.; Wang, J. Development and experimental studies of a control-oriented SCR model for a two-catalyst urea-SCR system. Control Eng. Pract., 2011, 19, 409-422.
Hirata, K.; Masaki, N.; Yano, M.; Akagawa, H.; Takada, K.; Kusaka, J.; Mori, T. Development of an improved urea-selective catalytic reduction–diesel particulate filter system for heavy-duty commercial vehicles. Int. J. Engine Res., 2009, 10, 337-348.
Havenith, C.; Verbeek, R. Transient Performance of a Urea DeNOx Catalyst for Low Emissions Heavy-duty Diesel Engines SAE Technical Paper 970185, 1997.
Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Masum, B.M.; Rizwanul Fattah, I.M.; Mofijur, M. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev., 2013, 23, 473-490.
Mehregan, M.; Moghiman, M. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines. Environ. Sci. Pollut. Res. Int., 2018, 25(5), 4303-4308.
[] [PMID: 29181750]
Koebel, M.; Elsener, M.; Kleemann, M. Urea-SCR- a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today, 2000, 59, 335-345.
Gabrielsson, P.L.T. Urea-SCR in Automotive Applications. Top. Catal., 2004, 28, 177-184.
Sasaki, S.; Sarlashkar, J.; Neely, G.; Wang, J.; Lu, Q.; Sono, H. Investigation of alternative combustion, airflow dominant control and aftertreatment systems for clean diesel vehicles. SAE Transactions-J. Fuels Lubr., 2008, 116, 486-495.
Glassman, I. Combustion. 3rd ed; Academic Press: Cambridge; , 1997.
Weidmann, M.; Verbaere, V.; Boutin, G.; Honoré, D.; Grathwohl, S.; Goddard, G.; Gobin, C.; Dieter, H.; Kneer, R.; Scheffknecht, G. Detailed investigation of flameless oxidation of pulverized coal at pilot-scale (230 kWth). Appl. Therm. Eng., 2015, 74, 96-101.
Zeldovich, J. The oxidation of nitrogen in combustion and explosions. Acta Physiochim. URSS, 1946, 21, 577-628.
Lavoie, G.A.; Heywood, J.B.; Keck, J.C. Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust. Sci. Technol., 1970, 1, 313-338.
Hoekman, S.K.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol., 2012, 96, 237-249.
Knight, G. Selective Catalytic Reduction Technology for the Control of Nitrogen Oxide Emissions from Coal-Fired Boilers; DIANE Publishing; , 2008.
Shyam Prasad, H.; Gonsalvis, J.; Vijay, V.S. Effect of introduction of water into combustion chamber of diesel engines – A review. Energy Power, 2015, 5(1A), 28-33.
Tauzia, X.; Maiboom, A.; Shah, S.R. Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection diesel engine. Energy, 2010, 35, 3628-3639.
Tesfa, B.; Mishra, R.; Gu, F.; Ball, A.D. Water injection effects on the performance and emission characteristics of a CI engine operating with biodiesel. Renew. Energy, 2012, 37, 333-344.
Badran, O.; Emeish, S.; Abu-Zaid, M.; Abu-Rahma, T.; Al-Hasan, M.; Al-Ragheb, M. Impact of emulsified water/diesel mixture on engine performance and environment. Int. J. Therm. Environ. Eng., 2011, 3, 1-7.
Canfield, C.A. Effects of diesel-water emulsion combustion on diesel engine NOx emissions., 1999.
Vellaiyan, S.; Amirthagadeswaran, K.S. The role of water-in-diesel emulsion and its additives on diesel engine performance and emission levels: A retrospective review. Alexandria Eng. J., 2016, 55, 2463-2472.
Tillman, D.A. Coal-fired electricity and emissions control, 1st ed; Elsevier, 2018.
Agarwal, D.; Singh, S.K.; Agarwal, A.K. Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine. Appl. Energy, 2011, 88, 2900-2907.
Colorado, A.F.; Herrera, B.A.; Amell, A.A. Performance of a flameless combustion furnace using biogas and natural gas. Bioresour. Technol., 2010, 101(7), 2443-2449.
[] [PMID: 19944602]
Mehregan, M.; Moghiman, M. A numerical investigation of preheated diluted oxidizer influence on NOx emission of biogas flameless combustion using Taguchi approach. Fuel, 2018, 227, 1-5.
Xing, F.; Kumar, A.; Huang, Y.; Chan, Sh.; Ruan, C.; Gu, S.; Fan, X. Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application. Appl. Energy, 2017, 193, 28-51.
Yamagishi, K.; Nozawa, M.; Yoshie, T.; Tokumoto, T.; Kakegawa, Y. A study of NOx emission characteristics in two stage combustion. In: Symposium (International) on Combustion; , 1975; 15, pp. (1)1157-1166.
Wang, J.; Fan, W.; Li, Y.; Xiao, M.; Wang, K.; Ren, P. The effect of air staged combustion on NOx emissions in dried lignite combustion. Energy, 2012, 37, 725-736.
Kang, M.S.; Jeong, H.J.; Massoudi Farid, M.; Hwang, J. Effect of staged combustion on low NOx emission from an industrial-scale fuel oil combustor in South Korea. Fuel, 2017, 210, 282-289.
Nath, B.; Cholakov, G.S. Pollution Control Technologies. 1st ed; Eolss Publications: Singapore; , 2009. Vol. II.
Bari, S.; Yu, C.; Lim, T. Effect of fuel injection timing with waste cooking oil as a fuel in a direct injection diesel engine. Proc. Instn. Mech. Engrs. Part D: J. Automobile Engineering, 2004, 218, 93-104.
Needham, J.R.; May, M.P.; Doyle, D.M.; Faulkner, S.A.; Ishiwata, H. Injection Timing and Rate Control - A Solution for Low Emissions SAE Technical, 1990, 99, 1780-1790.
Sharma, S.K.; Das, R.K.; Sharma, A. Improvement in the performance and emission characteristics of diesel engine fueled with jatropha methyl ester and tyre pyrolysis oil by addition of nano additives. J. Braz. Soc. Mech. Sci. Eng., 2016, 38, 1907-1920.
Mehregan, M.; Moghiman, M. Effect of aluminum nanoparticles on combustion characteristics and pollutants emission of liquid fuels-a numerical study. Fuel, 2014, 119, 57-61.
Jha, S.; Fernando, S.; Columbus, E.; Willcutt, H. A comparative study of exhaust emissions using diesel–biodiesel–ethanol blends in new and used engines. Trans. ASABE, 2009, 52, 375-381.
Varatharajan, K.; Cheralathan, M. Effect of aromatic amine antioxidants on NOx emissions from a soybean biodiesel powered DI diesel engine. Fuel Process. Technol., 2013, 106, 526-532.
Zhu, Z.; Guo, H.; Zhou, A.; Li, D.; Liu, S.; Feng, Y. One way to reduce the NOx Emission of biodiesels: The increase of cetane number. Int. J. Green Energy, 2012, 13, 957-962.
Cohn, J.G.E.; Steele, D.R.; Andersen, H.C. Method of selectively removing oxides of nitrogen from oxygen-containing gases. US Patent 2,975,025, 1961.
Kašpar, J.; Fornasiero, P.; Hickey, N. Automotive Catalytic Converters: Current Status and Some Perspectives. Catal. Today, 2003, 77, 419-449.
Kleemann, M.; Elsener, M.; Koebel, M.; Wokaun, A. Hydrolysis of Isocyanic Acid on SCR Catalysts. Ind. Eng. Chem. Res., 2000, 39, 4120-4126.
Larrubia, M.A.; Ramis, G.; Busca, G. An FT-IR study of the adsorption of urea and ammonia overV2O5–MoO3–TiO2 SCR catalysts. Appl. Catal. B, 2000, 27, L145-L151.
Koebel, M.; Elsener, M.; Kröcher, O.; Schär, Ch.; Röthlisberger, R.; Jaussi, F.; Mangold, M. NOx reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR. Top. Catal., 2004, 30/31, 43-48.
Yim, S.D.; Kim, S.J.; Baik, J.H.; Nam, I.S.; Mok, Y.S.; Lee, J.H.; Cho, B.K.; Oh, S.H. Decomposition of Urea into NH3 for the SCR Process. Ind. Eng. Chem. Res., 2004, 43, 4856-4863.
Shimizu, K.; Satsuma, A. Hydrogen assisted urea-SCR and NH3-SCR with silver–alumina as highly active and SO2-tolerant De-NOx catalysis. Appl. Catal. B, 2007, 77, 202-205.
Mehregan, M.; Moghiman, M. Effects of nano-additives on pollutants emission and engine performance in a urea-SCR equipped diesel engine fueled with blended-biodiesel. Fuel, 2018, 222, 402-406.
Locci, C.; Vervisch, L.; Farcy, B.; Domingo, P.; Perret, N. Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling. Flow Turbul. Combus., 2018, 100, 301-340.
Fernando, S.; Hall, C.; Jha, S. NOx reduction from biodiesel fuels. Energy Fuels, 2006, 20, 376-382.
Piumetti, M.; Bensaid, S.; Fino, D.; Russo, N. Catalysis in Diesel engine NOx aftertreatment: a review. Catal. Struct. React., 2015, 1, 155-173.
Yang, T.; Bi, X. NOx reduction in a fluidized bed reactor with Fe/ZSM-5 catalyst and propylene as reductant Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, ChinaMay 18-21, 2009
Jabłońska, M.; Palkovits, R. It is no laughing matter: nitrous oxide formation in diesel engines and advances in its abatement over rhodium-based catalysts. Catal. Sci. Technol., 2016, 6, 7671-7687.
Peter Brett Associates and MIRA Ltd. Study on emission control technology for heavy-duty vehicles, 2002, 1-103.
Gill, L.J.; Blakeman, P.G.; Twigg, M.V.; Walker, A.P. The Use of NOx Adsorber Catalysts on Diesel Engines. Top. Catal., 2004, 28, 157-164.
Seto, T.; Yokoyama, S. Removal of Nitrogen Oxides from Waste Gas Jpn. Kokai Tokkyo Koho JP 63,190,623, 1987.
König, A.; Held, W.; Richter, T. Puppe. L. Catalytic Reduction of Nitrogen Oxides for Diesel Engines. VDI-Report, 1988, 714, 309-325.
Held, W.; König, A.; Richter, T.; Puppe, L. Catalytic NOx Reduction in Net Oxidizing Exhaust Gas SAE Technical Paper 900496, 1990.
Hultermans, R.J. PhD Thesis, A Selective Catalytic Reduction of NOx from Diesel Engines Using Injection of Urea, September 1995.
Koebel, M.; Elsener, M.; Marti, T. NOx-Reduction in Diesel Exhaust Gas with Urea and Selective Catalytic Reduction. Combust. Sci. Technol., 1996, 121, 85-102.
Morimune, T.; Yamaguchi, H.; Yasukawa, Y. Study of catalytic reduction of NOx in exhaust gas from a diesel engine. Exp. Therm. Fluid Sci., 1998, 18, 220-230.
Calabrese, J.L.; Patchett, J.A.; Grimston, K.; Rice, G.W.; Davis, G.W. The Influence of Injector Operating Conditions on the Performance of a Urea – Water Selective Catalytic Reduction (SCR) System SAE Technical Paper 2000-01-2814, 2000.
Saito, Sh.; Shinozaki, R.; Suzuki, A.; Jyoutaki, H.; Takeda, Y. Development of Urea-SCR System for Commercial Vehicle - Basic Characteristics and Improvement of NOx Conversion at Low Load Operation SAE Technical Paper 2003-01-3248, 2003.
Baik, J.H.; Yim, S.D.; Nam, I.S.; Mok, Y.S.; Lee, J.H.; Cho, B.K.; Oh, S.H. Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea. Top. Catal., 2004, 30, 37-41.
Kröcher, O. Chapter 9 Aspects of catalyst development for mobile urea-SCR systems — From Vanadia-Titania catalysts to metal-exchanged zeolites. Stud. Surf. Sci. Catal., 2007, 171, 261-289.
Shah, A.N.; Ge, Y-Sh.; Jiang, L.; Liu, Zh-H. Performance evaluation of a urea-water selective catalytic reduction (SCR) for controlling the exhaust emissions from a diesel engine. Turkish J. Eng. Env. Sci., 2009, 33, 259-271.
The model based control strategy for an advanced UREA-SCR system. Proc. FISITA World Automot. Cong., Beijing, China, 2012.
Sato, S.; Sato, Sh.; Hosoya, M. Improvement of Low-Temperature Performance of The NOx Reduction Efficiency on the Urea-SCR Catalysts SAE Technical Paper 2013-01-1076, 2013.
Ghosh, S.; Chaudhuri, S.N.; Dutta, D. NOx Reduction by Using Urea Injection and Marine Ferromanganese Nodule as Scr of a Diesel Engine Fulled With Soybean Oil Methyl Ester (Some). IOSR J. Eng., 2013, 3, 33-39.
Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Saravanan, C.G.; Lee, P.S.; Chua, K.J.E.; Chou, S.K. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter. Atmos. Environ., 2013, 80, 190-197.
Jansson, J. Vanadia-Based Catalysts for Mobile SCR.Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts; Nova, I.; Tronconi, E. Eds.; Springer: New York; , 2014, pp. 65-96.
Pietikäinen, M.; Väliheikki, A.; Oravisjärvi, K.; Kolli, T.; Huuhtanen, M.; Niemi, S.; Virtanen, S.; Karhu, T.; Keiski, R.L. Particle and NOx emissions of a non-road diesel engine with an SCR unit: The effect of fuel. Renew. Energy, 2015, 77, 377-385.
Guo, J.; Ge, Y.; Hao, L.; Tan, J.; Li, J.; Feng, X. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems. Atmos. Environ., 2014, 99, 1-9.
Bashirnezhad, K.; Mehregan, M.; Kebriyaee, S.A. Experimental analysis of the influence of urea injection upon NOx emissions in internal combustion engines fueled with biodiesels. J. Energy Inst., 2016, 89, 115-120.
Han, J.; Kim, T.; Jung, H.; Pyo, S.; Cho, G.; Oh, Y.; Kim, H. Improvement of NOx Reduction Rate of Urea SCR System Applied for an Non-Road Diesel Engine. Int. J. Automot. Technol., 2019, 20(6), 1153-1160.
Mehregan, M.; Moghiman, M. Experimental investigation of the distinct effects of nanoparticles addition and urea-SCR after-treatment system on NOx emissions in a blended-biodiesel fueled internal combustion engine. Fuel, 2020, 262, 116609.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy