Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Application of Bimetallic and Trimetallic Nanoparticles Supported on Graphene as novel Heterogeneous Catalysts in the Reduction of Nitroarenes, Homo-coupling, Suzuki-Miyaura and Sonogashira Reactions

Author(s): Seyede Mahdiye Hoseini Chopani, Shima Asadi and Majid M. Heravi*

Volume 24, Issue 19, 2020

Page: [2216 - 2234] Pages: 19

DOI: 10.2174/1385272824999200914111559

Price: $65

Abstract

In the last decade, the use of heterogeneous catalysts based on Metal Nanoparticles (MNPs) has attracted increasing attention due to their prominence as nanocatalysts in several key chemical transformations. Notably, it is well identified that supporting Metal Nanoparticles (MNPs) with suitable solid surfaces can protect the MNPs from leaching, deactivation, and also increasing its ease of separation and possible reusability. Graphene oxide (GO) as a conductive surface could have non-covalent bonding interactions like hydrogen bonding, electrostatic and π –π* stacking interactions with substrate leading to activation of the substrate. Remarkably, it is recognized that bimetallic nanoparticles supported on graphene oxide often show novel properties that are not present on either of the parent metal or surfaces. In this review, we tried to reveal the potential advantages of bimetallic and trimetallic nanoparticles supported on graphene oxide in organic transformations, including the reduction of nitroarenes, Suzuki-Miyaura and Sonogashira coupling reactions.

Keywords: Heterogeneous catalyst, graphene oxide (GO), metal nanoparticles (MNPs), reduction of nitroarene, C-C bond formation, Suzuki- Miyaura reaction, sonogashira reaction.

Graphical Abstract
[1]
Hochella, M.F. There’s plenty of room at the bottom: nanoscience in geochemistry. Geochim. Cosmochim. Acta, 2002, 66(5), 735-743.
[http://dx.doi.org/10.1016/S0016-7037(01)00868-7]
[2]
Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 2012, 41(24), 8099-8139.
[http://dx.doi.org/10.1039/c2cs35296f] [PMID: 23093051]
[3]
Somorjai, G.A.; Tao, F.; Park, J.Y. The nanoscience revolution: merging of colloid science, catalysis and nanoelectronics. Top. Catal., 2008, 47(1), 1-14.
[http://dx.doi.org/10.1007/s11244-007-9028-1]
[4]
Narayanan, R.; El-Sayed, M.A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc., 2003, 125(27), 8340-8347.
[http://dx.doi.org/10.1021/ja035044x] [PMID: 12837106]
[5]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[6]
Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2008, 47(19), 3524-3535.
[http://dx.doi.org/10.1002/anie.200800480] [PMID: 18357601]
[7]
Sinfelt, J.H.; Carter, J.L.; Yates, D.J.C. Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys. J. Catal., 1972, 24(2), 283-296.
[http://dx.doi.org/10.1016/0021-9517(72)90072-3]
[8]
Sinfelt, J.H. Supported “bimetallic cluster” catalysts. J. Catal., 1973, 29(2), 308-315.
[http://dx.doi.org/10.1016/0021-9517(73)90234-0]
[9]
Peng, L.; Ringe, E.; Van Duyne, R.P.; Marks, L.D. Segregation in bimetallic nanoparticles. Phys. Chem. Chem. Phys., 2015, 17(42), 27940-27951.
[http://dx.doi.org/10.1039/C5CP01492A] [PMID: 25971411]
[10]
Wang, D.; Li, Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater., 2011, 23(9), 1044-1060.
[http://dx.doi.org/10.1002/adma.201003695] [PMID: 21218429]
[11]
Singh, A.K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem, 2013, 5(3), 652-676.
[http://dx.doi.org/10.1002/cctc.201200591]
[12]
Yang, L.; Su, J.; Meng, X.; Luo, W.; Cheng, G. In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(34), 10016-10023.
[http://dx.doi.org/10.1039/c3ta11835e]
[13]
Tao, F.F. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev., 2012, 41(24), 7977-7979.
[http://dx.doi.org/10.1039/c2cs90093a] [PMID: 23143202]
[14]
Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev., 2008, 108(3), 845-910.
[http://dx.doi.org/10.1021/cr040090g] [PMID: 18335972]
[15]
Yang, Z.; Yang, X.; Xu, Z.; Liu, S. Structural evolution of Pt-Au nanoalloys during heating process: comparison of random and core-shell orderings. Phys. Chem. Chem. Phys., 2009, 11(29), 6249-6255.
[http://dx.doi.org/10.1039/b821328c] [PMID: 19606336]
[16]
Gao, W.; Hood, Z.D.; Chi, M. Interfaces in heterogeneous catalysts: advancing mechanistic understanding through atomic-scale measurements. Acc. Chem. Res., 2017, 50(4), 787-795.
[http://dx.doi.org/10.1021/acs.accounts.6b00596] [PMID: 28207240]
[17]
Ahmadi, M.; Mistry, H.; Roldan Cuenya, B. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett., 2016, 7(17), 3519-3533.
[http://dx.doi.org/10.1021/acs.jpclett.6b01198] [PMID: 27530730]
[18]
An, K.; Somorjai, G.A.; Nanocatalysis, I. Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett., 2015, 145(1), 233-248.
[http://dx.doi.org/10.1007/s10562-014-1399-x]
[19]
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord. Chem. Rev., 2016, 312, 99-148.
[http://dx.doi.org/10.1016/j.ccr.2015.12.005]
[20]
Rajesh, R.; Sujanthi, E.; Senthil Kumar, S.; Venkatesan, R. Designing versatile heterogeneous catalysts based on Ag and Au nanoparticles decorated on chitosan functionalized graphene oxide. Phys. Chem. Chem. Phys., 2015, 17(17), 11329-11340.
[http://dx.doi.org/10.1039/C5CP00682A] [PMID: 25845989]
[21]
Gupta, V.K.; Atar, N.; Yola, M.L.; Üstündağ, Z.; Uzun, L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res., 2014, 48, 210-217.
[http://dx.doi.org/10.1016/j.watres.2013.09.027] [PMID: 24112627]
[22]
Shahid, M.M.; Rameshkumar, P.; Basirun, W.J.; Juan, J.C.; Huang, N.M. Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochim. Acta, 2017, 237, 61-68.
[http://dx.doi.org/10.1016/j.electacta.2017.03.088]
[23]
Gogotsi, Y. Chemical vapour deposition: transition metal carbides go 2D. Nat. Mater., 2015, 14(11), 1079-1080.
[http://dx.doi.org/10.1038/nmat4386] [PMID: 26280227]
[24]
Zhang, J.; Yao, T.; Guan, C.; Zhang, N.; Huang, X.; Cui, T.; Wu, J.; Zhang, X. One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity. J. Colloid Interface Sci., 2017, 491, 72-79.
[http://dx.doi.org/10.1016/j.jcis.2016.12.019] [PMID: 28012915]
[25]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[26]
McAllister, M.J.; Li, J-L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; Aksay, I.A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater., 2007, 19(18), 4396-4404.
[http://dx.doi.org/10.1021/cm0630800]
[27]
Sadjadi, S.; Heravi, M.M. Current advances in the utility of functionalized SBA mesoporous silica for developing encapsulated nanocatalysts: state of the art. RSC Advances, 2017, 7(49), 30815-30838.
[http://dx.doi.org/10.1039/C7RA04833E]
[28]
Heravi, M.M.; Zadsirjan, V.; Dehghani, M.; Hosseintash, N. Current applications of organocatalysts in asymmetric aldol reactions: an update. Tetrahedron Asymmetry, 2017, 28(5), 587-707.
[http://dx.doi.org/10.1016/j.tetasy.2017.04.006]
[29]
Sadjadi, S.; Hosseinnejad, T.; Malmir, M.; Heravi, M.M. Cu@furfural imine-decorated halloysite as an efficient heterogeneous catalyst for promoting ultrasonic-assisted A3 and KA2 coupling reactions: a combination of experimental and computational study. New J. Chem., 2017, 41(22), 13935-13951.
[http://dx.doi.org/10.1039/C7NJ02272G]
[30]
Sadjadi, S.; Heravi, M.M.; Daraie, M. Heteropolyacid supported on amine-functionalized halloysite nano clay as an efficient catalyst for the synthesis of pyrazolopyranopyrimidines via four-component domino reaction. Res. Chem. Intermed., 2017, 43(4), 2201-2214.
[http://dx.doi.org/10.1007/s11164-016-2756-8]
[31]
Asadi, S.; Sedghi, R.; Heravi, M.M. Pd nanoparticles immobilized on supported magnetic GO@PAMPS as an auspicious catalyst for Suzuki–Miyaura coupling reaction. Catal. Lett., 2017, 147(8), 2045-2056.
[http://dx.doi.org/10.1007/s10562-017-2089-2]
[32]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Pd(0) nanoparticle immobilized on cyclodextrin-nanosponge-decorated Fe2O3@SiO2 core-shell hollow sphere: an efficient catalyst for CC coupling reactions. J. Taiwan. Inst. Chem. Eng, 2018, 86, 240-251.
[http://dx.doi.org/10.1016/j.jtice.2018.02.033]
[33]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Pd@HNTs-CDNS-g-C3N4: a novel heterogeneous catalyst for promoting ligand and copper-free Sonogashira and Heck coupling reactions, benefits from halloysite and cyclodextrin chemistry and g-C3N4 contribution to suppress Pd leaching. Carbohydr. Polym., 2018, 186, 25-34.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.023] [PMID: 29455985]
[34]
Malmir, M.; Heravi, M.M.; Sadjadi, S.; Hosseinnejad, T. Ultrasonic and bio-assisted synthesis of Ag@HNTs-T as a novel heterogeneous catalyst for the green synthesis of propargylamines: A combination of experimental and computational study. Appl. Organomet. Chem., 2018, 32(4)e4291
[http://dx.doi.org/10.1002/aoc.4291]
[35]
Sadjadi, S.; Heravi, M.M.; Malmir, M.; Masoumi, B. HPA decorated Halloysite nanoclay: an efficient catalyst for the green synthesis of spirooxindole derivatives. Appl. Organomet. Chem., 2018, 32(3)e4113
[http://dx.doi.org/10.1002/aoc.4113]
[36]
Sadjadi, S.; Heravi, M.M.; Zadsirjan, V.; Farzaneh, V. SBA-15/hydrotalcite nanocomposite as an efficient support for the immobilization of heteropolyacid: a triply-hybrid catalyst for the synthesis of 2-amino-4H-pyrans in water. Appl. Surf. Sci., 2017, 426, 881-889.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.182]
[37]
Sadjadi, S.; Heravi, M.M. Pd(0) encapsulated nanocatalysts as superior catalytic systems for Pd-catalyzed organic transformations. RSC Advances, 2016, 6(91), 88588-88624.
[http://dx.doi.org/10.1039/C6RA18049C]
[38]
Díaz, M.P.; Boyd, K.G.; Grigson, S.J.; Burgess, J.G. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol. Bioeng., 2002, 79(2), 145-153.
[http://dx.doi.org/10.1002/bit.10318] [PMID: 12115430]
[39]
Agrawal, A.; Tratnyek, P.G. Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol., 1996, 30(1), 153-160.
[http://dx.doi.org/10.1021/es950211h]
[40]
Li, X.; Wang, X.; Song, S.; Liu, D.; Zhang, H. Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separa-ble catalysts. Chemistry, 2012, 18(24), 7601-7607.
[http://dx.doi.org/10.1002/chem.201103726] [PMID: 22508188]
[41]
Megharaj, M.; Pearson, H.W.; Venkateswarlu, K. Toxicity of phenol and three nitrophenols towards growth and metabolic activities of Nostoc linckia, isolated from soil. Arch. Environ. Contam. Toxicol., 1991, 21(4), 578-584.
[http://dx.doi.org/10.1007/BF01183881]
[42]
García, S.; Zhang, L.; Piburn, G.W.; Henkelman, G.; Humphrey, S.M. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: highly active hydrogenation catalysts. ACS Nano, 2014, 8(11), 11512-11521.
[http://dx.doi.org/10.1021/nn504746u] [PMID: 25347078]
[43]
Yasukawa, T.; Suzuki, A.; Miyamura, H.; Nishino, K.; Kobayashi, S. Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc., 2015, 137(20), 6616-6623.
[http://dx.doi.org/10.1021/jacs.5b02213] [PMID: 25946410]
[44]
Chen, S.; Thota, S.; Wang, X.; Zhao, J. From solid to core@shell to hollow Pt–Ag nanocrystals: thermally controlled surface segregation to enhance catalytic activity and durability. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(23), 9038-9043.
[http://dx.doi.org/10.1039/C6TA02914K]
[45]
Wang, C.; Ciganda, R.; Yate, L.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D. RhAg/rGO nanocatalyst: ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol. J. Mater. Sci., 2017, 52(16), 9465-9476.
[http://dx.doi.org/10.1007/s10853-017-1158-7]
[46]
Karthikeyan, K.; Amaresh, S.; Lee, S-N.; An, J-Y.; Lee, Y-S. High-power lithium-ion capacitor using LiMnBO3 -nanobead anode and polyaniline-nanofiber cathode with excellent cycle life. ChemSusChem, 2014, 7(8), 2310-2316.
[http://dx.doi.org/10.1002/cssc.201402055] [PMID: 24920598]
[47]
Elzanowska, H.; Miasek, E.; Birss, V.I. Electrochemical formation of Ir oxide/polyaniline composite films. Electrochim. Acta, 2008, 53(6), 2706-2715.
[http://dx.doi.org/10.1016/j.electacta.2007.08.065]
[48]
Ma, M.; Zhang, Q.; Yin, D.; Dou, J.; Zhang, H.; Xu, H. Preparation of high-magnetization Fe3O4–NH2–Pd (0) catalyst for Heck reaction. Catal. Commun., 2012, 17, 168-172.
[http://dx.doi.org/10.1016/j.catcom.2011.10.015]
[49]
Liang, K.; Li, X.; Kang, S-Z.; Qin, L.; Li, G.; Mu, J. Catalytic performance of ferroferric oxide/reduced graphene oxide/silver nanoparticle composite microflowers. Carbon, 2014, 80, 716-724.
[http://dx.doi.org/10.1016/j.carbon.2014.09.017]
[50]
Yao, T.; Zuo, Q.; Wang, H.; Wu, J.; Zhang, X.; Sun, J.; Cui, T. Preparation of PdxAuy bimetallic nanostructures with controllable morphologies supported on reduced graphene oxide nanosheets and wrapped in a polypyrrole layer. RSC Advances, 2015, 5(107), 87831-87837.
[http://dx.doi.org/10.1039/C5RA17081H]
[51]
Zhou, H.; Ni, T.; Qing, X.; Yue, X.; Li, G.; Lu, Y. One-step construction of graphene-polypyrrole hydrogels and their superior electrochemical performance. RSC Advances, 2014, 4(8), 4134-4139.
[http://dx.doi.org/10.1039/C3RA44647F]
[52]
Wang, X.; Li, C.; Shi, G. A high-performance platinum electrocatalyst loaded on a graphene hydrogel for high-rate methanol oxidation. Phys. Chem. Chem. Phys., 2014, 16(21), 10142-10148.
[http://dx.doi.org/10.1039/c3cp54058h] [PMID: 24553960]
[53]
Yao, T.; Zuo, Q.; Wang, H.; Wu, J.; Xin, B.; Cui, F.; Cui, T. A simple way to prepare Pd/Fe3O4/polypyrrole hollow capsules and their applications in catalysis. J. Colloid Interface Sci., 2015, 450, 366-373.
[http://dx.doi.org/10.1016/j.jcis.2015.03.012] [PMID: 25845884]
[54]
Rout, L.; Kumar, A.; Dhaka, R. S.; Reddy, G. N.; Giri, S.; Dash, P. Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support: Synthesis, catalytic activity and investigation of synergistic effect by DFT analysis Appl. Catal., A, 2017, 538, 107-122.
[55]
Rana, S.; Jonnalagadda, S.B. A facile synthesis of Cu–Ni bimetallic nanoparticle supported organo functionalized graphene oxide as a catalyst for selective hydrogenation of p-nitrophenol and cinnamaldehyde. RSC Advances, 2017, 7(5), 2869-2879.
[http://dx.doi.org/10.1039/C6RA26443C]
[56]
Kuai, L.; Wang, S.; Geng, B. Gold-platinum yolk-shell structure: a facile galvanic displacement synthesis and highly active electrocatalytic properties for methanol oxidation with super CO-tolerance. Chem. Commun. (Camb.), 2011, 47(21), 6093-6095.
[http://dx.doi.org/10.1039/c0cc05429a] [PMID: 21519597]
[57]
Mei, L-P.; Wang, R.; Song, P.; Feng, J-J.; Wang, Z-G.; Chen, J-R.; Wang, A-J. One-pot solvothermal synthesis of bimetallic yolk-shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction. New J. Chem., 2016, 40(3), 2315-2320.
[http://dx.doi.org/10.1039/C5NJ02923F]
[58]
Li, X-Q.; Elliott, D.W.; Zhang, W-X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci., 2006, 31(4), 111-122.
[http://dx.doi.org/10.1080/10408430601057611]
[59]
Zhang, Z.; Zhang, J.; Zhang, B.; Tang, J. Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale, 2013, 5(1), 118-123.
[http://dx.doi.org/10.1039/C2NR32092D] [PMID: 23138501]
[60]
Ye, W.; Yu, J.; Zhou, Y.; Gao, D.; Wang, D.; Wang, C.; Xue, D. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Appl. Catal. B, 2016, 181, 371-378.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.013]
[61]
Ye, W.; Chen, Y.; Zhou, Y.; Fu, J.; Wu, W.; Gao, D.; Zhou, F.; Wang, C.; Xue, D. Enhancing the catalytic activity of flowerike Pt nanocrystals using polydopamine func-tionalized graphene supports for methanol electrooxidation. ‎. Electrochim. Acta, 2014, 142, 18-24.
[http://dx.doi.org/10.1016/j.electacta.2014.06.161]
[62]
Kesavan, L.; Tiruvalam, R.; Rahim, M.H.A. bin Saiman, M.I.; Enache, D.I.; Jenkins, R.L.; Dimitratos, N.; Lopez-Sanchez, J.A.; Taylor, S.H.; Knight, D.W.; Kiely, C.J.; Hutchings, G.J. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. J. Sci., 2011, 331(6014), 195-199.
[http://dx.doi.org/10.1126/science.1198458 ]
[63]
Venkateswara Rao, C.; Cabrera, C.R.; Ishikawa, Y. Graphene-supported Pt–Au alloy nanoparticles: a highly efficient anode for direct formic acid fuel cells. J. Phys. Chem. C, 2011, 115(44), 21963-21970.
[http://dx.doi.org/10.1021/jp202561n]
[64]
Chen, H.; Fan, X.; Ma, J.; Zhang, G.; Zhang, F.; Li, Y. Green route for microwave-assisted preparation of AuAg-Alloy-decorated graphene hybrids with superior 4-NP reduction catalytic activity. Ind. Eng. Chem. Res., 2014, 53(46), 17976-17980.
[http://dx.doi.org/10.1021/ie503251h]
[65]
Zhang, Q.; Xie, J.; Lee, J.Y.; Zhang, J.; Boothroyd, C. Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. Small, 2008, 4(8), 1067-1071.
[http://dx.doi.org/10.1002/smll.200701196] [PMID: 18651712]
[66]
Dhanda, R.; Kidwai, M. Reduced graphene oxide supported AgxNi100−x alloy nanoparticles: a highly active and reusable catalyst for the reduction of nitroarenes. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(38), 19563-19574.
[http://dx.doi.org/10.1039/C5TA03779D]
[67]
Melaiye, A.; Sun, Z.; Hindi, K.; Milsted, A.; Ely, D.; Reneker, D.H.; Tessier, C.A.; Youngs, W.J. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc., 2005, 127(7), 2285-2291.
[http://dx.doi.org/10.1021/ja040226s] [PMID: 15713108]
[68]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[69]
Gawande, M.B.; Guo, H.; Rathi, A.K.; Branco, P.S.; Chen, Y.; Varma, R.S.; Peng, D-L. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydro-genation reactions of aromatic nitro and carbonyl compounds. RSC Advances, 2013, 3(4), 1050-1054.
[http://dx.doi.org/10.1039/C2RA22143H]
[70]
Dubey, S.P.; Nguyen, T.T.M.; Kwon, Y-N.; Lee, C. Synthesis and characterization of metal-doped reduced graphene oxide composites, and their application in removal of Escherichia coli, arsenic and 4-nitrophenol. J. Ind. Eng. Chem., 2015, 29, 282-288.
[http://dx.doi.org/10.1016/j.jiec.2015.04.008]
[71]
Wen, H.; Long, Y.; Han, W.; Wu, W.; Yang, Y.; Ma, J. Preparation of a novel bimetallic AuCu-P25-rGO ternary nanocomposite with enhanced photocatalytic degradation performance Appl. Catal., A,, 2018, 549, 237-244.
[http://dx.doi.org/10.1016/j.apcata.2017.09.028]
[72]
Duff, D.G.; Baiker, A.; Edwards, P.P. A new hydrosol of gold clusters. J. Chem. Soc. Chem. Commun., 1993, (1), 96-98.
[http://dx.doi.org/10.1039/c39930000096]
[73]
Xu, L.; Hong, M.; Wang, Y.; Li, M.; Li, H.; Nair, M.P.N.; Li, C-Z. Tunable synthesis solid or hollow Au–Ag nanostructure, assembled with GO and comparative study of their catalytic properties. Sci. Bull. (Beijing), 2016, 61(19), 1525-1535.
[http://dx.doi.org/10.1007/s11434-016-1165-0]
[74]
Tsao, Y-C.; Rej, S.; Chiu, C-Y.; Huang, M.H. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties. J. Am. Chem. Soc., 2014, 136(1), 396-404.
[http://dx.doi.org/10.1021/ja410663g] [PMID: 24341355]
[75]
Krishnakumar, B.; Selvam, K.; Swaminathan, M. Product selectivity in semiconductor-mediated dehydrazonation of benzophenone hydrazone. Synth. Commun., 2011, 41(13), 1929-1937.
[http://dx.doi.org/10.1080/00397911.2010.493630]
[76]
Chao, H.E.; Yun, Y.U.; Xingfang, H.U.; Larbot, A. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J. Eur. Ceram. Soc., 2003, 23(9), 1457-1464.
[http://dx.doi.org/10.1016/S0955-2219(02)00356-4]
[77]
Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev., 2012, 41(2), 666-686.
[http://dx.doi.org/10.1039/C1CS15078B] [PMID: 21796314]
[78]
Xie, H.; Ye, X.; Duan, K.; Xue, M.; Du, Y.; Ye, W.; Wang, C. CuAu–ZnO–graphene nanocomposite: a novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance. J. Alloys Compd., 2015, 636, 40-47.
[http://dx.doi.org/10.1016/j.jallcom.2015.02.159]
[79]
Ugi, I. Multikomponentenreaktionen (MCR). I. Perspektiven von Multikomponentenreaktionen und deren Bibliotheken. J. Prakt. Chem., 1997, 339(1), 499-516.
[http://dx.doi.org/10.1002/prac.19973390193]
[80]
Armstrong, R.W.; Combs, A.P.; Tempest, P.A.; Brown, S.D.; Keating, T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res., 1996, 29(3), 123-131.
[http://dx.doi.org/10.1021/ar9502083]
[81]
Shaabani, A.; Hezarkhani, Z.; Nejad, M.K. AuCu and AgCu bimetallic nanoparticles supported on guanidine-modified reduced graphene oxide nanosheets as catalysts in the reduction of nitroarenes: tandem synthesis of benzo[b][1,4]diazepine derivatives. RSC Advances, 2016, 6(36), 30247-30257.
[http://dx.doi.org/10.1039/C6RA03132C]
[82]
Kumar, R.; Van der Eycken, E.V. Recent approaches for C-C bond formation via direct dehydrative coupling strategies. Chem. Soc. Rev., 2013, 42(3), 1121-1146.
[http://dx.doi.org/10.1039/C2CS35397K] [PMID: 23192192]
[83]
Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J-M.; Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev., 2011, 40(10), 5181-5203.
[http://dx.doi.org/10.1039/c1cs15079k] [PMID: 21804997]
[84]
Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem. Rev., 2011, 111(3), 2251-2320.
[http://dx.doi.org/10.1021/cr100355b] [PMID: 21391571]
[85]
Huang, X.; Bergsten, T.M.; Groves, J.T. Manganese-catalyzed late-stage aliphatic C-H azidation. J. Am. Chem. Soc., 2015, 137(16), 5300-5303.
[http://dx.doi.org/10.1021/jacs.5b01983] [PMID: 25871027]
[86]
Park, G.; Yi, S.Y.; Jung, J.; Cho, E.J.; You, Y. Mechanism and applications of the photoredox catalytic coupling of benzyl bromides. Chemistry, 2016, 22(49), 17790-17799.
[http://dx.doi.org/10.1002/chem.201603517] [PMID: 27791290]
[87]
Anderson, I.M. Selective serotonin reuptake inhibitors versus tricyclic antidepressants: a meta-analysis of efficacy and tolerability. J. Affect. Disord., 2000, 58(1), 19-36.
[http://dx.doi.org/10.1016/S0165-0327(99)00092-0] [PMID: 10760555]
[88]
Christensen, H.; Schjøth-Eskesen, C.; Jensen, M.; Sinning, S.; Jensen, H.H. Synthesis of 3,7-disubstituted imipramines by palladium-catalysed amination/cyclisation and evaluation of their inhibition of monoamine transporters. Chemistry, 2011, 17(38), 10618-10627.
[http://dx.doi.org/10.1002/chem.201100885] [PMID: 21853482]
[89]
Lei, A.; Zhang, X. Palladium-catalyzed homocoupling reactions between two Csp3−Csp3 centers. Org. Lett., 2002, 4(14), 2285-2288.
[http://dx.doi.org/10.1021/ol0258536] [PMID: 12098228]
[90]
Wang, Z-J.; Lv, J-J.; Yi, R-N.; Xiao, M.; Feng, J-J.; Liang, Z-W.; Wang, A-J.; Xu, X. Nondirecting group sp3 C−H activation for synthesis of bibenzyls via homo-coupling as catalyzed by reduced graphene oxide supported PtPd@Pt porous nanospheres. Adv. Synth. Catal., 2017, 360(5), 932-941.
[http://dx.doi.org/10.1002/adsc.201701389]
[91]
Zhu, Y.; Xiong, T.; Han, W.; Shi, Y. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone. Org. Lett., 2014, 16(23), 6144-6147.
[http://dx.doi.org/10.1021/ol5030103] [PMID: 25420218]
[92]
Manley, D.W.; Walton, J.C. A clean and selective radical homocoupling employing carboxylic acids with titania photoredox catalysis. Org. Lett., 2014, 16(20), 5394-5397.
[http://dx.doi.org/10.1021/ol502625w] [PMID: 25290736]
[93]
Brandsma, L.; Verkruijsse, H.D.; Vasilevsky, S.F. Copper(l)-halide-catalyzed substitution of sp2-haiogen by alkoxide.Application of Transition Metal Catalysts in Organic Synthesis; Springer: Berlin, 1999, pp. 85-105.
[http://dx.doi.org/10.1007/978-3-642-60328-0_6]
[94]
Rossi, R.; Carpita, A.; Bellina, F. Palladium- and/or copper-mediated cross-coupling reactions between 1-alkynes and vinyl, aryl, 1-alkynyl, 1,2-propadienyl, propargyl and allylic halides or related compounds. A review. Org. Prep. Proced. Int., 1995, 27(2), 127-160.
[http://dx.doi.org/10.1080/00304949509458449]
[95]
Nicolaou, K.C.; Ladduwahetty, T.; Taffer, I.M.; Zipkin, R.E. A general strategy for the synthesis of monohydroxy-eicosatetraenoic acids: total synthesis of 5(S)-hydroxy-6(E),8,11,14(Z)-eicosatetraenoic acid (5-HETE) and 12(S)-hydroxy-5,8,14(Z), 10(E)-eicosatetraenoic acid (12-HETE). Synthesis, 1986, 1986(04), 344-347.
[http://dx.doi.org/10.1055/s-1986-31612]
[96]
Ma, Z.; Qiu, Y.; Huang, Y.; Gao, F.; Hu, P. Chitosan assisted synthesis of 3D graphene@Au nanosheet composites: catalytic reduction of 4-nitrophenol. RSC Advances, 2015, 5(97), 79456-79462.
[http://dx.doi.org/10.1039/C5RA14134F]
[97]
Dabiri, M.; Vajargahy, M.P. PdCo bimetallic nanoparticles supported on three-dimensional graphene as a highly active catalyst for Sonogashira cross-coupling reaction. Appl. Organomet. Chem., 2016, 31(4)e3594
[http://dx.doi.org/10.1002/aoc.3594]
[98]
Hua-Jian, X.; Xin, W.; Ye, G.; Xiao-Lan, X. The catalytic application of recoverable magnetic nanoparicles-supported organic compounds. Curr. Org. Chem., 2013, 17(10), 1034-1050.
[http://dx.doi.org/10.2174/1385272811317100006]
[99]
Fu, Q.; Meng, Y.; Fang, Z.; Hu, Q.; Xu, L.; Gao, W.; Huang, X.; Xue, Q.; Sun, Y-P.; Lu, F. Boron nitride nanosheet-anchored Pd-Fe core-shell nanoparticles as highly efficient catalysts for Suzuki-Miyaura coupling reactions. ACS Appl. Mater. Interfaces, 2017, 9(3), 2469-2476.
[http://dx.doi.org/10.1021/acsami.6b13570] [PMID: 28051299]
[100]
Nie, R.; Shi, J.; Du, W.; Hou, Z. Ni2O3-around-Pd hybrid on graphene oxide: an efficient catalyst for ligand-free Suzuki-Miyaura coupling reaction Appl. Catal., A, 2014, 473, 1-6.
[101]
Wu, Y.; Wang, D.; Zhao, P.; Niu, Z.; Peng, Q.; Li, Y. Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Inorg. Chem., 2011, 50(6), 2046-2048.
[http://dx.doi.org/10.1021/ic102263b] [PMID: 21268607]
[102]
Borhade, S.R.; Waghmode, S.B. Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls. Beilstein J. Org. Chem., 2011, 7, 310-319.
[http://dx.doi.org/10.3762/bjoc.7.41] [PMID: 21448255]
[103]
Fang, P-P.; Jutand, A.; Tian, Z-Q.; Amatore, C. Au-Pd core-shell nanoparticles catalyze Suzuki-Miyaura reactions in water through Pd leaching. Angew. Chem. Int. Ed. Engl., 2011, 50(51), 12184-12188.
[http://dx.doi.org/10.1002/anie.201103465] [PMID: 21953989]
[104]
Feng, Y-S.; Lin, X-Y.; Hao, J.; Xu, H-J. Pd–Co bimetallic nanoparticles supported on graphene as a highly active catalyst for Suzuki-Miyaura and Sonogashira cross-coupling reactions. Tetrahedron, 2014, 70(34), 5249-5253.
[http://dx.doi.org/10.1016/j.tet.2014.05.083]
[105]
Metin, Ö.; Ho, S.F.; Alp, C.; Can, H.; Mankin, M.N.; Gültekin, M.S.; Chi, M.; Sun, S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res., 2013, 6(1), 10-18.
[http://dx.doi.org/10.1007/s12274-012-0276-4]
[106]
Diyarbakir, S.; Can, H.; Metin, Ö. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces, 2015, 7(5), 3199-3206.
[http://dx.doi.org/10.1021/am507764u] [PMID: 25594280]
[107]
Shaabani, A.; Mahyari, M. PdCo bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(32), 9303-9311.
[http://dx.doi.org/10.1039/c3ta11706e]
[108]
Bosman, A.W.; Janssen, H.M.; Meijer, E.W. About dendrimers: structure, physical properties, and applications. Chem. Rev., 1999, 99(7), 1665-1688.
[http://dx.doi.org/10.1021/cr970069y] [PMID: 11849007]
[109]
Zhao, M.; Sun, L.; Crooks, R.M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc., 1998, 120(19), 4877-4878.
[http://dx.doi.org/10.1021/ja980438n]
[110]
Zhao, M.; Crooks, R.M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. Int. Ed. Engl., 1999, 38(3), 364-366.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990201)38:3<364:AID-ANIE364>3.0.CO;2-L] [PMID: 29711654]
[111]
Zhao, M.; Liu, Y.; Crooks, R.M.; Bergbreiter, D.E. Preparation of highly impermeable hyperbranched polymer thin-film coatings using dendrimers first as building blocks and then as in situ thermosetting agents. J. Am. Chem. Soc., 1999, 121, 923-930.
[http://dx.doi.org/10.1021/ja9825027 ]
[112]
Mishra, K.; Basavegowda, N.; Lee, Y.R. AuFeAg hybrid nanoparticles as an efficient recyclable catalyst for the synthesis of α,β- and β,β-dichloroenones. Appl. Catal. A Gen., 2015, 506, 180-187.
[http://dx.doi.org/10.1016/j.apcata.2015.09.014]
[113]
Zhang, H.; Toshima, N. Preparation of novel Au/Pt/Ag trimetallic nanoparticles and their high catalytic activity for aerobic glucose oxidation. Appl. Catal. A Gen., 2011, 400(1), 9-13.
[http://dx.doi.org/10.1016/j.apcata.2011.03.015]
[114]
Li, Y.; Yan, Y.; Li, Y.; Zhang, H.; Li, D.; Yang, D. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm, 2015, 17(8), 1833-1838.
[http://dx.doi.org/10.1039/C4CE02062F]
[115]
Fatahi, P.; Jafar Hoseini, S. Formation of PdNiZn thin film at oil-water interface: XPS study and application as Suzuki-Miyaura catalyst. Appl. Organomet. Chem., 2017, 32(3)e4187
[http://dx.doi.org/10.1002/aoc.4187]
[116]
Hoseini, S.J.; Zarei, A.; Rafatbakhsh Iran, H. Ligandless C-C bond formation via Suzuki-Miyaura reaction in micelles or water-ethanol solution using PdPtZn and PdZn nanoparticle thin films. Appl. Organomet. Chem., 2015, 29(8), 489-494.
[http://dx.doi.org/10.1002/aoc.3318]
[117]
Hoseini, S.J.; Habib Agahi, B.; Samadi Fard, Z.; Hashemi Fath, R.; Bahrami, M. Modification of palladium-copper thin film by reduced graphene oxide or platinum as catalyst for Suzuki-Miyaura reactions. Appl. Organomet. Chem., 2016, 31(5)e3607
[http://dx.doi.org/10.1002/aoc.3607]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy