Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity

Author(s): Feng Song*, Yunqiang Bian, Jing Liu, Zhenghua Li, Li Zhao, Junman Fang, Yonghong Lai and Meng Zhou

Volume 21, Issue 5, 2021

Published on: 08 September, 2020

Page: [377 - 403] Pages: 27

DOI: 10.2174/1568026620666200908162311

Price: $65

Abstract

Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.

Keywords: Indole alkaloids, Dimers, Hybrids, In vivo, Cancer, Mechanisms of action.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 2019.Available from: https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf
[3]
Dagenais, G.R.; Leong, D.P.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Gupta, R.; Diaz, R.; Avezum, A.; Oliveira, G.B.F.; Wielgosz, A.; Parambath, S.R.; Mony, P.; Alhabib, K.F.; Temizhan, A.; Ismail, N.; Chifamba, J.; Yeates, K.; Khatib, R.; Rahman, O.; Zatonska, K.; Kazmi, K.; Wei, L.; Zhu, J.; Rosengren, A.; Vijayakumar, K.; Kaur, M.; Mohan, V.; Yusufali, A.; Kelishadi, R.; Teo, K.K.; Joseph, P.; Yusuf, S. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet, 2020, 395(10226), 785-794.
[http://dx.doi.org/10.1016/S0140-6736(19)32007-0] [PMID: 31492501]
[4]
Hulvat, M.C. Cancer incidence and trends. Surg. Clin. North Am., 2020, 100(3), 469-481.
[http://dx.doi.org/10.1016/j.suc.2020.01.002] [PMID: 32402294]
[5]
Zahedipour, F.; Jamialahmadi, K.; Karimi, G. The role of noncoding RNAs and sirtuins in cancer drug resistance. Eur. J. Pharmacol., 2020, 877173094
[http://dx.doi.org/10.1016/j.ejphar.2020.173094] [PMID: 32243871]
[6]
Efferth, T.; Saeed, M.E.M.; Kadioglu, O.; Seo, E.J.; Shirooie, S.; Mbaveng, A.T.; Nabavi, S.M.; Kuete, V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol. Adv., 2020, 38107342
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.009] [PMID: 30708024]
[7]
Chatterjee, N.; Bivona, T.G. Polytherapy and targeted cancer drug resistance. Trends Cancer, 2019, 5(3), 170-182.
[http://dx.doi.org/10.1016/j.trecan.2019.02.003] [PMID: 30898264]
[8]
Yan, L.; Lin, M.; Pan, S.; Assaraf, Y.G.; Wang, Z.W.; Zhu, X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist. Updat., 2020, 49100673
[http://dx.doi.org/10.1016/j.drup.2019.100673] [PMID: 31877405]
[9]
Liang, X.; Luo, D.; Luesch, H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol. Res., 2019, 147104373
[http://dx.doi.org/10.1016/j.phrs.2019.104373] [PMID: 31351913]
[10]
Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; Madhkali, H.; Rehman, M.U. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J., 2019, 27(6), 767-777.
[http://dx.doi.org/10.1016/j.jsps.2019.04.013] [PMID: 31516319]
[11]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anticancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380] [PMID: 27010926]
[12]
Zhang, B. Artemisinin-derived dimers as potential anticancer agents: Current developments, action mechanisms, and structure-activity relationships. Arch. Pharm. (Weinheim), 2020, 353(2)e1900240
[http://dx.doi.org/10.1002/ardp.201900240] [PMID: 31797422]
[13]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[14]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[15]
Van Meter, E.N.; Onyango, J.A.; Teske, K.A. A review of currently identified small molecule modulators of microRNA function. Eur. J. Med. Chem., 2020, 188112008
[http://dx.doi.org/10.1016/j.ejmech.2019.112008] [PMID: 31931338]
[16]
Cui, X.; Zhang, R.; Cen, S.; Zhou, J. STING modulators: Predictive significance in drug discovery. Eur. J. Med. Chem., 2019, 182111591
[http://dx.doi.org/10.1016/j.ejmech.2019.111591] [PMID: 31419779]
[17]
Kumar, R.; Harilal, S.; Gupta, S.V.; Jose, J.; Thomas Parambi, D.G.; Uddin, M.S.; Shah, M.A.; Mathew, B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur. J. Med. Chem., 2019, 182111602
[http://dx.doi.org/10.1016/j.ejmech.2019.111602] [PMID: 31421629]
[18]
Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z.S.; Feng, L.S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28(2), 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[19]
Qin, H.L.; Liu, J.; Fang, W.Y.; Ravindar, L.; Rakesh, K.P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 194112245
[http://dx.doi.org/10.1016/j.ejmech.2020.112245] [PMID: 32220687]
[20]
Rosales, P.F.; Bordin, G.S.; Gower, A.E.; Moura, S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia, 2020, 143104558
[http://dx.doi.org/10.1016/j.fitote.2020.104558] [PMID: 32198108]
[21]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89103021
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[22]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[23]
Sravanthi, T.V.; Manju, S.L. Indoles - A promising scaffold for drug development. Eur. J. Pharm. Sci., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[24]
Garg, V.; Maurya, R.K.; Thanikachalam, P.V.; Bansal, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[25]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[26]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183111691
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[27]
Dixit, A. A review on docking studies of indole moiety as potent inhibitor of tubulin polymerization. Eur. Chem. Bull., 2017, 5(11), 465-469.
[28]
Jia, Y.; Wen, X.; Gong, Y.; Wang, X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur. J. Med. Chem., 2020, 200112359
[http://dx.doi.org/10.1016/j.ejmech.2020.112359] [PMID: 32531682]
[29]
Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev., 2020, 40(5), 2049-2084.
[http://dx.doi.org/10.1002/med.21698] [PMID: 32525247]
[30]
Wang, R.; Chen, H.; Yan, W.; Zheng, M.; Zhang, T.; Zhang, Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur. J. Med. Chem., 2020, 190112109
[http://dx.doi.org/10.1016/j.ejmech.2020.112109] [PMID: 32032851]
[31]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[32]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[33]
Werner, T.L.; Wade, M.L.; Agarwal, N.; Boucher, K.; Patel, J.; Luebke, A.; Sharma, S. Phase I study of UCN-01 and perifosine in patients with relapsed and refractory acute leukemias and high-risk myelodysplastic syndrome. Invest. New Drugs, 2015, 33(6), 1217-1224.
[http://dx.doi.org/10.1007/s10637-015-0288-5] [PMID: 26365907]
[34]
Gurav, S.D.; Gilibili, R.R.; Jeniffer, S.; Mohd, Z.; Giri, S.; Govindarajan, R.; Srinivas, N.R.; Mullangi, R. Pharmacokinetics, tissue distribution and identification of putative metabolites of JI-101 - a novel triple kinase inhibitor in rats. Arzneimittelforschung, 2012, 62(1), 27-34.
[http://dx.doi.org/10.1055/s-0031-1295427] [PMID: 22331760]
[35]
Liu, B.; Yuan, X.; Xu, B.; Zhang, H.; Li, R.; Wang, X.; Ge, Z.; Li, R. Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors. Eur. J. Med. Chem., 2019, 170, 1-15.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.003] [PMID: 30878825]
[36]
Bai, J.; Liao, C.; Liu, Y.; Qin, X.; Chen, J.; Qiu, Y.; Qin, D.; Li, Z.; Tu, Z.C.; Jiang, S. Structure-based design of potent nicotinamide phosphoribosyltransferase inhibitors with promising in vitro and in vivo antitumor activities. J. Med. Chem., 2016, 59(12), 5766-5779.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00324] [PMID: 27224875]
[37]
Morigi, R.; Locatelli, A.; Leoni, A.; Rambaldi, M.; Bortolozzi, R.; Mattiuzzo, E.; Ronca, R.; Maccarinelli, F.; Hamel, E.; Bai, R.; Brancale, A.; Viola, G. Synthesis, in vitro and in vivo biological evaluation of substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones as new potent anticancer agents. Eur. J. Med. Chem., 2019, 166, 514-530.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.049] [PMID: 30784885]
[38]
Colley, H.E.; Muthana, M.; Danson, S.J.; Jackson, L.V.; Brett, M.L.; Harrison, J.; Coole, S.F.; Mason, D.P.; Jennings, L.R.; Wong, M.; Tulasi, V.; Norman, D.; Lockey, P.M.; Williams, L.; Dossetter, A.G.; Griffen, E.J.; Thompson, M.J. An orally bioavailable, indole-3-glyoxylamide based series of tubulin polymerization inhibitors showing tumor growth inhibition in a mouse xenograft model of head and neck cancer. J. Med. Chem., 2015, 58(23), 9309-9333.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01312] [PMID: 26580420]
[39]
Chen, H.; Wang, J.; Feng, X.; Zhu, M.; Hoffmann, S.; Hsu, A.; Qian, K.; Huang, D.; Zhao, F.; Liu, W.; Zhang, H.; Cheng, Z. Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem. Sci. (Camb.), 2019, 10(34), 7946-7951.
[http://dx.doi.org/10.1039/C9SC01410A] [PMID: 31853349]
[40]
Lu, F.; Chen, B.; Wang, C.; Zhuang, C.; Miao, Z.; Zhang, X.; Wu, Y. Design, synthesis, and biological evaluation of novel trimethoxyindole derivatives derived from natural products. Monatsh. Chem., 2019, 150(8), 1545-1552.
[http://dx.doi.org/10.1007/s00706-019-02466-8]
[41]
Yang, X.; Wang, W.; Qin, J.J.; Wang, M.H.; Sharma, H.; Buolamwini, J.K.; Wang, H.; Zhang, R. JKA97, a novel benzylidene analog of harmine, exerts anti-cancer effects by inducing G1 arrest, apoptosis, and p53-independent up-regulation of p21. PLoS One, 2012, 7(4)e34303
[http://dx.doi.org/10.1371/journal.pone.0034303] [PMID: 22558087]
[42]
Nag, S.; Qin, J.J.; Voruganti, S.; Wang, M.H.; Sharma, H.; Patil, S.; Buolamwini, J.K.; Wang, W.; Zhang, R. Development and validation of a rapid HPLC method for quantitation of SP-141, a novel pyrido[b]indole anticancer agent, and an initial pharmacokinetic study in mice. Biomed. Chromatogr., 2015, 29(5), 654-663.
[http://dx.doi.org/10.1002/bmc.3327] [PMID: 25294254]
[43]
Wang, W.; Qin, J.J.; Voruganti, S.; Wang, M.H.; Sharma, H.; Patil, S.; Zhou, J.; Wang, H.; Mukhopadhyay, D.; Buolamwini, J.K.; Zhang, R. Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice. Gastroenterology, 2014, 147(4), 893-902.e2.
[http://dx.doi.org/10.1053/j.gastro.2014.07.001] [PMID: 25016295]
[44]
Wang, W.; Qin, J.J.; Voruganti, S.; Srivenugopal, K.S.; Nag, S.; Patil, S.; Sharma, H.; Wang, M.H.; Wang, H.; Buolamwini, J.K.; Zhang, R. The pyrido[b]indole MDM2 inhibitor SP-141 exerts potent therapeutic effects in breast cancer models. Nat. Commun., 2014, 5, 5086.
[http://dx.doi.org/10.1038/ncomms6086] [PMID: 25271708]
[45]
Chen, H.; Gao, P.; Zhang, M.; Liao, W.; Zhang, J. Synthesis and biological evaluation of a novel class of β-carboline derivatives. New J. Chem., 2014, 38, 4155-4166.
[http://dx.doi.org/10.1039/C4NJ00262H]
[46]
Le, L.T.T.; Couvet, M.; Favier, B.; Coll, J.L.; Nguyen, C.H.; Molla, A. Discovery of benzo[e]pyridoindolones as kinase inhibitors that disrupt mitosis exit while erasing AMPK-Thr172 phosphorylation on the spindle. Oncotarget, 2015, 6(26), 22152-22166.
[http://dx.doi.org/10.18632/oncotarget.4158] [PMID: 26247630]
[47]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[48]
Sharma, V.; Kumar, V.; Kumar, P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(3), 422-432.
[PMID: 22721390]
[49]
Karthikeyan, C.; Moorthy, N.S.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Patents Anticancer Drug Discov., 2015, 10(1), 97-115.
[http://dx.doi.org/10.2174/1574892809666140819153902] [PMID: 25138130]
[50]
Riaz, S.; Iqbal, M.; Ullah, R.; Zahra, R.; Chotana, G.A.; Faisal, A.; Saleem, R.S.Z. Synthesis and evaluation of novel α-substituted chalcones with potent anti-cancer activities and ability to overcome multidrug resistance. Bioorg. Chem., 2019, 87, 123-135.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.014] [PMID: 30884306]
[51]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00021] [PMID: 27149641]
[52]
Cong, H.; Zhao, X.; Castle, B.T.; Pomeroy, E.J.; Zhou, B.; Lee, J.; Wang, Y.; Bian, T.; Miao, Z.; Zhang, W.; Sham, Y.Y.; Odde, D.J.; Eckfeldt, C.E.; Xing, C.; Zhuang, C. An indole-chalcone inhibits multidrug-resistant cancer cell growth by targeting microtubules. Mol. Pharm., 2018, 15(9), 3892-3900.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00359] [PMID: 30048137]
[53]
Kumar, D.; Maruthi Kumar, N.; Tantak, M.P.; Ogura, M.; Kusaka, E.; Ito, T. Synthesis and identification of α-cyano bis(indolyl)chalcones as novel anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(22), 5170-5174.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.085] [PMID: 25442306]
[54]
Wang, G.; Peng, Z.; Li, Y. Synthesis, anticancer activity and molecular modeling studies of novel chalcone derivatives containing indole and naphthalene. Chem. Pharm. Bull. (Tokyo), 2019, 67(7), 725-728.
[http://dx.doi.org/10.1248/cpb.c19-00217] [PMID: 30982797]
[55]
Kumar, D.; Kumar, N.M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg. Med. Chem. Lett., 2010, 20(13), 3916-3919.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.016] [PMID: 20627724]
[56]
Martel-Frachet, V.; Keramidas, M.; Nurisso, A.; DeBonis, S.; Rome, C.; Coll, J.L.; Boumendjel, A.; Skoufias, D.A.; Ronot, X. IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget, 2015, 6(16), 14669-14686.
[http://dx.doi.org/10.18632/oncotarget.4144] [PMID: 26036640]
[57]
Wang, G.; Li, C.; He, L.; Lei, K.; Wang, F.; Pu, Y.; Yang, Z.; Cao, D.; Ma, L.; Chen, J.; Sang, Y.; Liang, X.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Bioorg. Med. Chem., 2014, 22, 2060-2079.
[http://dx.doi.org/10.1016/j.bmc.2014.02.028] [PMID: 24629450]
[58]
Mirzaei, H.; Shokrzadeh, M.; Modanloo, M.; Ziar, A.; Riazi, G.H.; Emami, S. New indole-based chalconoids as tubulin-targeting antiproliferative agents. Bioorg. Chem., 2017, 75, 86-98.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.005] [PMID: 28922629]
[59]
Du, S.; Sarver, J.G.; Trabbic, C.J.; Erhardt, P.W.; Schroering, A.; Maltese, W.A. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemother. Pharmacol., 2019, 83(2), 237-254.
[http://dx.doi.org/10.1007/s00280-018-3726-1] [PMID: 30426158]
[60]
Zhao, X.; Dong, W.; Gao, Y.; Shin, D.S.; Ye, Q.; Su, L.; Jiang, F.; Zhao, B.; Miao, J. Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Sci. Rep., 2017, 7(1), 3919-3929.
[http://dx.doi.org/10.1038/s41598-017-04411-3] [PMID: 28634389]
[61]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[62]
Wen, X.; Zhou, Y.; Zeng, J.; Liu, X. Recent development of 1,2,4-triazole-containing compounds as anticancer agents. Curr. Top. Med. Chem., 2020, 20(16), 1441-1460.
[http://dx.doi.org/10.2174/1568026620666200128143230] [PMID: 31994462]
[63]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183111700
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[64]
Narsimha, S.; Satheesh Kumar, N.; Kumara Swamy, B.; Vasudeva Reddy, N.; Althaf Hussain, S.K.; Srinivasa Rao, M. Indole-2-carboxylic acid derived mono and bis 1,4-disubstituted 1,2,3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg. Med. Chem. Lett., 2016, 26(6), 1639-1644.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.055] [PMID: 26873415]
[65]
Humphries-Bickley, T.; Castillo-Pichardo, L.; Hernandez-O’Farrill, E.; Borrero-Garcia, L.D.; Forestier-Roman, I.; Gerena, Y.; Blanco, M.; Rivera-Robles, M.J.; Rodriguez-Medina, J.R.; Cubano, L.A.; Vlaar, C.P.; Dharmawardhane, S. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol. Cancer Ther., 2017, 16(5), 805-818.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0442] [PMID: 28450422]
[66]
Panathur, N.; Dalimba, U.; Koushik, P.V.; Alvala, M.; Yogeeswari, P.; Sriram, D.; Kumar, V. Identification and characterization of novel indole based small molecules as anticancer agents through SIRT1 inhibition. Eur. J. Med. Chem., 2013, 69, 125-138.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.018] [PMID: 24013412]
[67]
Wang, K.; Li, Y.; Jiang, Y.Z.; Dai, C.F.; Patankar, M.S.; Song, J.S.; Zheng, J. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer Lett., 2013, 340(1), 63-71.
[http://dx.doi.org/10.1016/j.canlet.2013.06.026] [PMID: 23851185]
[68]
Yao, Y.F.; Wang, Z.C.; Wu, S.Y.; Li, Q.F.; Yu, C.; Liang, X.Y.; Lv, P.C.; Duan, Y.T.; Zhu, H.L. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem. Pharmacol., 2017, 137, 10-28.
[http://dx.doi.org/10.1016/j.bcp.2017.04.026] [PMID: 28456516]
[69]
Ebiike, H.; Taka, N.; Matsushita, M.; Ohmori, M.; Takami, K.; Hyohdoh, I.; Kohchi, M.; Hayase, T.; Nishii, H.; Morikami, K.; Nakanishi, Y.; Akiyama, N.; Shindoh, H.; Ishii, N.; Isobe, T.; Matsuoka, H. Discovery of [5-amino-1-(2-methyl-3H-benzimidazol-5-yl)pyrazol-4-yl]-(1H-indol-2-yl)-methanone (CH5183284/Debio 1347), an orally available and selective fibroblast growth factor receptor (FGFR) inhibitor. J. Med. Chem., 2016, 59(23), 10586-10600.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01156] [PMID: 27933954]
[70]
Wang, Q.; Arnst, K.E.; Wang, Y.; Kumar, G.; Ma, D.; White, S.W.; Miller, D.D.; Li, W.; Li, W. Structure-guided design, synthesis, and biological evaluation of (2-(1H-indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl)methanone (ABI-231) analogues targeting the colchicine binding site in tubulin. J. Med. Chem., 2019, 62(14), 6734-6750.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00706] [PMID: 31251599]
[71]
Mahal, K.; Biersack, B.; Schruefer, S.; Resch, M.; Ficner, R.; Schobert, R.; Mueller, T. Combretastatin A-4 derived 5-(1-methyl-4-phenyl-imidazol-5-yl)indoles with superior cytotoxic and anti-vascular effects on chemoresistant cancer cells and tumors. Eur. J. Med. Chem., 2016, 118, 9-20.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.045] [PMID: 27116710]
[72]
Dighe, S.U.; Khan, S.; Soni, I.; Jain, P.; Shukla, S.; Yadav, R.; Sen, P.; Meeran, S.M.; Batra, S. Synthesis of β-carboline-based N-heterocyclic carbenes and their antiproliferative and antimetastatic activities against human breast cancer cells. J. Med. Chem., 2015, 58(8), 3485-3499.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00016] [PMID: 25835200]
[73]
Pei, H.; Qin, J.; Wang, F.; Tan, B.; Zhao, Z.; Peng, Y.; Yu, F.; Li, E.; Liu, M.; Zhang, R.; Liu, B.; Du, B.; Chen, Y. Discovery of potent ureido tetrahydrocarbazole derivatives for cancer treatments through targeting tumor-associated macrophages. Eur. J. Med. Chem., 2019, 183111741
[http://dx.doi.org/10.1016/j.ejmech.2019.111741] [PMID: 31605873]
[74]
Zhao, Y.; Zhou, B.; Bai, L.; Liu, L.; Yang, C.Y.; Meagher, J.L.; Stuckey, J.A.; McEachern, D.; Przybranowski, S.; Wang, M.; Ran, X.; Aguilar, A.; Hu, Y.; Kampf, J.W.; Li, X.; Zhao, T.; Li, S.; Wen, B.; Sun, D.; Wang, S. Structure-based discovery of cf53 as a potent and orally bioavailable bromodomain and extra-terminal (bet) bromodomain inhibitor. J. Med. Chem., 2018, 61(14), 6110-6120.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00483] [PMID: 30015487]
[75]
Zhou, B.; Hu, J.; Xu, F.; Chen, Z.; Bai, L.; Fernandez-Salas, E.; Lin, M.; Liu, L.; Yang, C.Y.; Zhao, Y.; McEachern, D.; Przybranowski, S.; Wen, B.; Sun, D.; Wang, S. Discovery of a small molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J. Med. Chem., 2018, 61(2), 462-481.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01816] [PMID: 28339196]
[76]
Zhang, N.; Ayral-Kaloustian, S.; Anderson, J.T.; Nguyen, T.; Das, S.; Venkatesan, A.M.; Brooijmans, N.; Lucas, J.; Yu, K.; Hollander, I.; Mallon, R. 5-ureidobenzofuranone indoles as potent and efficacious inhibitors of PI3 kinase-α and mTOR for the treatment of breast cancer. Bioorg. Med. Chem. Lett., 2010, 20(12), 3526-3529.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.139] [PMID: 20483602]
[77]
Fan, A.; Wei, J.; Yang, M.; Zhang, Q.; Zhang, Y.; Liu, Q.; Li, N.; Zhao, D.; Lu, Y.; Li, J.; Zhao, J.; Deng, S.; Zhang, B.; Zhu, H.; Chen, X. Pharmacodynamic and pharmacokinetic characteristics of YMR-65, a tubulin inhibitor, in tumor-bearing mice. Eur. J. Pharm. Sci., 2018, 121, 74-84.
[http://dx.doi.org/10.1016/j.ejps.2018.05.011] [PMID: 29772274]
[78]
Zhao, C.; Dong, H.; Xu, Q.; Zhang, Y. Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin. Ther. Pat., 2020, 30(4), 263-274.
[http://dx.doi.org/10.1080/13543776.2020.1725470] [PMID: 32008402]
[79]
Qin, H.T.; Li, H.Q.; Liu, F. Selective histone deacetylase small molecule inhibitors: Recent progress and perspectives. Expert Opin. Ther. Pat., 2017, 27(5), 621-636.
[http://dx.doi.org/10.1080/13543776.2017.1276565] [PMID: 28033734]
[80]
Lee, H.Y.; Lee, J.F.; Kumar, S.; Wu, Y.W. HuangFu, W.C.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Kuo, F.C.; Hsiao, C.J.; Cheng, C.C.; Yang, C.R.; Liou, J.P. 3-Aroylindoles display antitumor activity in vitro and in vivo: Effects of N1-substituents on biological activity. Eur. J. Med. Chem., 2017, 125, 1268-1278.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.033] [PMID: 27886544]
[81]
Miao, J.F.; Peng, Y.F.; Chen, S.; Gao, W.J.; Yang, Q.X.; Zhu, P.; Guo, J.; Tao, J.; Luo, L.; Zhang, Y.; Ling, Y. A novel harmine derivative, N-(4-(hydroxycarbamoyl)benzyl)-1-(4- methoxyphen-yl)-9H-pyrido[3,4-b]indole-3-carboxamide (HBC), as histone deacetylase inhibitor: in vitro antiproliferation, apoptosis induction, cell cycle arrest, and antimetastatic effects. Eur. J. Pharmacol., 2018, 824, 78-88.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.004] [PMID: 29428472]
[82]
Cincinelli, R.; Zwick, V.; Musso, L.; Zuco, V.; De Cesare, M.; Zunino, F.; Simoes-Pires, C.; Nurisso, A.; Giannini, G.; Cuendet, M.; Dallavalle, S. Biphenyl-4-yl-acrylohydroxamic acids: Identification of a novel indolyl-substituted HDAC inhibitor with antitumor activity. Eur. J. Med. Chem., 2016, 112, 99-105.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.001] [PMID: 26890116]
[83]
Mehndiratta, S.; Wang, R.S.; Huang, H.L.; Su, C.J.; Hsu, C.M.; Wu, Y.W.; Pan, S.L.; Liou, J.P. 4-Indolyl-N-hydroxyphenyl-acrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur. J. Med. Chem., 2017, 134, 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.079] [PMID: 28395150]
[84]
Huang, Y.C.; Huang, F.I.; Mehndiratta, S.; Lai, S.C.; Liou, J.P.; Yang, C.R. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget, 2015, 6(21), 18590-18601.
[http://dx.doi.org/10.18632/oncotarget.4068] [PMID: 26087180]
[85]
Zhang, Y.; Yang, P.; Chou, C.J.; Liu, C.; Wang, X.; Xu, W. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with an indole-containing cap group. ACS Med. Chem. Lett., 2013, 4(2), 235-238.
[http://dx.doi.org/10.1021/ml300366t] [PMID: 23493449]
[86]
Lai, M.J.; Huang, H.L.; Pan, S.L.; Liu, Y.M.; Peng, C.Y.; Lee, H.Y.; Yeh, T.K.; Huang, P.H.; Teng, C.M.; Chen, C.S.; Chuang, H.Y.; Liou, J.P. Synthesis and biological evaluation of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles as potent histone deacetylase inhibitors with antitumor activity in vivo. J. Med. Chem., 2012, 55(8), 3777-3791.
[http://dx.doi.org/10.1021/jm300197a] [PMID: 22439863]
[87]
Wang, C.Y.; Liou, J.P.; Tsai, A.C.; Lai, M.J.; Liu, Y.M.; Lee, H.Y.; Wang, J.C.; Pan, S.L.; Teng, C.M. A novel action mechanism for MPT0G013, a derivative of arylsulfonamide, inhibits tumor angiogenesis through up-regulation of TIMP3 expression. Oncotarget, 2014, 5(20), 9838-9850.
[http://dx.doi.org/10.18632/oncotarget.2451] [PMID: 25226613]
[88]
Lee, H.Y.; Tsai, A.C.; Chen, M.C.; Shen, P.J.; Cheng, Y.C.; Kuo, C.C.; Pan, S.L.; Liu, Y.M.; Liu, J.F.; Yeh, T.K.; Wang, J.C.; Chang, C.Y.; Chang, J.Y.; Liou, J.P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem., 2014, 57(10), 4009-4022.
[http://dx.doi.org/10.1021/jm401899x] [PMID: 24766560]
[89]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[90]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[91]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[92]
Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev., 2020, 40(3), 931-971.
[http://dx.doi.org/10.1002/med.21643] [PMID: 31692025]
[93]
Wang, Q.; Arnst, K.E.; Xue, Y.; Lei, Z.N.; Ma, D.; Chen, Z.S.; Miller, D.D.; Li, W. Synthesis and biological evaluation of indole-based UC-112 analogs as potent and selective survivin inhibitors. Eur. J. Med. Chem., 2018, 149, 211-224.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.045] [PMID: 29501942]
[94]
Li, W.T.; Yeh, T.K.; Song, J.S.; Yang, Y.N.; Chen, T.W.; Lin, C.H.; Chen, C.P.; Shen, C.C.; Hsieh, C.C.; Lin, H.L.; Chao, Y.S.; Chen, C.T. BPR0C305, an orally active microtubule-disrupting anticancer agent. Anticancer Drugs, 2013, 24(10), 1047-1057.
[http://dx.doi.org/10.1097/CAD.0000000000000014] [PMID: 24025560]
[95]
Li, W.; Shuai, W.; Sun, H.; Xu, F.; Bi, Y.; Xu, J.; Ma, C.; Yao, H.; Zhu, Z.; Xu, S. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site. Eur. J. Med. Chem., 2019, 163, 428-442.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.070] [PMID: 30530194]
[96]
See, C.S.; Kitagawa, M.; Liao, P.J.; Lee, K.H.; Wong, J.; Lee, S.H.; Dymock, B.W. Discovery of the cancer cell selective dual acting anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131). Eur. J. Med. Chem., 2018, 156, 344-367.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.011] [PMID: 30015072]
[97]
Kitagawa, M.; Liao, P.J.; Lee, K.H.; Wong, J.; Shang, S.C.; Minami, N.; Sampetrean, O.; Saya, H.; Lingyun, D.; Prabhu, N.; Diam, G.K.; Sobota, R.; Larsson, A.; Nordlund, P.; McCormick, F.; Ghosh, S.; Epstein, D.M.; Dymock, B.W.; Lee, S.H. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. Nat. Commun., 2017, 8(1), 2200.
[http://dx.doi.org/10.1038/s41467-017-02287-5] [PMID: 29259156]
[98]
Tcherniuk, S.; Skoufias, D.A.; Labriere, C.; Rath, O.; Gueritte, F.; Guillou, C.; Kozielski, F. Relocation of Aurora B and survivin from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew. Chem. Int. Ed. Engl., 2010, 49(44), 8228-8231.
[http://dx.doi.org/10.1002/anie.201003254] [PMID: 20857469]
[99]
See, C.S.; Kitagawa, M.; Liao, P.J.; Lee, K.H.; Wong, J.; Lee, S.H.; Dymock, B.W. Prodrugs of the cancer cell selective anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131) are orally efficacious in a mouse model of resistant colon cancer. Bioorg. Med. Chem. Lett., 2019, 29(2), 216-219.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.053] [PMID: 30503634]
[100]
Lynch, J.T.; Harris, W.J.; Somervaille, T.C.P. LSD1 inhibition: a therapeutic strategy in cancer? Expert Opin. Ther. Targets, 2012, 16(12), 1239-1249.
[http://dx.doi.org/10.1517/14728222.2012.722206] [PMID: 22957941]
[101]
Stazi, G.; Zwergel, C.; Valente, S.; Mai, A. LSD1 inhibitors: a patent review (2010-2015). Expert Opin. Ther. Pat., 2016, 26(5), 565-580.
[http://dx.doi.org/10.1517/13543776.2016.1165209] [PMID: 27019002]
[102]
Wang, X.; Zhang, C.; Zhang, X.; Yan, J.; Wang, J.; Jiang, Q.; Zhao, L.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of tetrahydroquinoline-based reversible LSD1 inhibitors. Eur. J. Med. Chem., 2020, 194112243
[http://dx.doi.org/10.1016/j.ejmech.2020.112243] [PMID: 32229389]
[103]
OuYang, Y.; Zhao, B.; Chen, X.; Wang, C.; Zhang, H.; Jia, S.; Zhu, W.; Zheng, P. Design, synthesis and antitumor activity of quinazoline derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline. Lett. Drug Des. Discov., 2019, 16(5), 533-546.
[http://dx.doi.org/10.2174/1570180815666180801121220]
[104]
Zhang, L.; Wang, J.; Li, W.Y.; Xia, J.; Gao, J.; Yao, Q.Z. Synthesis, in vitro and in vivo anticancer activity of hybrids of 3-hydroxy-indolin-2-one and 2,3-dihydroquinolin-4(1H)-one. Lett. Drug Des. Discov., 2015, 12(2), 117-123.
[http://dx.doi.org/10.2174/1570180811666140909010017]
[105]
Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett., 2019, 29(16), 2042-2050.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.041] [PMID: 31272793]
[106]
Khan, F.A.; Nushtaq, S.; Naz, S.; Farooq, U.; Zaidi, A.; Bukhari, S.M.; Rauf, A.; Nubarak, M.S. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem., 2018, 22(8), 818-830.
[http://dx.doi.org/10.2174/1385272822666180122153839]
[107]
Chiu, C.F.; Weng, J.R.; Lee, S.L.; Wu, C.Y.; Chu, P.C.; Shan, Y.S.; Yang, H.R.; Bai, L.Y. OSU-A9 induced-reactive oxygen species cause cytotoxicity in duodenal and gastric cancer cells by decreasing phosphorylated nuclear pyruvate kinase M2 protein levels. Biochem. Pharmacol., 2020, 174113811
[http://dx.doi.org/10.1016/j.bcp.2020.113811] [PMID: 31954719]
[108]
Tsai, W.C.; Bai, L.Y.; Chen, Y.J.; Chu, P.C.; Hsu, Y.W.; Sargeant, A.M.; Weng, J.R. OSU-A9 inhibits pancreatic cancer cell lines by modulating p38-JAK-STAT3 signaling. Oncotarget, 2017, 8(17), 29233-29246.
[http://dx.doi.org/10.18632/oncotarget.16450] [PMID: 28418923]
[109]
Li, W.; Sun, H.; Xu, F.; Shuai, W.; Liu, J.; Xu, S.; Yao, H.; Ma, C.; Zhu, Z.; Xu, J. Synthesis, molecular properties prediction and biological evaluation of indole-vinyl sulfone derivatives as novel tubulin polymerization inhibitors targeting the colchicine binding site. Bioorg. Chem., 2019, 85, 49-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.015] [PMID: 30599412]
[110]
Hendy, M.S.; Ali, A.A.; Ahmed, L.; Hossam, R.; Mostafa, A.; Elmazar, M.M.; Naguib, B.H.; Attia, Y.M.; Ahmed, M.S. Structure-based drug design, synthesis, In vitro, and In vivo biological evaluation of indole-based biomimetic analogs targeting estrogen receptor-α inhibition. Eur. J. Med. Chem., 2019, 166, 281-290.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.068] [PMID: 30731397]
[111]
Lai, M.J.; Ojha, R.; Lin, M.H.; Liu, Y.M.; Lee, H.Y.; Lin, T.E.; Hsu, K.C.; Chang, C.Y.; Chen, M.C.; Nepali, K.; Chang, J.Y.; Liou, J.P. 1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur. J. Med. Chem., 2019, 162, 612-630.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.066] [PMID: 30476825]
[112]
Lin, S.Y.; Yeh, T.K.; Kuo, C.C.; Song, J.S.; Cheng, M.F.; Liao, F.Y.; Chao, M.W.; Huang, H.L.; Chen, Y.L.; Yang, C.Y.; Wu, M.H.; Hsieh, C.L.; Hsiao, W.; Peng, Y.H.; Wu, J.S.; Lin, L.M.; Sun, M.; Chao, Y.S.; Shih, C.; Wu, S.Y.; Pan, S.L.; Hung, M.S.; Ueng, S.H. Phenyl benzenesulfonylhydrazides exhibit selective indoleamine 2, 3-dioxygenase inhibittion with potent in vivo pharmacodynamic activity and antitumor efficacy. J. Med. Chem., 2016, 59(1), 419-430.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01640] [PMID: 26653033]
[113]
Siddiqui, A.; Ceppi, P. A non-proliferative role of pyrimidine metabolism in cancer. Mol. Metab., 2020, 35100962
[http://dx.doi.org/10.1016/j.molmet.2020.02.005] [PMID: 32244187]
[114]
Kurmi, K.; Haigis, M.C. Nitrogen metabolism in cancer and immunity. Trends Cell Biol., 2020, 30(5), 408-424.
[http://dx.doi.org/10.1016/j.tcb.2020.02.005] [PMID: 32302552]
[115]
Taglieri, L.; Saccoliti, F.; Nicolai, A.; Peruzzi, G.; Madia, V.N.; Tudino, V.; Messore, A.; Di Santo, R.; Artico, M.; Taurone, S.; Salvati, M.; Costi, R.; Scarpa, S. Discovery of a pyrimidine compound endowed with antitumor activity. Invest. New Drugs, 2020, 38(1), 39-49.
[http://dx.doi.org/10.1007/s10637-019-00762-y] [PMID: 30900116]
[116]
Cortellini, A.; Leonetti, A.; Catino, A.; Pizzutillo, P.; Ricciuti, B.; De Giglio, A.; Chiari, R.; Bordi, P.; Santini, D.; Giusti, R.; De Tursi, M.; Brocco, D.; Zoratto, F.; Rastelli, F.; Citarella, F.; Russano, M.; Filetti, M.; Marchetti, P.; Berardi, R.; Torniai, M.; Cortinovis, D.; Sala, E.; Maggioni, C.; Follador, A.; Macerelli, M.; Nigro, O.; Tuzi, A.; Iacono, D.; Migliorino, M.R.; Banna, G.; Porzio, G.; Cannita, K.; Ferrara, M.G.; Bria, E.; Galetta, D.; Ficorella, C.; Tiseo, M. Osimertinib beyond disease progression in T790M EGFR-positive NSCLC patients: a multicenter study of clinicians’ attitudes. Clin. Transl. Oncol., 2020, 22(6), 844-851.
[http://dx.doi.org/10.1007/s12094-019-02193-w] [PMID: 31392645]
[117]
Ikushima, H.; Sakatani, T.; Usui, K. Clinical features of patients with an epidermal growth factor receptor T790M mutation detected in circulating tumor DNA. Oncology, 2020, 98(1), 23-28.
[http://dx.doi.org/10.1159/000502528] [PMID: 31494653]
[118]
Foote, K.M.; Blades, K.; Cronin, A.; Fillery, S.; Guichard, S.S.; Hassall, L.; Hickson, I.; Jacq, X.; Jewsbury, P.J.; McGuire, T.M.; Nissink, J.W.M.; Odedra, R.; Page, K.; Perkins, P.; Suleman, A.; Tam, K.; Thommes, P.; Broadhurst, R.; Wood, C. Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): A potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J. Med. Chem., 2013, 56, 2125-2138.
[http://dx.doi.org/10.1021/jm301859s] [PMID: 23394205]
[119]
Lau, H.Y.; Ramanujulu, P.M.; Guo, D.; Yang, T.; Wirawan, M.; Casey, P.J.; Go, M.L.; Wang, M. An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biol. Ther., 2014, 15(9), 1280-1291.
[http://dx.doi.org/10.4161/cbt.29692] [PMID: 24971579]
[120]
Borkin, D.; Pollock, J.; Kempinska, K.; Purohit, T.; Li, X.; Wen, B.; Zhao, T.; Miao, H.; Shukla, S.; He, M.; Sun, D.; Cierpicki, T.; Grembecka, J. Property focused structure-based optimization of small molecule inhibitors of the protein-protein interaction between menin and mixed lineage leukemia (MLL). J. Med. Chem., 2016, 59(3), 892-913.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01305] [PMID: 26744767]
[121]
Borkin, D.; Klossowski, S.; Pollock, J.; Miao, H.; Linhares, B.M.; Kempinska, K.; Jin, Z.; Purohit, T.; Wen, B.; He, M.; Sun, D.; Cierpicki, T.; Grembecka, J. Complexity of blocking bivalent protein-protein interactions: Development of a highly potent inhibitor of the menin-mixed-lineage leukemia interaction. J. Med. Chem., 2018, 61(11), 4832-4850.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00071] [PMID: 29738674]
[122]
Borkin, D.; He, S.; Miao, H.; Kempinska, K.; Pollock, J.; Chase, J.; Purohit, T.; Malik, B.; Zhao, T.; Wang, J.; Wen, B.; Zong, H.; Jones, M.; Danet-Desnoyers, G.; Guzman, M.L.; Talpaz, M.; Bixby, D.L.; Sun, D.; Hess, J.L.; Muntean, A.G.; Maillard, I.; Cierpicki, T.; Grembecka, J. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell, 2015, 27(4), 589-602.
[http://dx.doi.org/10.1016/j.ccell.2015.02.016] [PMID: 25817203]
[123]
Certal, V.; Carry, J.C.; Halley, F.; Virone-Oddos, A.; Thompson, F.; Filoche-Rommé, B.; El-Ahmad, Y.; Karlsson, A.; Charrier, V.; Delorme, C.; Rak, A.; Abecassis, P.Y.; Amara, C.; Vincent, L.; Bonnevaux, H.; Nicolas, J.P.; Mathieu, M.; Bertrand, T.; Marquette, J.P.; Michot, N.; Benard, T.; Perrin, M.A.; Lemaitre, O.; Guerif, S.; Perron, S.; Monget, S.; Gruss-Leleu, F.; Doerflinger, G.; Guizani, H.; Brollo, M.; Delbarre, L.; Bertin, L.; Richepin, P.; Loyau, V.; Garcia-Echeverria, C.; Lengauer, C.; Schio, L. Discovery and optimization of pyrimidone indoline amide PI3Kβ inhibitors for the treatment of phosphatase and tensin homologue (PTEN)-deficient cancers. J. Med. Chem., 2014, 57(3), 903-920.
[http://dx.doi.org/10.1021/jm401642q] [PMID: 24387221]
[124]
Gao, X.; Cen, L.; Li, F.; Wen, R.; Yan, H.; Yao, H.; Zhu, S. Oral administration of indole substituted dipyrido[2,3-d]pyrimidine derivative exhibits anti-tumor activity via inhibiting AKT and ERK1/2 on hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2018, 505(3), 761-767.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.120] [PMID: 30293685]
[125]
Zhou, H.J.; Wang, J.; Yao, B.; Wong, S.; Djakovic, S.; Kumar, B.; Rice, J.; Valle, E.; Soriano, F.; Menon, M.K.; Madriaga, A.; Kiss von Soly, S.; Kumar, A.; Parlati, F.; Yakes, F.M.; Shawver, L.; Le Moigne, R.; Anderson, D.J.; Rolfe, M.; Wustrow, D. Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083). J. Med. Chem., 2015, 58(24), 9480-9497.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01346] [PMID: 26565666]
[126]
Gangjee, A.; Zaware, N.; Raghavan, S.; Ihnat, M.; Shenoy, S.; Kisliuk, R.L. Single agents with designed combination chemotherapy potential: synthesis and evaluation of substituted pyrimido[4,5-b]indoles as receptor tyrosine kinase and thymidylate synthase inhibitors and as antitumor agents. J. Med. Chem., 2010, 53(4), 1563-1578.
[http://dx.doi.org/10.1021/jm9011142] [PMID: 20092323]
[127]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.017] [PMID: 26807541]
[128]
Mishra, R.; Sachan, N.; Kumar, N.; Mishra, I.; Chand, P. Thiophene scaffold as prospective antimicrobial agent: A review. J. Heterocycl. Chem., 2018, 55(9), 2019-2034.
[http://dx.doi.org/10.1002/jhet.3249]
[129]
Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011]
[130]
Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça, Junior, F.J.B.; de Lima, M.D.C.A.; Pitta, M.G.D.R.; Pitta, I.D.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2017, 29(2), 157-166.
[PMID: 29256900]
[131]
Ma, F.; Liu, P.; Lei, M.; Liu, J.; Wang, H.; Zhao, S.; Hu, L. Design, synthesis and biological evaluation of indolin-2-one-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase3 (FLT3). Eur. J. Med. Chem., 2017, 127, 72-86.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.038] [PMID: 28038328]
[132]
Jiang, H.L.; Jin, J.Z.; Wu, D.; Xu, D.; Lin, G.F.; Yu, H.; Ma, D.Y.; Liang, J. Celastrol exerts synergistic effects with PHA-665752 and inhibits tumor growth of c-Met-deficient hepatocellular carcinoma in vivo. Mol. Biol. Rep., 2013, 40(7), 4203-4209.
[http://dx.doi.org/10.1007/s11033-013-2501-y] [PMID: 23649759]
[133]
Chen, C.W.; Wu, M.H.; Chen, Y.F.; Yen, T.Y.; Lin, Y.W.; Chao, S.H.; Tala, S.; Tsai, T.H.; Su, T.L.; Lee, T.C. A potent derivative of indolizino[6,7-b]indole for treatment of human non-small cell lung cancer cells. Neoplasia, 2016, 18, 100-112.
[http://dx.doi.org/10.1016/j.neo.2016.02.005]
[134]
Chang, S.M.; Christian, W.; Wu, M.H.; Chen, T.L.; Lin, Y.W.; Suen, C.S.; Pidugu, H.B.; Detroja, D.; Shah, A.; Hwang, M.J.; Su, T.L.; Lee, T.C. Novel indolizino[8,7-b]indole hybrids as anti-small cell lung cancer agents: Regioselective modulation of topoisomerase II inhibitory and DNA crosslinking activities. Eur. J. Med. Chem., 2017, 127, 235-249.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.046] [PMID: 28064078]
[135]
Rakesh, K.S.; Jagadish, S.; Swaroop, T.R.; Mohan, C.D.; Ashwini, N.; Harsha, K.B.; Zameer, F.; Girish, K.S.; Rangappa, K.S. Anti-cancer activity of 2,4-disubstituted thiophene derivatives: Dual inhibitors of lipoxygenase and cyclooxygenase. Med. Chem., 2015, 11(5), 462-472.
[http://dx.doi.org/10.2174/1573406411666141210141918] [PMID: 25494807]
[136]
Nawijn, M.C.; Alendar, A.; Berns, A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat. Rev. Cancer, 2011, 11(1), 23-34.
[http://dx.doi.org/10.1038/nrc2986] [PMID: 21150935]
[137]
Malone, T.; Schäfer, L.; Simon, N.; Heavey, S.; Cuffe, S.; Finn, S.; Moore, G.; Gately, K. Current perspectives on targeting PIM kinases to overcome mechanisms of drug resistance and immune evasion in cancer. Pharmacol. Ther., 2020, 207107454
[http://dx.doi.org/10.1016/j.pharmthera.2019.107454] [PMID: 31836451]
[138]
Barberis, C.; Moorcroft, N.; Arendt, C.; Levit, M.; Moreno-Mazza, S.; Batchelor, J.; Mechin, I.; Majid, T. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors - Part I. Bioorg. Med. Chem. Lett., 2017, 27(20), 4730-4734.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.069] [PMID: 28947155]
[139]
Barberis, C.; Moorcroft, N.; Pribish, J.; Tserlin, E.; Gross, A.; Czekaj, M.; Barrague, M.; Erdman, P.; Majid, T.; Batchelor, J.; Levit, M.; Hebert, A.; Shen, L.; Moreno-Mazza, S.; Wang, A. Discovery of n-substituted 7-azaindoles as pan-pim kinase inhibitors - lead series identification - Part II. Bioorg. Med. Chem. Lett., 2017, 27(20), 4735-4740.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.068] [PMID: 28927793]
[140]
Barberis, C.; Pribish, J.; Tserlin, E.; Gross, A.; Czekaj, M.; Barragué, M.; Erdman, P.; Maniar, S.; Jiang, J.; Fire, L.; Patel, V.; Hebert, A.; Levit, M.; Wang, A.; Sun, F.; Huang, S.A. Discovery of N-substituted 7-azaindoles as Pan-PIM kinases inhibitors - Lead optimization - Part III. Bioorg. Med. Chem. Lett., 2019, 29(3), 491-495.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.015] [PMID: 30553737]
[141]
Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.005] [PMID: 30981113]
[142]
Xu, Y.; Wu, L.; Rashid, H.U.; Jing, D.; Liang, X.; Wang, H.; Liu, X.; Jiang, J.; Wang, L.; Xie, P. Novel indolo-sophoridinic scaffold as Topo I inhibitors: Design, synthesis and biological evaluation as anticancer agents. Eur. J. Med. Chem., 2018, 156, 479-492.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.028] [PMID: 30025344]
[143]
Li, Z.; Luo, M.; Cai, B. Haroon-Ur-Rashid; Huang, M.; Jiang, J.; Wang, L.; Wu, L. Design, synthesis, biological evaluation and structure-activity relationship of sophoridine derivatives bearing pyrrole or indole scaffold as potential antitumor agents. Eur. J. Med. Chem., 2018, 157, 665-682.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.021] [PMID: 30125725]
[144]
Zhao, W.; He, L.; Xiang, T.L.; Tang, Y.J. Discover 4β-NH-(6-aminoindole)-4-desoxy-podophyllotoxin with nanomolar-potency antitumor activity by improving the tubulin binding affinity on the basis of a potential binding site nearby colchicine domain. Eur. J. Med. Chem., 2019, 170, 73-86.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.006] [PMID: 30878833]
[145]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and B-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6, 25387.
[http://dx.doi.org/10.1038/srep25387] [PMID: 27138035]
[146]
Li, Y.; Yan, W.; Yang, J.; Yang, Z.; Hu, M.; Bai, P.; Tang, M.; Chen, L. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance. Eur. J. Med. Chem., 2018, 152, 516-526.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.003] [PMID: 29754076]
[147]
Costa, B.; Bendinelli, S.; Gabelloni, P.; Da Pozzo, E.; Daniele, S.; Scatena, F.; Vanacore, R.; Campiglia, P.; Bertamino, A.; Gomez-Monterrey, I.; Sorriento, D.; Del Giudice, C.; Iaccarino, G.; Novellino, E.; Martini, C. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor. PLoS One, 2013, 8(8)e72281
[http://dx.doi.org/10.1371/journal.pone.0072281] [PMID: 23977270]
[148]
Soares, J.; Raimundo, L.; Pereira, N.A.L.; Monteiro, Â.; Gomes, S.; Bessa, C.; Pereira, C.; Queiroz, G.; Bisio, A.; Fernandes, J.; Gomes, C.; Reis, F.; Gonçalves, J.; Inga, A.; Santos, M.M.; Saraiva, L. Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule. Oncotarget, 2016, 7(4), 4326-4343.
[http://dx.doi.org/10.18632/oncotarget.6775] [PMID: 26735173]
[149]
Zheng, X.; Li, D.; Zhao, C.; Wang, Q.; Song, H.; Qin, Y.; Liao, L.; Zhang, L.; Lin, Y.; Wang, X. Reversal of multidrug resistance in vitro and in vivo by 5-N-formylardeemin, a new ardeemin derivative. Apoptosis, 2014, 19(8), 1293-1300.
[http://dx.doi.org/10.1007/s10495-014-0998-8] [PMID: 24858827]
[150]
Althagafi, I.I.; Abouzied, A.S.; Farghaly, T.A.; Al-Qurashi, N.T.; Alfaifi, M.Y.; Shaaban, M.R.; Aziz, M.R.A. Novel nano-sized bis-indoline derivatives as antitumor agents. J. Heterocycl. Chem., 2019, 56(2), 391-399.
[http://dx.doi.org/10.1002/jhet.3410]
[151]
Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm. (Weinheim), 2020, 353(3)e1900299
[http://dx.doi.org/10.1002/ardp.201900299] [PMID: 31985855]
[152]
Chen, L.; Wang, J.; Wu, J.; Zheng, Q.; Hu, J. Indirubin suppresses ovarian cancer cell viabilities through the STAT3 signaling pathway. Drug Des. Devel. Ther., 2018, 12, 3335-3342.
[http://dx.doi.org/10.2147/DDDT.S174613] [PMID: 30323565]
[153]
Chakraborty, S.; Ghosh, S.; Banerjee, B.; Santra, A.; Bhat, J.; Adhikary, A.; Chatterjee, S.; Misra, A.K.; Sen, P.C. Mephebrindole, a synthetic indole analog coordinates the crosstalk between p38MAPK and eIF2α/ATF4/CHOP signalling pathways for induction of apoptosis in human breast carcinoma cells. Apoptosis, 2016, 21(10), 1106-1124.
[http://dx.doi.org/10.1007/s10495-016-1268-8] [PMID: 27392939]
[154]
Godugu, C.; Doddapaneni, R.; Safe, S.H.; Singh, M. Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer. Eur. J. Pharm. Biopharm., 2016, 108, 168-179.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.006] [PMID: 27586082]
[155]
Chakraborty, S.; Ghosh, S.; Banerjee, B.; Santra, A.; Adhikary, A.; Misra, A.K.; Sen, P.C. Phemindole, a synthetic di-indole derivative maneuvers the store operated calcium entry (SOCE) to induce potent anti-carcinogenic activity in human triple negative breast cancer cells. Front. Pharmacol., 2016, 7, 114-134.
[http://dx.doi.org/10.3389/fphar.2016.00114] [PMID: 27199756]
[156]
Hedrick, E.; Li, X.; Cheng, Y.; Lacey, A.; Mohankumar, K.; Zarei, M.; Safe, S. Potent inhibition of breast cancer by bis-indole-derived nuclear receptor 4A1 (NR4A1) antagonists. Breast Cancer Res. Treat., 2019, 177(1), 29-40.
[http://dx.doi.org/10.1007/s10549-019-05279-9] [PMID: 31119568]
[157]
Bhowmik, A.; Das, N.; Pal, U.; Mandal, M.; Bhattacharya, S.; Sarkar, M.; Jaisankar, P.; Maiti, N.C.; Ghosh, M.K. 2,2′-diphenyl-3,3′-diindolylmethane: a potent compound induces apoptosis in breast cancer cells by inhibiting EGFR pathway. PLoS One, 2013, 8(3)e59798
[http://dx.doi.org/10.1371/journal.pone.0059798] [PMID: 23555785]
[158]
Chen, H.; Wang, W.; Zhang, X.; Liu, S.; Wang, Y.; Zhu, H.; Wu, J.; Wang, Y.; Zhao, M.; Peng, S.; Peng, S. Discovery of DEBIC to correlate P-selectin inhibition and DNA intercalation in cancer therapy and complicated thrombosis. Oncotarget, 2017, 9(63), 32119-32133.
[http://dx.doi.org/10.18632/oncotarget.23151] [PMID: 30181803]
[159]
Li, Y.; Wang, W.; Xu, X.; Sun, S.; Qu, X.J. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) inhibited human hepatocellular carcinoma growth through upregulation of Sirtuin-3 (SIRT3). Biomed. Pharmacother., 2015, 69, 125-132.
[http://dx.doi.org/10.1016/j.biopha.2014.11.005] [PMID: 25661348]
[160]
Ahn, S.; Hwang, D.J.; Barrett, C.M.; Yang, J.; Duke, C.B., III; Miller, D.D.; Dalton, J.T. A novel bis-indole destabilizes microtubules and displays potent in vitro and in vivo antitumor activity in prostate cancer. Cancer Chemother. Pharmacol., 2011, 67(2), 293-304.
[http://dx.doi.org/10.1007/s00280-010-1319-8] [PMID: 20383708]
[161]
Yang, J.; Ahn, S.; Wu, Z.; Hwang, D.J.; Miller, D.D.; Dalton, J.T. HBx-associated long non-coding RNA activated by TGF-β promotes cell invasion and migration by inducing autophagy in primary liver cancer. Int. J. Oncol., 2012, 41, 337-344.
[PMID: 22576690]
[162]
Lo, W.Y.; Chang, N.W. An indirubin derivative, indirubin-3′-monoxime suppresses oral cancer tumorigenesis through the downregulation of survivin. PLoS One, 2013, 8(8)e70198
[http://dx.doi.org/10.1371/journal.pone.0070198] [PMID: 23967071]
[163]
Choi, S.J.; Lee, J.E.; Jeong, S.Y. Im, I.; Lee, S.D.; Lee, E.J.; Lee, S.K.; Kwon, S.M.; Ahn, S.G.; Yoon, J.H.; Han, S.Y.; Kim, J.I.; Kim, Y.C. 5,5′-substituted indirubin-3′-oxime derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity. J. Med. Chem., 2010, 53(9), 3696-3706.
[http://dx.doi.org/10.1021/jm100080z] [PMID: 20361800]
[164]
Liu, L.; Gaboriaud, N.; Vougogianopoulou, K.; Tian, Y.; Wu, J.; Wen, W.; Skaltsounis, L.; Jove, R. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells. Cancer Biol. Ther., 2014, 15(2), 178-184.
[http://dx.doi.org/10.4161/cbt.26721] [PMID: 24100507]
[165]
Liu, J.; Zhao, M.; Qian, K.; Zhang, X.; Lee, K.H.; Wu, J.; Liu, Y.N.; Peng, S. Benzyl 1,2,3,5,11,11a-hexahydro-3,3-dimethyl-1-oxo-6H-imidazo[30,40:1,2]pyridin[3,4-b]indole-2-substituted acetates: One-pot-preparation, anti-tumor activity, docking toward DNA and 3D QSAR analysis. Bioorg. Med. Chem., 2010, 18, 1910-1917.
[http://dx.doi.org/10.1016/j.bmc.2010.01.038] [PMID: 20171109]
[166]
Amr, A.E.G.E.; Abdalla, M.M.; Al-Omar, M.A.; Elsayed, E.A. Anti-ovarian and anti-breast cancers with dual topoisomerase II/braf600e inhibitors activities of some substituted indole derivatives. Biomed. Res. (Aligarh), 2017, 28e75
[167]
Offerman, S.C.; Kadirvel, M.; Abusara, O.H.; Bryant, J.L.; Telfer, B.A.; Brown, G.; Freeman, S.; White, A.; Williams, K.J.; Aojula, H.S. N-tert-Prenylation of the indole ring improves the cytotoxicity of a short antagonist G analogue against small cell lung cancer. MedChemComm, 2017, 8(3), 551-558.
[http://dx.doi.org/10.1039/C6MD00691D] [PMID: 30108771]
[168]
Guo, L.; Chen, X.; Chen, W.; Ma, Q.; Fan, W.; Zhang, J.; Dai, B. Molecular hybrid design, synthesis, in vitro and in vivo anticancer evaluation, and mechanism of action of N-acylhydrazone linked, heterobivalent β-carbolines. Bioorg. Chem., 2020, 96103612
[http://dx.doi.org/10.1016/j.bioorg.2020.103612] [PMID: 32007724]
[169]
Guo, L.; Chen, W.; Cao, R.; Fan, W.; Ma, Q.; Zhang, J.; Dai, B. Synthesis and structure-activity relationships of asymmetric dimeric β-carboline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2018, 147, 253-265.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.003] [PMID: 29448140]
[170]
Shi, B.; Cao, R.; Fan, W.; Guo, L.; Ma, Q.; Chen, X.; Zhang, G.; Qiu, L.; Song, H. Design, synthesis and in vitro and in vivo antitumor activities of novel bivalent β-carbolines. Eur. J. Med. Chem., 2013, 60, 10-22.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.033] [PMID: 23279863]
[171]
Munuganti, R.S.N.; Hassona, M.D.H.; Leblanc, E.; Frewin, K.; Singh, K.; Ma, D.; Ban, F.; Hsing, M.; Adomat, H.; Lallous, N.; Andre, C.; Jonadass, J.P.S.; Zoubeidi, A.; Young, R.N.; Guns, E.T.; Rennie, P.S.; Cherkasov, A. Identification of a potent antiandrogen that targets the BF3 site of the androgen receptor and inhibits enzalutamide-resistant prostate cancer. Chem. Biol., 2014, 21(11), 1476-1485.
[http://dx.doi.org/10.1016/j.chembiol.2014.09.012] [PMID: 25459660]
[172]
Stevenson, R.J.; Denny, W.A.; Ashoorzadeh, A.; Pruijn, F.B.; van Leeuwen, W.F.; Tercel, M. The effect of a bromide leaving group on the properties of nitro analogs of the duocarmycins as hypoxia-activated prodrugs and phosphate pre-prodrugs for antitumor therapy. Bioorg. Med. Chem., 2011, 19(20), 5989-5998.
[http://dx.doi.org/10.1016/j.bmc.2011.08.045] [PMID: 21920763]
[173]
Wang, W.; Zhao, M.; Wang, Y.; Liu, J.; Wu, J.; Kang, G.; Peng, S. 2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl-acetic acid methyl ester (MIAM): its anti-cancer efficacy and intercalation mechanism identified via multi-model systems. Mol. Biosyst., 2011, 7(3), 766-772.
[http://dx.doi.org/10.1039/C0MB00049C] [PMID: 21116565]
[174]
Li, Y.; Wang, W.; Xu, X.; Sun, S.; Xu, X.; Qu, X.J. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester inhibited hepatocellular carcinoma growth in Bel-7402 cells and its resistant variants by activation of NOX4 and SIRT3. BioMed Res. Int., 2015, 2015e491205
[http://dx.doi.org/10.1155/2015/491205] [PMID: 25961022]
[175]
Sherer, C.; Tolaymat, I.; Rowther, F.; Warr, T.; Snape, T.J. Preliminary SAR on indole-3-carbinol and related fragments reveals a novel anticancer lead compound against resistant glioblastoma cells. Bioorg. Med. Chem. Lett., 2017, 27(7), 1561-1565.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.033] [PMID: 28256372]
[176]
Mady, M.S.; Mohyeldin, M.M.; Ebrahim, H.Y.; Elsayed, H.E.; Houssen, W.E.; Haggag, E.G.; Soliman, R.F.; El Sayed, K.A. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion. Bioorg. Med. Chem., 2016, 24(2), 113-122.
[http://dx.doi.org/10.1016/j.bmc.2015.11.038] [PMID: 26692349]
[177]
Nugroho, A.E.; Hirasawa, Y.; Hosoya, T.; Awang, K.; Hadi, A.H.A.; Morita, H. Bisleucocurine A, a novel bisindole alkaloid from Leuconotis griffithii. Tetrahedron Lett., 2010, 51, 2589-2594.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.126]
[178]
Hirasawa, Y.; Shoji, T.; Arai, T.; Nugroho, A.E.; Deguchi, J.; Hosoya, T.; Uchiyama, N.; Goda, Y.; Awang, K.; Hadi, A.H.A.; Shiro, M.; Morita, H. Bisleuconothine A, an eburnane-aspidosperma bisindole alkaloid from Leuconotis griffithii. Bioorg. Med. Chem. Lett., 2010, 20(6), 2021-2024.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.051] [PMID: 20153644]
[179]
Kong, L.M.; Feng, T.; Wang, Y.Y.; Li, X.Y.; Ye, Z.N.; An, T.; Qing, C.; Luo, X.D.; Li, Y. Bisleuconothine A, a bisindole alkaloid, inhibits colorectal cancer cell in vitro and in vivo targeting Wnt signaling. Oncotarget, 2016, 7(9), 10203-10214.
[http://dx.doi.org/10.18632/oncotarget.7190] [PMID: 26862734]
[180]
Saraswati, S.; Agrawal, S.S. Brucine, an indole alkaloid from Strychnos nux-vomica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Lett., 2013, 332, 83-93.
[http://dx.doi.org/10.1016/j.canlet.2013.01.012] [PMID: 23348691]
[181]
Masuelli, L.; Pantanella, F.; La Regina, G.; Benvenuto, M.; Fantini, M.; Mattera, R.; Di Stefano, E.; Mattei, M.; Silvestri, R.; Schippa, S.; Manzari, V.; Modesti, A.; Bei, R. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour Biol., 2016, 37(3), 3705-3717.
[http://dx.doi.org/10.1007/s13277-015-4207-3] [PMID: 26462840]
[182]
Cheng, J.; Li, W.; Kang, B.; Zhou, Y.; Song, J.; Dan, S.; Yang, Y.; Zhang, X.; Li, J.; Yin, S.; Cao, H.; Yao, H.; Zhu, C.; Yi, W.; Zhao, Q.; Xu, X.; Zheng, M.; Zheng, S.; Li, L.; Shen, B.; Wang, Y.J. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nat. Commun., 2015, 6, 7209.
[http://dx.doi.org/10.1038/ncomms8209] [PMID: 26059097]
[183]
Bian, Y.; Li, Y.; Shrestha, G.; Wen, X.; Cai, B.; Wang, K.; Wan, X. ITE, an endogenous aryl hydrocarbon receptor ligand, suppresses endometrial cancer cell proliferation and migration. Toxicology, 2019, 421, 1-8.
[http://dx.doi.org/10.1016/j.tox.2019.03.017] [PMID: 30953668]
[184]
Ye, Y.; Miao, S.; Wang, Y.; Zhou, J.; Lu, R. 3,3′-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells. Oncol. Lett., 2015, 9(5), 2393-2397.
[http://dx.doi.org/10.3892/ol.2015.3008] [PMID: 26137077]
[185]
Nicastro, H.L.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-diindolylmethane rapidly and selectively inhibits hepatocyte growth factor/c-Met signaling in breast cancer cells. J. Nutr. Biochem., 2013, 24(11), 1882-1888.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.004] [PMID: 23968581]
[186]
Shorey, L.E.; Hagman, A.M.; Williams, D.E.; Ho, E.; Dashwood, R.H.; Benninghoff, A.D. 3,3′-Diindolylmethane induces G1 arrest and apoptosis in human acute T-cell lymphoblastic leukemia cells. PLoS One, 2012, 7(4)e34975
[http://dx.doi.org/10.1371/journal.pone.0034975] [PMID: 22514694]
[187]
Chen, Z.; Tao, Z.Z.; Chen, S.M.; Chen, C.; Li, F.; Xiao, B.K. Indole-3-carbinol inhibits nasopharyngeal carcinoma growth through cell cycle arrest in vivo and in vitro. PLoS One, 2013, 8(12)e82288
[http://dx.doi.org/10.1371/journal.pone.0082288] [PMID: 24358165]
[188]
Chen, C.; Chen, S.M.; Xu, B.; Chen, Z.; Wang, F.; Ren, J.; Xu, Y.; Wang, Y.; Xiao, B.K.; Tao, Z.Z. In vivo and in vitro study on the role of 3,3′-diindolylmethane in treatment and prevention of nasopharyngeal carcinoma. Carcinogenesis, 2013, 34(8), 1815-1821.
[http://dx.doi.org/10.1093/carcin/bgt122] [PMID: 23568953]
[189]
Kandala, P.K.; Wright, S.E.; Srivastava, S.K. Blocking epidermal growth factor receptor activation by 3,3′-diindolylmethane suppresses ovarian tumor growth in vitro and in vivo. J. Pharmacol. Exp. Ther., 2012, 341(1), 24-32.
[http://dx.doi.org/10.1124/jpet.111.188706] [PMID: 22205686]
[190]
Aronchik, I.; Kundu, A.; Quirit, J.G.; Firestone, G.L. The antiproliferative response of indole-3-carbinol in human melanoma cells is triggered by an interaction with NEDD4-1 and disruption of wild-type PTEN degradation. Mol. Cancer Res., 2014, 12(11), 1621-1634.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0018] [PMID: 25009292]
[191]
Ye, Y.; Fang, Y.; Xu, W.; Wang, Q.; Zhou, J.; Lu, R. 3,3′-Diindolylmethane induces anti-human gastric cancer cells by the miR-30e-ATG5 modulating autophagy. Biochem. Pharmacol., 2016, 115, 77-84.
[http://dx.doi.org/10.1016/j.bcp.2016.06.018] [PMID: 27372603]
[192]
Ahmad, A.; Ali, S.; Wang, Z.; Ali, A.S.; Sethi, S.; Sakr, W.A.; Raz, A.; Rahman, K.M. 3,3′-Diindolylmethane enhances taxotere-induced growth inhibition of breast cancer cells through downregulation of FoxM1. Int. J. Cancer, 2011, 129(7), 1781-1791.
[http://dx.doi.org/10.1002/ijc.25839] [PMID: 21154750]
[193]
Tin, A.S.; Park, A.H.; Sundar, S.N.; Firestone, G.L. Essential role of the cancer stem/progenitor cell marker nucleostemin for indole-3-carbinol anti-proliferative responsiveness in human breast cancer cells. BMC Biol., 2014, 12, 72.
[http://dx.doi.org/10.1186/s12915-014-0072-6] [PMID: 25209720]
[194]
Thomson, C.A.; Ho, E.; Strom, M.B. Chemopreventive properties of 3,3′-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr. Rev., 2016, 74(7), 432-443.
[http://dx.doi.org/10.1093/nutrit/nuw010] [PMID: 27261275]
[195]
Zołek, T.; Trzeciak, A. The mechanism of action of indole-3-carbinol and 3,3′-diindolylmethane in cancer chemoprevention. Biuletyn Wydzialu Farmaceutycznego Warszawskiego Uniwersytetu Medycznego, 2017, 2, 8-15.
[196]
Wu, T.Y.; Khor, T.O.; Su, Z.Y.; Saw, C.L.L.; Shu, L.; Cheung, K.L.; Huang, Y.; Yu, S.; Kong, A.N. Epigenetic modifications of Nrf2 by 3,3′-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J., 2013, 15(3), 864-874.
[http://dx.doi.org/10.1208/s12248-013-9493-3] [PMID: 23658110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy