Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-Breast Cancer Activities of Ketoprofen-RGD Conjugate by Targeting Breast Cancer Stem-Like Cells and Parental Cells

Author(s): Shokoofe Noori*, Sadegh Rajabi, Mostafa R. Tavirani, Bahare Shokri and Afshin Zarghi*

Volume 21 , Issue 8 , 2021

Published on: 08 September, 2020

Page: [1027 - 1036] Pages: 10

DOI: 10.2174/1871520620666200908105416

Price: $65

Abstract

Background: Cancer Stem Cells (CSCs) play an important role in various stages of cancer development, advancement, and therapy resistance. Ketoprofen-RGD has been revealed to act as an anti-cancer agent against some tumors.

Objective: We aimed to explore the effects of a novel Ketoprofen-RGD compound on the suppression of Breast Cancer Stem-like Cells (BCSCs) and their parental cells.

Methods: Mammospheres were developed from MCF-7 cells and assessed by CSC surface markers through flowcytometry. The anti-proliferative and pro-apoptotic activities of Ketoprofen-RGD were measured by MTS assay and flowcytometry. The expression levels of stemness markers and JAK2/STAT proteins were measured by quantitative Real Time-PCR (qRT-PCR) and western blotting, respectively. Intracellular Reactive Oxygen Species (ROS) was measured using a cell permeable, oxidant-sensitive fluorescence probe (carboxy-H2DCFDA).

Results: Ketoprofen-RGD significantly reduced the mammosphere formation rate and the expression of three out of six stemness markers and remarkably decreased viability and induced apoptosis of spheroidal and parental cells compared to controls. Further experiments using CD95L, as a death ligand, and ZB4 antibody, as an extrinsic apoptotic pathway blocker, showed that Ketoprofen-RGD induced intrinsic pathway, suggesting a mechanism by which Ketoprofen-RGD triggers apoptosis. ROS production was also another way to induce apoptosis. Results of western blot analysis also revealed a marked diminish in the phosphorylation of JAK2 and STAT proteins.

Conclusion: Our study, for the first time, elucidated an anti-BCSC activity for Ketoprofen-RGD via declining stemness markers, inducing toxicity, and apoptosis in these cells and parental cells. These findings may suggest this compound as a promising anti-breast cancer.

Keywords: Breast cancer, stem cell, Ketoprofen-RGD, apoptosis, anti-cancer, STAT3, JAK2.

Graphical Abstract
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Bahcecioglu, G.; Basara, G.; Ellis, B.W.; Ren, X.; Zorlutuna, P. Breast cancer models: Engineering the tumor microenvironment. Acta Biomater., 2020, 106, 1-21.
[http://dx.doi.org/10.1016/j.actbio.2020.02.006] [PMID: 32045679]
[3]
Wei, S.; Siegal, G.P. Surviving at a distant site: The organotropism of metastatic breast cancer. Semin. Diagn. Pathol., 2018, 35(2), 108-111.
[http://dx.doi.org/10.1053/j.semdp.2017.11.008] [PMID: 29174933]
[4]
Yazdani, A.; Dorri, S.; Atashi, A.; Shirafkan, H.; Zabolinezhad, H. Bone metastasis prognostic factors in breast cancer. Breast Cancer (Auckl.), 2019, 131178223419830978
[http://dx.doi.org/10.1177/1178223419830978] [PMID: 30828246]
[5]
Medeiros, B.; Allan, A.L. Molecular mechanisms of breast cancer metastasis to the lung: Clinical and experimental perspectives. Int. J. Mol. Sci., 2019, 20(9), 2272.
[http://dx.doi.org/10.3390/ijms20092272] [PMID: 31071959]
[6]
Bale, R.; Putzer, D.; Schullian, P. Local treatment of breast cancer liver metastasis. Cancers (Basel), 2019, 11(9), 1341.
[http://dx.doi.org/10.3390/cancers11091341] [PMID: 31514362]
[7]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[8]
Phi, L.T.H.; Sari, I.N.; Yang, Y.G.; Lee, S.H.; Jun, N.; Kim, K.S.; Lee, Y.K.; Kwon, H.Y. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int., 2018, 20185416923
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[9]
Ayob, A.Z.; Ramasamy, T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci., 2018, 25(1), 20.
[http://dx.doi.org/10.1186/s12929-018-0426-4] [PMID: 29506506]
[10]
Lindeman, G.J.; Visvader, J.E. Insights into the cell of origin in breast cancer and breast cancer stem cells. Asia Pac. J. Clin. Oncol., 2010, 6(2), 89-97.
[http://dx.doi.org/10.1111/j.1743-7563.2010.01279.x] [PMID: 20565420]
[11]
Gao, Q.; Zhou, G.; Lin, S.J.; Paus, R.; Yue, Z. How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Exp. Dermatol., 2019, 28(4), 413-418.
[http://dx.doi.org/10.1111/exd.13846] [PMID: 30457678]
[12]
Bednarek, A.; Mykała-Cieśla, J.; Pogoda, K.; Jagiełło-Gruszfeld, A.; Kunkiel, M.; Winder, M.; Chudek, J. Limitations of systemic oncological therapy in breast cancer patients with chronic kidney disease. J. Oncol., 2020, 20207267083
[http://dx.doi.org/10.1155/2020/7267083] [PMID: 32508921]
[13]
Denduluri, N.; Chavez-MacGregor, M.; Telli, M.L.; Eisen, A.; Graff, S.L.; Hassett, M.J.; Holloway, J.N.; Hurria, A.; King, T.A.; Lyman, G.H.; Partridge, A.H.; Somerfield, M.R.; Trudeau, M.E.; Wolff, A.C.; Giordano, S.H. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO clinical practice guideline focused update. J. Clin. Oncol., 2018, 36(23), 2433-2443.
[http://dx.doi.org/10.1200/JCO.2018.78.8604] [PMID: 29787356]
[14]
Iqbal, J.; Chong, P.Y.; Tan, P.H. Breast cancer stem cells: An update. J. Clin. Pathol., 2013, 66(6), 485-490.
[http://dx.doi.org/10.1136/jclinpath-2012-201304] [PMID: 23322821]
[15]
Tang, Y.; Tian, X.C. JAK-STAT3 and somatic cell reprogramming. JAK-STAT, 2013, 2(4)e24935
[http://dx.doi.org/10.4161/jkst.24935] [PMID: 24470976]
[16]
Cochrane, C.R.; Szczepny, A.; Watkins, D.N.; Cain, J.E. Hedgehog signaling in the maintenance of cancer stem cells. Cancers (Basel), 2015, 7(3), 1554-1585.
[http://dx.doi.org/10.3390/cancers7030851] [PMID: 26270676]
[17]
Flanagan, D.J.; Austin, C.R.; Vincan, E.; Phesse, T.J. Wnt signalling in gastrointestinal epithelial stem cells. Genes (Basel), 2018, 9(4), 178.
[http://dx.doi.org/10.3390/genes9040178] [PMID: 29570681]
[18]
Liu, J.; Sato, C.; Cerletti, M.; Wagers, A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr. Top. Dev. Biol., 2010, 92, 367-409.
[http://dx.doi.org/10.1016/S0070-2153(10)92012-7] [PMID: 20816402]
[19]
Sokolowski, K.M.; Koprowski, S.; Kunnimalaiyaan, S.; Balamurugan, M.; Gamblin, T.C.; Kunnimalaiyaan, M. Potential molecular targeted therapeutics: Role of PI3-K/Akt/mTOR inhibition in cancer. Anticancer. Agents Med. Chem., 2016, 16(1), 29-37.
[http://dx.doi.org/10.2174/1871520615666150716104408] [PMID: 26179270]
[20]
Rinkenbaugh, A.L.; Baldwin, A.S. The NF-κB pathway and cancer stem cells. Cells, 2016, 5(2), 16.
[http://dx.doi.org/10.3390/cells5020016] [PMID: 27058560]
[21]
Matsui, W.H. Cancer stem cell signaling pathways. Medicine (Baltimore), 2016, 95(1)(Suppl. 1), S8-S19.
[http://dx.doi.org/10.1097/MD.0000000000004765] [PMID: 27611937]
[22]
Xiong, H.; Zhang, Z.G.; Tian, X.Q.; Sun, D.F.; Liang, Q.C.; Zhang, Y.J.; Lu, R.; Chen, Y.X.; Fang, J.Y. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia, 2008, 10(3), 287-297.
[http://dx.doi.org/10.1593/neo.07971] [PMID: 18320073]
[23]
Liu, Y.; Gao, X.; Wang, S.; Yuan, X.; Pang, Y.; Chen, J.; Wang, J. Cancer stem cells are regulated by STAT3 signalling in Wilms tumour. J. Cancer, 2018, 9(8), 1486-1499.
[http://dx.doi.org/10.7150/jca.23277] [PMID: 29721059]
[24]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), 2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]
[25]
Zhang, Z.; Chen, F.; Shang, L. Advances in antitumor effects of NSAIDs. Cancer Manag. Res., 2018, 10, 4631-4640.
[http://dx.doi.org/10.2147/CMAR.S175212] [PMID: 30410398]
[26]
Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. NSAIDs inhibit tumorigenesis, but how? Clin. Cancer Res., 2014, 20(5), 1104-1113.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1573] [PMID: 24311630]
[27]
Liggett, J.L.; Zhang, X.; Eling, T.E.; Baek, S.J. Anti-tumor activity of non-steroidal anti-inflammatory drugs: Cyclooxygenase-independent targets. Cancer Lett., 2014, 346(2), 217-224.
[http://dx.doi.org/10.1016/j.canlet.2014.01.021] [PMID: 24486220]
[28]
Urbanska, A.M.; Zhang, X.; Prakash, S. Bioengineered colorectal cancer drugs: Orally delivered anti-inflammatory agents. Cell Biochem. Biophys., 2015, 72(3), 757-769.
[http://dx.doi.org/10.1007/s12013-015-0528-5] [PMID: 27352189]
[29]
Cheng, K.C.; Li, Y.C.; Yu, C.S.; Yu, F.S.; Lee, J.H.; Lin, M.L.; Yang, J.S.; Chung, J.G. Ketoprofen-inhibited N-acetyltransferase activity and gene expression in human colon tumor cells. Anticancer Res., 2006, 26(2A), 1105-1111.
[PMID: 16619513]
[30]
Marjanović, M.; Zorc, B.; Pejnović, L.; Zovko, M.; Kralj, M. Fenoprofen and ketoprofen amides as potential antitumor agents. Chem. Biol. Drug Des., 2007, 69(3), 222-226.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00494.x] [PMID: 17441909]
[31]
Dell’Omo, G.; Crescenti, D.; Vantaggiato, C.; Parravicini, C.; Borroni, A.P.; Rizzi, N.; Garofalo, M.; Pinto, A.; Recordati, C.; Scanziani, E.; Bassi, F.D.; Pruneri, G.; Conti, P.; Eberini, I.; Maggi, A.; Ciana, P. Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs. Br. J. Cancer, 2019, 120(5), 537-546.
[http://dx.doi.org/10.1038/s41416-018-0372-7] [PMID: 30739913]
[32]
Mohammadi, R.; Shokri, B.; Shamshirian, D.; Zarghi, A.; Shahhosseini, S. Synthesis and biological evaluation of RGD conjugated with Ketoprofen/Naproxen and radiolabeled with [99mTc] via N4(GGAG) for αVβ3 integrin-targeted drug delivery. Daru, 2020, 28(1), 87-96.
[http://dx.doi.org/10.1007/s40199-019-00318-8] [PMID: 31845157]
[33]
Aoudjit, F.; Vuori, K. Integrin signaling in cancer cell survival and chemoresistance. Chemother. Res. Pract., 2012, 2012283181
[http://dx.doi.org/10.1155/2012/283181] [PMID: 22567280]
[34]
Shokri, B.; Zarghi, A.; Shahhoseini, S.; Mohammadi, R.; Kobarfard, F. Design, synthesis and biological evaluation of ketoprofen conjugated to RGD/NGR for targeted cancer therapy. Iran. J. Pharm. Res., 2018, 17(4), 1297-1305.
[PMID: 30568688]
[35]
Horimoto, Y.; Arakawa, A.; Sasahara, N.; Tanabe, M.; Sai, S.; Himuro, T.; Saito, M. Combination of cancer stem cell markers CD44 and CD24 is superior to ALDH1 as a prognostic indicator in breast cancer patients with distant metastases. PLoS One, 2016, 11(10)e0165253
[http://dx.doi.org/10.1371/journal.pone.0165253] [PMID: 27768764]
[36]
O’Flaherty, J.D.; Barr, M.; Fennell, D.; Richard, D.; Reynolds, J.; O’Leary, J.; O’Byrne, K. The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy. J. Thorac. Oncol., 2012, 7(12), 1880-1890.
[http://dx.doi.org/10.1097/JTO.0b013e31826bfbc6] [PMID: 23154562]
[37]
Zhang, F.; Song, C.; Ma, Y.; Tang, L.; Xu, Y.; Wang, H. Effect of fibroblasts on breast cancer cell mammosphere formation and regulation of stem cell-related gene expression. Int. J. Mol. Med., 2011, 28(3), 365-371.
[PMID: 21573501]
[38]
Peter, M.E.; Hadji, A.; Murmann, A.E.; Brockway, S.; Putzbach, W.; Pattanayak, A.; Ceppi, P. The role of CD95 and CD95 ligand in cancer. Cell Death Differ., 2015, 22(5), 885-886.
[http://dx.doi.org/10.1038/cdd.2015.25] [PMID: 25849030]
[39]
Shi, L.S.; Wang, H.; Wang, F.; Feng, M.; Wang, M.; Guan, W.X. Effects of gastrokine 2 expression on gastric cancer cell apoptosis by activation of extrinsic apoptotic pathways. Mol. Med. Rep., 2014, 10(6), 2898-2904.
[http://dx.doi.org/10.3892/mmr.2014.2603] [PMID: 25270871]
[40]
Tetz, L.M.; Kamau, P.W.; Cheng, A.A.; Meeker, J.D.; Loch-Caruso, R. Troubleshooting the dichlorofluorescein assay to avoid artifacts in measurement of toxicant-stimulated cellular production of reactive oxidant species. J. Pharmacol. Toxicol. Methods, 2013, 67(2), 56-60.
[http://dx.doi.org/10.1016/j.vascn.2013.01.195] [PMID: 23380227]
[41]
Wu, D.; Yotnda, P. Production and detection of Reactive Oxygen Species (ROS) in cancers. J. Vis. Exp., 2011, 57, 3357.
[http://dx.doi.org/10.3791/3357] [PMID: 22127014]
[42]
Galoczova, M.; Coates, P.; Vojtesek, B. STAT3, stem cells, cancer stem cells and p63. Cell. Mol. Biol. Lett., 2018, 23, 12.
[http://dx.doi.org/10.1186/s11658-018-0078-0] [PMID: 29588647]
[43]
Lu, H.; Wu, S.; Chen, H.; Huang, Y.; Qiu, G.; Liu, L.; Li, Y. Crizotinib induces apoptosis of lung cancer cells through JAK-STAT pathway. Oncol. Lett., 2018, 16(5), 5992-5996.
[http://dx.doi.org/10.3892/ol.2018.9387] [PMID: 30333870]
[44]
Fu, Y.; Zhao, Y.; Liu, Y.; Zhu, Y.; Chi, J.; Hu, J.; Zhang, X.; Yin, X. Adenovirus-mediated tissue factor pathway inhibitor gene transfer induces apoptosis by blocking the phosphorylation of JAK-2/STAT-3 pathway in vascular smooth muscle cells. Cell. Signal., 2012, 24(10), 1909-1917.
[http://dx.doi.org/10.1016/j.cellsig.2012.06.001] [PMID: 22709828]
[45]
Zhu, Z.; Li, E.; Liu, Y.; Gao, Y.; Sun, H.; Ma, G.; Wang, Z.; Liu, X.; Wang, Q.; Qu, X.; Liu, Y.; Yu, Y. Inhibition of Jak-STAT3 pathway enhances bufalin-induced apoptosis in colon cancer SW620 cells. World J. Surg. Oncol., 2012, 10, 228.
[http://dx.doi.org/10.1186/1477-7819-10-228] [PMID: 23110625]
[46]
Grimshaw, M.J.; Cooper, L.; Papazisis, K.; Coleman, J.A.; Bohnenkamp, H.R.; Chiapero-Stanke, L.; Taylor-Papadimitriou, J.; Burchell, J.M. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res., 2008, 10(3), R52.
[http://dx.doi.org/10.1186/bcr2106] [PMID: 18541018]
[47]
Lombardo, Y.; de Giorgio, A.; Coombes, C.R.; Stebbing, J.; Castellano, L. Mammosphere formation assay from human breast cancer tissues and cell lines. J. Vis. Exp., 2015, 97, 52671.
[http://dx.doi.org/10.3791/52671] [PMID: 25867607]
[48]
Shaw, F.L.; Harrison, H.; Spence, K.; Ablett, M.P.; Simões, B.M.; Farnie, G.; Clarke, R.B. A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J. Mammary Gland Biol. Neoplasia, 2012, 17(2), 111-117.
[http://dx.doi.org/10.1007/s10911-012-9255-3] [PMID: 22665270]
[49]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[50]
Rabinovich, I.; Sebastião, A.P.M.; Lima, R.S.; Urban, C.A.; Schunemann, E., Jr; Anselmi, K.F.; Elifio-Esposito, S.; De Noronha, L.; Moreno-Amaral, A.N. Cancer stem cell markers ALDH1 and CD44+/CD24- phenotype and their prognosis impact in invasive ductal carcinoma. Eur. J. Histochem., 2018, 62(3), 2943.
[http://dx.doi.org/10.4081/ejh.2018.2943] [PMID: 30362671]
[51]
Li, W.; Ma, H.; Zhang, J.; Zhu, L.; Wang, C.; Yang, Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 13856.
[http://dx.doi.org/10.1038/s41598-017-14364-2] [PMID: 29062075]
[52]
Calaf, G.M.; Ponce-Cusi, R.; Abarca-Quinones, J. Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer. Oncol. Rep., 2018, 39(6), 2741-2748.
[http://dx.doi.org/10.3892/or.2018.6386] [PMID: 29693159]
[53]
Da Cruz Paula, A.; Lopes, C. Implications of different cancer stem cell phenotypes in breast cancer. Anticancer Res., 2017, 37(5), 2173-2183.
[http://dx.doi.org/10.21873/anticanres.11552] [PMID: 28476780]
[54]
Zhang, T.; Kawaguchi, N.; Hayama, E.; Furutani, Y.; Nakanishi, T. High expression of CXCR4 and stem cell markers in a monocrotaline and chronic hypoxia-induced rat model of pulmonary arterial hypertension. Exp. Ther. Med., 2018, 15(6), 4615-4622.
[http://dx.doi.org/10.3892/etm.2018.6027] [PMID: 29805477]
[55]
Lengerke, C.; Fehm, T.; Kurth, R.; Neubauer, H.; Scheble, V.; Müller, F.; Schneider, F.; Petersen, K.; Wallwiener, D.; Kanz, L.; Fend, F.; Perner, S.; Bareiss, P.M.; Staebler, A. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer, 2011, 11, 42.
[http://dx.doi.org/10.1186/1471-2407-11-42] [PMID: 21276239]
[56]
Oktem, G.; Bilir, A.; Uslu, R.; Inan, S.V.; Demiray, S.B.; Atmaca, H.; Ayla, S.; Sercan, O.; Uysal, A. Expression profiling of stem cell signaling alters with spheroid formation in CD133high/CD44high prostate cancer stem cells. Oncol. Lett., 2014, 7(6), 2103-2109.
[http://dx.doi.org/10.3892/ol.2014.1992] [PMID: 24932297]
[57]
Guo, W. Concise review: Breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl. Med., 2014, 3(8), 942-948.
[http://dx.doi.org/10.5966/sctm.2014-0020] [PMID: 24904174]
[58]
Wuebben, E.L.; Rizzino, A. The dark side of SOX2: Cancer - a comprehensive overview. Oncotarget, 2017, 8(27), 44917-44943.
[http://dx.doi.org/10.18632/oncotarget.16570] [PMID: 28388544]
[59]
Clark, D.W.; Palle, K. Aldehyde dehydrogenases in cancer stem cells: Potential as therapeutic targets. Ann. Transl. Med., 2016, 4(24), 518.
[http://dx.doi.org/10.21037/atm.2016.11.82] [PMID: 28149880]
[60]
Tanei, T.; Morimoto, K.; Shimazu, K.; Kim, S.J.; Tanji, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin. Cancer Res., 2009, 15(12), 4234-4241.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1479] [PMID: 19509181]
[61]
Lalier, L.; Pedelaborde, F.; Braud, C.; Menanteau, J.; Vallette, F.M.; Olivier, C. Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell. BMC Cancer, 2011, 11, 153.
[http://dx.doi.org/10.1186/1471-2407-11-153] [PMID: 21524287]
[62]
da Silveira, E.F.; Chassot, J.M.; Teixeira, F.C.; Azambuja, J.H.; Debom, G.; Beira, F.T.; Del Pino, F.A.; Lourenço, A.; Horn, A.P.; Cruz, L.; Spanevello, R.M.; Braganhol, E. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Invest. New Drugs, 2013, 31(6), 1424-1435.
[http://dx.doi.org/10.1007/s10637-013-0016-y] [PMID: 24072435]
[63]
Caulfield, A.J.; Lathem, W.W. Disruption of fas-fas ligand signaling, apoptosis, and innate immunity by bacterial pathogens. PLoS Pathog., 2014, 10(8)e1004252
[http://dx.doi.org/10.1371/journal.ppat.1004252] [PMID: 25101900]
[64]
Yamada, A.; Arakaki, R.; Saito, M.; Kudo, Y.; Ishimaru, N. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front. Immunol., 2017, 8, 403.
[http://dx.doi.org/10.3389/fimmu.2017.00403] [PMID: 28424702]
[65]
Du, W.; Hong, J.; Wang, Y.C.; Zhang, Y.J.; Wang, P.; Su, W.Y.; Lin, Y.W.; Lu, R.; Zou, W.P.; Xiong, H.; Fang, J.Y. Inhibition of JAK2/STAT3 signalling induces colorectal cancer cell apoptosis via mitochondrial pathway. J. Cell. Mol. Med., 2012, 16(8), 1878-1888.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01483.x] [PMID: 22050790]
[66]
Akhtar, S.; Achkar, I.W.; Siveen, K.S.; Kuttikrishnan, S.; Prabhu, K.S.; Khan, A.Q.; Ahmed, E.I.; Sahir, F.; Jerobin, J.; Raza, A.; Merhi, M.; Elsabah, H.M.; Taha, R.; Omri, H.E.; Zayed, H.; Dermime, S.; Steinhoff, M.; Uddin, S. Sanguinarine induces apoptosis pathway in multiple myeloma cell lines via inhibition of the JaK2/STAT3 signaling. Front. Oncol., 2019, 9, 285.
[http://dx.doi.org/10.3389/fonc.2019.00285] [PMID: 31058086]
[67]
Quoc Trung, L.; Espinoza, J.L.; Takami, A.; Nakao, S. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS One, 2013, 8(1)e55183
[http://dx.doi.org/10.1371/journal.pone.0055183] [PMID: 23372833]
[68]
Čokić, V.P.; Mitrović-Ajtić, O.; Beleslin-Čokić, B.B.; Marković, D.; Buač, M.; Diklić, M.; Kraguljac-Kurtović, N.; Damjanović, S.; Milenković, P.; Gotić, M.; Raj, P.K. Proinflammatory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediators Inflamm., 2015, 2015453020
[http://dx.doi.org/10.1155/2015/453020] [PMID: 26491227]
[69]
Chen, L.; Wang, S.; Wang, Y.; Zhang, W.; Ma, K.; Hu, C.; Zhu, H.; Liang, S.; Liu, M.; Xu, N. IL-6 influences the polarization of macrophages and the formation and growth of colorectal tumor. Oncotarget, 2018, 9(25), 17443-17454.
[http://dx.doi.org/10.18632/oncotarget.24734] [PMID: 29707119]
[70]
Wang, S.W.; Sun, Y.M. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer. Int. J. Oncol., 2014, 44(4), 1032-1040.
[http://dx.doi.org/10.3892/ijo.2014.2259] [PMID: 24430672]
[71]
Yokoyama, C.; Sueyoshi, Y.; Ema, M.; Mori, Y.; Takaishi, K.; Hisatomi, H. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncol. Lett., 2017, 14(5), 6066-6070.
[http://dx.doi.org/10.3892/ol.2017.6931] [PMID: 29113247]
[72]
Ivanova, D.; Zhelev, Z.; Aoki, I.; Bakalova, R.; Higashi, T. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs. Chin. J. Cancer Res., 2016, 28(4), 383-396.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2016.04.01] [PMID: 27647966]
[73]
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[74]
Zhelev, Z.; Ivanova, D.; Lazarova, D.; Aoki, I.; Bakalova, R.; Saga, T. Docosahexaenoic acid sensitizes leukemia lymphocytes to barasertib and everolimus by ROS-dependent mechanism without affecting the level of ROS and viability of normal lymphocytes. Anticancer Res., 2016, 36(4), 1673-1682.
[PMID: 27069145]
[75]
Mizutani, H.; Tada-Oikawa, S.; Hiraku, Y.; Kojima, M.; Kawanishi, S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci., 2005, 76(13), 1439-1453.
[http://dx.doi.org/10.1016/j.lfs.2004.05.040] [PMID: 15680309]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy