Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Microsatellite Marker: Importance and Implications of Cross-genome Analysis for Finger Millet (Eleusine coracana (L.) Gaertn)

Author(s): Thumadath P.A. Krishna, Maharajan Theivanayagam, Gurusunathan V. Roch, Veeramuthu Duraipandiyan* and Savarimuthu Ignacimuthu

Volume 9 , Issue 3 , 2020

Page: [160 - 170] Pages: 11

DOI: 10.2174/2211550109999200908090745

Price: $65

Abstract

Finger millet is a superior staple food for human beings. Microsatellite or Simple Sequence Repeat (SSR) marker is a powerful tool for genetic mapping, diversity analysis and plant breeding. In finger millet, microsatellites show a higher level of polymorphism than other molecular marker systems. The identification and development of microsatellite markers are extremely expensive and time-consuming. Only less than 50% of SSR markers have been developed from microsatellite sequences for finger millet. Therefore, it is important to transfer SSR markers developed for related species/genus to finger millet. Cross-genome transferability is the easiest and cheapest method to develop SSR markers. Many comparative mapping studies using microsatellite markers clearly revealed the presence of synteny within the genomes of closely related species/ genus. Sufficient homology exists among several crop plant genomes in the sequences flanking the SSR loci. Thus, the SSR markers are beneficial to amplify the target regions in the finger millet genome. Many SSR markers were used for the analysis of cross-genome amplification in various plants such as Setaria italica, Pennisetum glaucum, Oryza sativa, Triticum aestivum, Zea mays and Hordeum vulgare. However, there is very little information available about cross-genome amplification of these markers in finger millet. The only limited report is available for the utilization of cross-genome amplified microsatellite markers in genetic analysis, gene mapping and other applications in finger millet. This review highlights the importance and implication of microsatellite markers such as genomic SSR (gSSR) and Expressed Sequence Tag (EST)-SSR in cross-genome analysis in finger millet. Nowadays, crop improvement has been one of the major priority areas of research in agriculture. The genome assisted breeding and genetic engineering plays a very crucial role in enhancing crop productivity. The rapid advance in molecular marker technology is helpful for crop improvement. Therefore, this review will be very helpful to the researchers for understanding the importance and implication of SSR markers in closely related species.

Keywords: Finger millet, microsatellite marker, synteny, cross-genome transferability, SSR marker, Eleusine coracana.

Graphical Abstract
[1]
Ceasar SA, Ignacimuthu S. Genetic engineering of millets: Current status and future prospects. Biotechnol Lett 2009; 31(6): 779-88.
[http://dx.doi.org/10.1007/s10529-009-9933-4] [PMID: 19205896]
[2]
Kumar A, Tomer V, Kaur A, Kumar V, Gupta K. Millets: A solution to agrarian and nutritional challenges. Agric Food Secur 2018; 7(1): 31.
[http://dx.doi.org/10.1186/s40066-018-0183-3]
[3]
Ashok KA, Srivastava RK, Govindaraj M, et al. Application of plant breeding and genomics for improved sorghum and pearl millet grain nutritional quality. Sorghum and millets: Chemistry, technology and nutritional attributes, 2nd ed. 2018;pp. 51-68.
[4]
Popale SR, Shinde DB, Broadway AA. Studies on preparation of nutritional ragi snacks packed with nitrogen flushing. J Pharmacogn Phytochem 2019; 8(2): 2194-6.
[5]
Sood S, Kumar A, Babu BK, et al. Gene discovery and advances in finger millet [Eleusine coracana (L.) Gaertn.] genomics - An important nutri-cereal of future. Front Plant Sci 2016; 7: 1634.
[http://dx.doi.org/10.3389/fpls.2016.01634] [PMID: 27881984]
[6]
Singh A, Singh A. MeenakshiArya U, Singh A. Utility of molecular markers in molecular breeding for integrated crop improvement. Bulletin of Environment Pharmacology and Life Sciences 2019; 8(2): 1-8.
[7]
Ganie SH, Upadhyay P, Das S, Prasad Sharma M. Authentication of medicinal plants by DNA markers. Plant Gene 2015; 4: 83-99.
[http://dx.doi.org/10.1016/j.plgene.2015.10.002] [PMID: 32289060]
[8]
Sharma A, Namdeo A, Mahadik K. Molecular markers: New prospects in plant genome analysis. Pharmacogn Rev 2008; 2(3): 23-34.
[9]
Singh BK, Choudhary SB, Yadav S, et al. Genetic structure identification and assessment of interrelationships between Brassica and allied genera using newly developed genic-SSRs of Indian Mustard (Brassica juncea L.). Ind Crops Prod 2018; 113: 111-20.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.023]
[10]
Kalia RK, Rai MK, Kalia S, Singh R, Dhawan A. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011; 177(3): 309-34.
[http://dx.doi.org/10.1007/s10681-010-0286-9]
[11]
Krishna TPA, Maharajan T, David RHA, et al. Microsatellite markers of finger millet (Eleusine coracana (L.) Gaertn) and foxtail millet (Setaria italica (L.) Beauv) provide resources for cross-genome transferability and genetic diversity analyses in other millets. Biocatal Agric Biotechnol 2018; 16: 493-501.
[http://dx.doi.org/10.1016/j.bcab.2018.09.009]
[12]
Satya P, Paswan PK, Ghosh S, Majumdar S, Ali N. Confamiliar transferability of simple sequence repeat (SSR) markers from cotton (Gossypium hirsutum L.) and jute (Corchorus olitorius L.) to twenty two Malvaceous species 3 Biotech 2016; 6(1): 1-7.
[13]
Babu BK, Singh U, Yadav S, Kumar A. Molecular marker technology for finger millet crop Improvement–An under-utilized, food and nutritional security crop. Biotech Today 2013; 3(2): 57-60.
[http://dx.doi.org/10.5958/2322-0996.2014.00010.6]
[14]
Hiremath SC, Salimath SS. The ‘A’ genome donor of Eleusine coracana (L.) Gaertn. (Gramineae). Theor Appl Genet 1992; 84(5-6): 747-54.
[http://dx.doi.org/10.1007/BF00224180] [PMID: 24201369]
[15]
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front Plant Sci 2015; 6: 157.
[http://dx.doi.org/10.3389/fpls.2015.00157] [PMID: 25852710]
[16]
Hatakeyama M, Aluri S, Balachadran MT, et al. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 2018; 25(1): 39-47.
[http://dx.doi.org/10.1093/dnares/dsx036] [PMID: 28985356]
[17]
Mysore K, Bard V. Nuclear DNA content in species of Eleusine (Gramineae): A critical re-evaluation using laser flow cytometry. Plant Syst Evol 1997; 207(1-2): 1-11.
[http://dx.doi.org/10.1007/BF00985206]
[18]
Hittalmani S, Mahesh HB, Shirke MD, et al. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 2017; 18(1): 465.
[http://dx.doi.org/10.1186/s12864-017-3850-z] [PMID: 28619070]
[19]
Riaz A, Anjum MA, Balal RM. From markers to genome based breeding in horticultural crops: An overview. Phyton 2020; 89(2): 183.
[http://dx.doi.org/10.32604/phyton.2020.08537]
[20]
Srivastava S, Avvaru AK, Sowpati DT, Mishra RK. Patterns of microsatellite distribution across eukaryotic genomes. BMC Genomics 2019; 1; 20(1): 153.
[http://dx.doi.org/10.1186/s12864-019-5516-5]
[21]
Taheri S, Lee Abdullah T, Yusop MR, et al. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 2018; 23(2): 399.
[http://dx.doi.org/10.3390/molecules23020399] [PMID: 29438290]
[22]
Liu S, An Y, Li F, et al. Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Mol Breed 2018; 38(5): 59.
[http://dx.doi.org/10.1007/s11032-018-0824-z]
[23]
Bharti R, Kumar S, Parekh MJ. Development of genomic simple sequence repeat (gSSR) markers in cumin and their application in diversity analyses and cross-transferability. Ind Crops Prod 2018; 1(111): 158-64.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.018]
[24]
Madhumati B. Potential and application of molecular markers techniques for plant genome analysis. Int J Pure App Biosci 2014; 2(1): 169-88.
[25]
Song Y-p, Jiang X-b, Zhang M, et al. Differences of EST-SSR and genomic-SSR markers in assessing genetic diversity in poplar. For Stud China 2012; 14(1): 1-7.
[http://dx.doi.org/10.1007/s11632-012-0106-5]
[26]
Xiang C, Duan Y, Li H, et al. A High-density EST-SSR-based genetic map and QTL analysis of dwarf trait in cucurbita pepo L. Int J Mol Sci 2018; 19(10): 3140.
[http://dx.doi.org/10.3390/ijms19103140]
[27]
Karunarathna KH, Mewan KM, Weerasena OV, Perera SA, Edirisinghe EN, Jayasoma AA. Understanding the genetic relationships and breeding patterns of Sri Lankan tea cultivars with genomic and EST-SSR markers. Sci Hortic (Amsterdam) 2018; 20(240): 72-80.
[http://dx.doi.org/10.1016/j.scienta.2018.05.051]
[28]
Kaur G, Joshi A, Jain D. SSR-Marker assisted evaluation of Genetic Diversity in Mungbean (Vigna radiata (L.) Wilcezk) genotypes. Braz Arch Biol Technol 2018; 61.
[http://dx.doi.org/10.1590/1678-4324-2016160613]
[29]
Parthiban S, Govindaraj P, Senthilkumar S. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. 3 Biotech 2018; 8(3): 144.
[30]
Pandian S, Satish L, Rameshkumar R, et al. Analysis of population structure and genetic diversity in an exotic germplasm collection of Eleusine coracana (L.) Gaertn. using genic-SSR markers. Gene 2018; 653(653): 80-90.
[http://dx.doi.org/10.1016/j.gene.2018.02.018] [PMID: 29428798]
[31]
Dervishi A, Jakše J, Ismaili H, Javornik B, Štajner N. Comparative assessment of genetic diversity in Albanian olive (Olea europaea L.) using SSRs from anonymous and transcribed genomic regions. Tree Genet Genomes 2018; 14(4): 53.
[http://dx.doi.org/10.1007/s11295-018-1269-6]
[32]
Zhou R, Wu Z, Jiang FL, Liang M. Comparison of gSSR and EST-SSR markers for analyzing genetic variability among tomato cultivars (Solanum lycopersicum L.). Genet Mol Res 2015; 14(4): 13184-94.
[http://dx.doi.org/10.4238/2015.October.26.14] [PMID: 26535631]
[33]
Sraphet S, Boonchanawiwat A, Thanyasiriwat T, et al. SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 2011; 122(6): 1161-70.
[http://dx.doi.org/10.1007/s00122-010-1520-5] [PMID: 21222095]
[34]
Gimode D, Odeny DA, de Villiers EP, et al. Identification of SNP and SSR markers in finger millet using next generation sequencing technologies. PLoS One 2016; 11(7): e0159437.
[http://dx.doi.org/10.1371/journal.pone.0159437] [PMID: 27454301]
[35]
Dida MM. Srinivasachary, Ramakrishnan S, Bennetzen JL, Gale MD, Devos KM. The genetic map of finger millet, Eleusine coracana. Theor Appl Genet 2007; 114(2): 321-32.
[http://dx.doi.org/10.1007/s00122-006-0435-7] [PMID: 17103137]
[36]
Dida MM, Wanyera N, Dunn MLH, Bennetzen JL, Devos KM. Population structure and diversity in finger millet (Eleusine coracana) germplasm. Trop Plant Biol 2008; 1(2): 131-41.
[http://dx.doi.org/10.1007/s12042-008-9012-3]
[37]
Arya L, Verma M, Gupta V, Seetharam A. Use of genomic and genic SSR markers for assessing genetic diversity and population structure in Indian and African finger millet (Eleusine coracana (L.) Gaertn.) germplasm. Plant Syst Evol 2013; 299(7): 1395-401.
[http://dx.doi.org/10.1007/s00606-013-0822-x]
[38]
Kalyana Babu B, Agrawal PK, Pandey D, Jaiswal JP, Kumar A. Association mapping of agro-morphological characters among the global collection of finger millet genotypes using genomic SSR markers. Mol Biol Rep 2014; 41(8): 5287-97.
[http://dx.doi.org/10.1007/s11033-014-3400-6] [PMID: 24861452]
[39]
Babu BK, Sood S, Agrawal P, Chandrashekara C, Kumar A, Kumar A. Molecular and phenotypic characterization of 149 finger millet accessions using microsatellite and agro-morphological markers. P Natl A Sci India B. Biological Sciences 2017; 87(4): 1217-28.
[40]
De Villiers SM, Michael VN, Manyasa EO, Saiyiorri AN, Deshpande S. Compilation of an informative microsatellite set for genetic characterisation of East African finger millet (Eleusine coracana). Electron J Biotechnol 2015; 18(2): 77-82.
[http://dx.doi.org/10.1016/j.ejbt.2014.12.001]
[41]
Nethra N, Gowda R, Rajendra Prasad S, Hittalmani S, Ramanjini GP, Chennakeshava B. Utilization of SSRs to estimate the degree of genetic relationships in finger millet (Eleusine coracana L. Gaertn.) genotypes and subspecies. SABRAO J Breed Genet 2014; 46(1): 136-49.
[42]
Rajendran HAD, Muthusamy R, Stanislaus AC, et al. Analysis of molecular variance and population structure in southern Indian finger millet genotypes using three different molecular markers. J Crop Sci Biotechnol 2016; 19(4): 275-83.
[http://dx.doi.org/10.1007/s12892-016-0015-6]
[43]
Ramakrishnan M, Antony Ceasar S, Duraipandiyan V, et al. Tracing QTLs for leaf blast resistance and agronomic performance of finger millet (Eleusine coracana (L.) Gaertn.) genotypes through association mapping and in silico comparative genomics analyses. PLoS One 2016; 11(7): e0159264.
[http://dx.doi.org/10.1371/journal.pone.0159264]] [PMID: 27415007]
[44]
Ramakrishnan M, Ceasar SA, Vinod KK, et al. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis. PLoS One 2017; 12(8): e0183261.
[http://dx.doi.org/10.1371/journal.pone.0183261] [PMID: 28820887]
[45]
Ramakrishnan M, Antony Ceasar S, Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S. Assessment of genetic diversity, population structure and relationships in Indian and non-Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn) using genomic SSR markers. Springerplus 2016; 5(1): 120.
[http://dx.doi.org/10.1186/s40064-015-1626-y] [PMID: 26900542]
[46]
Arya L, Verma M, Gupta V, Karihaloo J. Development of EST SSRs in finger millet (Eleusine coracana ssp coracana) and their transferability to pearl millet (Pennisetum glaucum). J Plant Biochem Biotechnol 2009; 18(1): 97-100.
[http://dx.doi.org/10.1007/BF03263303]
[47]
Naga BLRI, Mangamoori LN, Subramanyam S. Identification and characterization of EST-SSRs in finger millet (Eleusine coracana (L.) Gaertn.). J Crop Sci Biotechnol 2012; 15(1): 9-16.
[http://dx.doi.org/10.1007/s12892-011-0064-9]
[48]
Kumar A, Yadav S, Panwar P, Gaur V, Sood S. Identification of anchored simple sequence repeat markers associated with calcium content in finger millet (Eleusine coracana). P Natl A Sci India B. Biological Sciences 2015; 85(1): 311-7.
[49]
Yadav P, Vaidya E, Rani R, et al. Recent perspective of next generation sequencing: Applications in molecular plant biology and crop improvement. Proc Natl Acad Sci, India, Sect B Biol Sci 2018; 88(2): 435-49.
[http://dx.doi.org/10.1007/s40011-016-0770-7]
[50]
Singh UM, Chandra M, Shankhdhar SC, Kumar A. Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation. PLoS One 2014; 9(8): e103963.
[http://dx.doi.org/10.1371/journal.pone.0103963] [PMID: 25157851]
[51]
Pandey G, Misra G, Kumari K, et al. Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet. [Setaria italica (L.)]. DNA Res 2013; 20(2): 197-207.
[http://dx.doi.org/10.1093/dnares/dst002] [PMID: 23382459]
[52]
Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida SK, Prasad M. Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 2014; 21(1): 41-52.
[http://dx.doi.org/10.1093/dnares/dst039] [PMID: 24086082]
[53]
Timog EB, Joni YZ, Gentallan RP, et al. Cross-species amplification of selected SSR markers to jackfruit and its related species. Indian J Hortic 2019; 76(3): 377-81.
[http://dx.doi.org/10.5958/0974-0112.2019.00061.6]
[54]
Rajput SG, Plyler-Harveson T, Santra DK. Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 2014; 5(01): 175-86.
[http://dx.doi.org/10.4236/ajps.2014.51023]
[55]
Wang M, Barkley N, Yu J-K, et al. Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour 2005; 3(1): 45-57.
[http://dx.doi.org/10.1079/PGR200461]
[56]
Arya L, Chauhan D, Yadav Y, Verma M. Transferability of simple sequence repeat (SSR) markers developedin finger millet, and pearl millet to kodo millet and barnyard millet. World Congress on: Innovative Approach in Stem Cell Research, Cancer Biology and Applied Biotechnology 2014; 60-64.
[57]
Savadi SB, Fakrudin B, Nadaf H, Gowda M. Transferability of sorghum genic microsatellite markers to peanut. Am J Plant Sci 2012; 3(09): 1169-80.
[http://dx.doi.org/10.4236/ajps.2012.39142]
[58]
Kumari K, Muthamilarasan M, Misra G, et al. Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 2013; 8(6): e67742.
[http://dx.doi.org/10.1371/journal.pone.0067742]] [PMID: 23805325]
[59]
Yu J, Zhao H, Zhu T, Chen L, Peng J. Transferability of rice SSR markers to Miscanthus sinensis, a potential biofuel crop. Euphytica 2013; 191(3): 455-68.
[http://dx.doi.org/10.1007/s10681-013-0915-1]
[60]
Rudd S. Expressed sequence tags: Alternative or complement to whole genome sequences? Trends Plant Sci 2003; 8(7): 321-9.
[http://dx.doi.org/10.1016/S1360-1385(03)00131-6] [PMID: 12878016]
[61]
Yadav O, Mitchell S, Fulton T, Kresovich S. Transferring molecular markers from sorghum, rice. and other cereals to pearl millet and identifying polymorphic markers. ICRISAT eJournal 2008; 6: 1-4.
[62]
Panwar P, Nath M, Yadav VK, Kumar A. Comparative evaluation of genetic diversity using RAPD, SSR and cytochrome P450 gene based markers with respect to calcium content in finger millet (Eleusine coracana L. Gaertn.). J Genet 2010; 89(2): 121-33.
[http://dx.doi.org/10.1007/s12041-010-0052-8] [PMID: 20861563]
[63]
Kumar A, Sharma N, Panwar P, Gupta AK. Use of SSR, RAPD markers and protein profiles based analysis to differentiate Eleusine coracana genotypes differing in their protein content. Mol Biol Rep 2012; 39(4): 4949-60.
[http://dx.doi.org/10.1007/s11033-011-1291-3] [PMID: 22167326]
[64]
Ramadoss A. Effects of drought on Eleusine coracana (L.) Gaertn. (finger millet) and identification of microsatellite markers. Thesis, University of Alberta 2014.
[65]
Babu BK, Dinesh P, Agrawal PK, et al. Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs. PLoS One 2014; 9(6): e99182.
[http://dx.doi.org/10.1371/journal.pone.0099182] [PMID: 24915067]
[66]
Yadav RS, Bidinger FR, Hash CT, et al. Mapping and characterisation of QTL x E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 2003; 106(3): 512-20.
[http://dx.doi.org/10.1007/s00122-002-1081-3] [PMID: 12589552]
[67]
Panwar P, Jha AK, Pandey PK, Gupta AK, Kumar A. Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana). Mol Biol Rep 2011; 38(5): 3427-36.
[http://dx.doi.org/10.1007/s11033-010-0452-0] [PMID: 21116864]
[68]
Reddy IBL, Reddy DS, Narasu ML, Sivaramakrishnan S. Characterization of disease resistance gene homologues isolated from finger millet (Eleusine coracana L. Gaertn). Mol Breed 2011; 27(3): 315-28.
[http://dx.doi.org/10.1007/s11032-010-9433-1]
[69]
Babu BK, Agrawal P, Pandey D, Kumar A. Comparative genomics and association mapping approaches for opaque2 modifier genes in finger millet accessions using genic, genomic and candidate gene-based simple sequence repeat markers. Mol Breed 2014; 34(3): 1261-79.
[http://dx.doi.org/10.1007/s11032-014-0115-2]
[70]
Kalyana Babu B, Pandey D, Agrawal PK, Sood S, Kumar A. In-silico mining, type and frequency analysis of genic microsatellites of finger millet (Eleusine coracana (L.) Gaertn.): A comparative genomic analysis of NBS-LRR regions of finger millet with rice. Mol Biol Rep 2014; 41(5): 3081-90.
[http://dx.doi.org/10.1007/s11033-014-3168-8] [PMID: 24477586]
[71]
Nirgude M, Babu BK, Shambhavi Y, Singh UM, Upadhyaya HD, Kumar A. Development and molecular characterization of genic molecular markers for grain protein and calcium content in finger millet (Eleusine coracana (L.) Gaertn.). Mol Biol Rep 2014; 41(3): 1189-200.
[http://dx.doi.org/10.1007/s11033-013-2825-7] [PMID: 24477581]
[72]
Obidiegwu ON, Parzies H, Obidiegwu JE. Development and genotyping potentials of EST-SSRs in finger millet (E.Coracana (L.) Gaertn.). Int J Genet Genomics 2014; 2(3): 42-6.
[http://dx.doi.org/10.11648/j.ijgg.20140203.12]
[73]
Selvam J, Muthukumar M, Rahman H, Senthil N, Raveendran M. Development and validation of SSR markers in Finger millet (Eleusine coracana Gaertn). Int J Trop Agric 2015; 33(3): 2055-66.
[74]
Yıldırım A, Kandemir N, Sönmezoğlu ÖA, Güleç TE. Transferability of microsatellite markers among cool season cereals. Biotechnol Biotechnol Equip 2009; 23(3): 1299-302.
[http://dx.doi.org/10.1080/13102818.2009.10817657]
[75]
Sim SC, Yu JK, Jo YK, Sorrells ME, Jung G. Transferability of cereal EST-SSR markers to ryegrass. Genome 2009; 52(5): 431-7.
[http://dx.doi.org/10.1139/G09-019] [PMID: 19448723]
[76]
Kuleung C, Baenziger PS, Dweikat I. Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 2004; 108(6): 1147-50.
[http://dx.doi.org/10.1007/s00122-003-1532-5] [PMID: 15067402]
[77]
Scott KD, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs. Theor Appl Genet 2000; 100(5): 723-6.
[http://dx.doi.org/10.1007/s001220051344]
[78]
Krishna TA, Maharajan T, Roch GV, Ramakrishnan M, Ceasar SA, Ignacimuthu S. Hybridization and hybrid detection through molecular markers in finger millet. J Crop Improv 2020; 1-21.
[http://dx.doi.org/10.1080/15427528.2019.1709596]
[79]
Kumari V, Gowda MV, Yeri SB. Utilization of advanced backcross population derived from synthetic amphidiploid for dissecting resistance to late leaf spot in peanut (Arachis hypogaea L.). Trop Plant Biol 2020; 13(1): 50-61.
[http://dx.doi.org/10.1007/s12042-019-09246-y]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy