Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

An Experimental and Theoretical Approach to Understand Fever, DENF & its Cure

Author(s): Vijay Kumar Vishvakarma, Ramesh Chandra and Prashant Singh*

Volume 21, Issue 4, 2021

Published on: 05 September, 2020

Page: [495 - 513] Pages: 19

DOI: 10.2174/1871526520999200905122052

Price: $65

Abstract

Fever is a response of a human body, due to an increase in the temperature, against certain stimuli. It may be associated with several reasons and one of the major causes of fever is a mosquito bite. Fever due to dengue virus (DENV) infection is being paid most attention out of several other fever types because of a large number of deaths reported worldwide. Dengue virus is transmitted by biting of the mosquitoes, Aedes aegypti and Aedes albopictus. DENV1, DENV2, DENV3 and DENV4 are the four serotypes of dengue virus and these serotypes have 65% similarities in their genomic structure. The genome of DENV is composed of single-stranded RNA and it encodes for the polyprotein. Structural and non-structural proteins (nsP) are the two major parts of polyprotein. Researchers have paid high attention to the non-structural protease (nsP) of DENV like nsP1, nsP2A, nsP2B, nsP3, nsP4A, nsP4B and nsP5. The NS2B-NS3 protease of DENV is the prime target of the researchers as it is responsible for the catalytic activity. In the present time, Dengvaxia (vaccine) is being recommended to patients suffering severely from DENV infection in few countries only. Till date, neither a vaccine nor an effective medicine is available to combat all four serotypes. This review describes the fever, its causes, and studies to cure the infection due to DENV using theoretical and experimental approaches.

Keywords: Dengue virus, biological activity, non-structural protease, docking, molecular dynamics, inhibition.

Graphical Abstract
[1]
Dahiya, S.; Malik, R.; Sharma, P.; Sashi, A.; Lodha, R.; Kabra, S.K.; Sood, S.; Das, B.K.; Walia, K.; Ohri, V.C.; Kapil, A. Current antibiotic use in the treatment of enteric fever in children. Indian J. Med. Res., 2019, 149(2), 263-269.
[http://dx.doi.org/10.4103/ijmr.IJMR_199_18] [PMID: 31219092]
[2]
Altundag, K. A closer look at familial Mediterranean fever cases in a large breast cancer dataset. Rheumatol. Int., 2019, 39(8), 1477-1477.
[http://dx.doi.org/10.1007/s00296-019-04340-6] [PMID: 31168639]
[3]
Büyüktuna, S.A.; Doğan, H.O.; Unlusavuran, M.; Bakir, M. An evaluation of the different biomarkers to discriminate bleeding in Crimean-Congo Hemorrhagic Fever. Ticks Tick Borne Dis., 2019, 10(5), 997-1002.
[http://dx.doi.org/10.1016/j.ttbdis.2019.05.008] [PMID: 31151923]
[4]
Engin, A.; Aydin, H.; Cinar, Z.; Buyuktuna, S.A.; Bakir, M. Apoptosis and its relation with clinical course in patients with Crimean-Congo hemorrhagic fever. J. Med. Virol., 2019, 91(8), 1385-1393.
[http://dx.doi.org/10.1002/jmv.25467] [PMID: 30905066]
[5]
Tal, R.; Oz, R.S.; Amarilyo, G. Safety and efficacy of intravenous Colchicine in children with Familial Mediterranean Fever. Rheumatol. Int., 2019.
[PMID: 31230112]
[6]
Wong, A.; Sibbald, A.; Ferrero, F.; Plager, M.; Santolaya, M.E.; Escobar, A.M.; Campos, S.; Barragán, S.; De León González, M.; Kesselring, G.L. Fever Pediatric Study Group. Antipyretic effects of dipyrone versus ibuprofen versus acetaminophen in children: results of a multinational, randomized, modified double-blind study. Clin. Pediatr. (Phila.), 2001, 40(6), 313-324.
[http://dx.doi.org/10.1177/000992280104000602] [PMID: 11824173]
[7]
Shantha, J.G.; Yeh, S.; Acharya, N. Insights from 2 outbreaks in Southeastern Brazil: Yellow fever retinopathy. JAMA Ophthalmol, 2019, 137(9), 1003-1004.
[http://dx.doi.org/10.1001/jamaophthalmol.2019.1936] [PMID: 31219515]
[8]
Abdul-Ghani, R.; Mahdy, M.A.K.; Al-Eryani, S.M.A.; Fouque, F.; Lenhart, A.E.; Alkwri, A.; Al-Mikhlafi, A.M.; Wilke, A.B.B.; Thabet, A.A.Q.; Beier, J.C. Impact of population displacement and forced movements on the transmission and outbreaks of Aedes-borne viral diseases: Dengue as a model. Acta Trop., 2019, 197, 105066.
[http://dx.doi.org/10.1016/j.actatropica.2019.105066] [PMID: 31226251]
[9]
Kayadibi, H.; Yapar, D.; Akdogan, O.; Ulusu, N.N.; Baykam, N. Hitit Index to distinguish patients with and without Crimean-Congo hemorrhagic fever. Ticks Tick Borne Dis., 2019, 10(5), 1035-1040.
[http://dx.doi.org/10.1016/j.ttbdis.2019.05.010] [PMID: 31160263]
[10]
Marinho, P.E.S.; Alvarenga, P.P.M.; Crispim, A.P.C.; Candiani, T.M.S.; Alvarenga, A.M.; Bechler, I.M.; Alves, P.A.; Dornas, F.P.; de Oliveira, D.B.; Bentes, A.A.; Christo, P.P.; Kroon, E.G. Wild-Type Yellow Fever Virus RNA in Cerebrospinal Fluid of Child. Emerg. Infect. Dis., 2019, 25(8), 1567-1570.
[http://dx.doi.org/10.3201/eid2508.181479] [PMID: 31310221]
[11]
Ozyilmaz, B.; Kirbiyik, O.; Koc, A.; Ozdemir, T.R.; Kaya Ozer, O.; Kutbay, Y.B.; Erdogan, K.M.; Saka Guvenc, M.; Ozturk, C. Molecular genetic evaluation of NLRP3, MVK and TNFRSF1A associated periodic fever syndromes. Int. J. Immunogenet., 2019, 46(4), 232-240.
[http://dx.doi.org/10.1111/iji.12431] [PMID: 31135083]
[12]
Yue, Y.; Liu, X.; Xu, M.; Ren, D.; Liu, Q. Epidemiological dynamics of dengue fever in mainland China, 2014-2018. Int. J. Infect. Dis., 2019, 86, 82-93.
[http://dx.doi.org/10.1016/j.ijid.2019.06.015] [PMID: 31228577]
[13]
Renko, M.; Lantto, U.; Tapiainen, T. Towards better diagnostic criteria for periodic fever, aphthous stomatitis, pharyngitis and adenitis syndrome. Acta Paediatr., 2019, 108(8), 1385-1392.
[http://dx.doi.org/10.1111/apa.14792] [PMID: 30901126]
[14]
Zhao, M.Z.; Ruan, Q.R.; Xing, M.Y.; Wei, S.; Xu, D.; Wu, Z.H.; Zhu, L.; Zhu, J.L.; Zheng, C.F.; Liu, S.; Yu, Z.J.; Qi, J.Y.; Song, J.X. A diagnostic tool for identification of etiologies of fever of unknown origin in adult patients. Curr. Med. Sci., 2019, 39(4), 589-596.
[http://dx.doi.org/10.1007/s11596-019-2078-3] [PMID: 31346995]
[15]
Thellier, M. Changes in malaria epidemiology in France and worldwide, 2000-2015. Med. Mal. Infect., 2020, 50(2), 99-112.
[PMID: 31257063]
[16]
Paintsil, E.K.; Omari-Sasu, A.Y.; Addo, M.G.; Boateng, M.A. Analysis of Haematological Parameters as Predictors of Malaria Infection Using a Logistic Regression Model: A Case Study of a Hospital in the Ashanti Region of Ghana. Malar. Res. Treat., 2019, 2019, 1486370.
[http://dx.doi.org/10.1155/2019/1486370] [PMID: 31263541]
[17]
Macdonald, M.; Putzer, T. Human-Centered Design and Sustainable Malaria Interventions. Glob. Health Sci. Pract., 2019, 7(2), 148-149.
[http://dx.doi.org/10.9745/GHSP-D-19-00189] [PMID: 31249016]
[18]
Penna-Coutinho, J.; Cortopassi, W.A.; Oliveira, A.A.; França, T.C.; Krettli, A.U. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One, 2011, 6(7), e21237.
[http://dx.doi.org/10.1371/journal.pone.0021237] [PMID: 21779323]
[19]
Parthiban, A.; Muthukumaran, J.; Manhas, A.; Srivastava, K.; Krishna, R.; Rao, H.S. Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorg. Med. Chem. Lett., 2015, 25(20), 4657-4663.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.030] [PMID: 26338359]
[20]
Dev, N.; Kumar, R.; Gogna, A.; Sharma, S. Chikungunya-induced inflammatory myositis: a case report in India. Trop. Doct., 2019, 49(3), 241-243.
[http://dx.doi.org/10.1177/0049475519843781] [PMID: 31018774]
[21]
Chan, Y.H.; Teo, T.H.; Utt, A.; Tan, J.J.; Amrun, S.N.; Abu Bakar, F.; Yee, W.X.; Becht, E.; Lee, C.Y.; Lee, B.; Rajarethinam, R.; Newell, E.; Merits, A.; Carissimo, G.; Lum, F.M.; Ng, L.F. Mutating chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate. EMBO Mol. Med., 2019, 11(6), e10092.
[http://dx.doi.org/10.15252/emmm.201810092] [PMID: 31015278]
[22]
Elfert, K.A.; Abdelwahed, M.; Chi, G. Chikungunya Virus Infection-related Rhabdomyolysis: A Case Report. Cureus, 2019, 11(2), e4036.
[http://dx.doi.org/10.7759/cureus.4036] [PMID: 31011498]
[23]
Monteiro, V.V.S.; Navegantes-Lima, K.C.; de Lemos, A.B.; da Silva, G.L.; de Souza Gomes, R.; Reis, J.F.; Rodrigues Junior, L.C.; da Silva, O.S.; Romão, P.R.T.; Monteiro, M.C. Aedes-Chikungunya virus interaction: key role of vector midguts microbiota and its saliva in the host infection. Front. Microbiol., 2019, 10, 492.
[http://dx.doi.org/10.3389/fmicb.2019.00492] [PMID: 31024463]
[24]
Kumar, D. A Theoretical Model to Study the Interaction of Erythro-Noscapines with nsP3 protease of Chikungunya Virus. ChemistrySelect, 2019, 4(17), 4892-4900.
[http://dx.doi.org/10.1002/slct.201803360]
[25]
Kumar, D.; Kumari, K.; Jayaraj, A.; Singh, P. Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles. J. Biomol. Struct. Dyn., 2020, 38(10), 3018-3034.
[PMID: 31366291]
[26]
Bhutta, Z.A. Typhoid Fever: Way Forward Am J Trop Med Hyg, 2018, 99(3), 89-96.
[27]
Bentsi-Enchill, A.D.; Pollard, A.J. A Turning Point in Typhoid Control J Infect Dis, 2018, 218(4), S185-187.
[28]
Akinyemi, K.O. Typhoid Fever: Tracking the Trend in Nigeria Am J Trop Med Hyg, 2018, 99(3), 41-47.
[29]
Yang, Y.A.; Chong, A.; Song, J. Why Is Eradicating Typhoid Fever So Challenging: Implications for Vaccine and Therapeutic Design. Vaccines (Basel), 2018, 6(3), E45.
[http://dx.doi.org/10.3390/vaccines6030045] [PMID: 30042307]
[30]
Samykannu, G.V.P.; Antonyraj, C.B.; Narayanan, S.B.; Ahamed, S.I.B. Investigations of binding mode insight in Salmonella typhi type-III secretion system tip protein (SipD): A molecular docking and MD simulation study. Inform. Med. Unlocked., 2017, 9, 166-172.
[http://dx.doi.org/10.1016/j.imu.2017.08.002]
[31]
Samykannu, G. V.P., Natarajan J., Substrate specificities in Salmonella typhi outer membrane protease (PgtE) from Omptin family – An in silico proteomic approach. Inform. Med. Unlocked., 2018, 12, 6-13.
[http://dx.doi.org/10.1016/j.imu.2018.05.005]
[32]
Ali, H.; Prana, C.; Nasrul, E. Upregulation of SCUBE1 in Dengue Virus Infection. Open Access Maced. J. Med. Sci., 2019, 7(10), 1602-1607.
[http://dx.doi.org/10.3889/oamjms.2019.352] [PMID: 31210808]
[33]
Calderon, A. Dengue Virus in Bats from Cordoba and Sucre, Colombia Vector Borne Zoonotic Dis., 2019, 19(10), 747-751.
[34]
Huy, N.T.; Karimzadeh, S.; Chico, R.M. Higher incidence of stroke in patients with dengue fever: Spurious association or causal link? CMAJ, 2019, 191(24), E670.
[http://dx.doi.org/10.1503/cmaj.72069] [PMID: 31209136]
[35]
Jung, E.; Nam, S.; Oh, H.; Jun, S.; Ro, H.J.; Kim, B.; Kim, M.; Go, Y.Y. Neutralization of acidic intracellular vesicles by niclosamide inhibits multiple steps of the dengue virus life cycle in vitro. Sci. Rep., 2019, 9(1), 8682.
[http://dx.doi.org/10.1038/s41598-019-45095-1] [PMID: 31213630]
[36]
Lima, M.E.S.; Bachur, T.P.R.; Aragão, G.F. Guillain-Barre syndrome and its correlation with dengue, Zika and chikungunya viruses infection based on a literature review of reported cases in Brazil. Acta Trop., 2019, 197, 105064.
[http://dx.doi.org/10.1016/j.actatropica.2019.105064] [PMID: 31220435]
[37]
Murhekar, M.V.; Kamaraj, P.; Kumar, M.S.; Khan, S.A.; Allam, R.R.; Barde, P.; Dwibedi, B.; Kanungo, S.; Mohan, U.; Mohanty, S.S.; Roy, S.; Sagar, V.; Savargaonkar, D.; Tandale, B.V.; Topno, R.K.; Sapkal, G.; Kumar, C.P.G.; Sabarinathan, R.; Kumar, V.S.; Bitragunta, S.; Grover, G.S.; Lakshmi, P.V.M.; Mishra, C.M.; Sadhukhan, P.; Sahoo, P.K.; Singh, S.K.; Yadav, C.P.; Bhagat, A.; Srivastava, R.; Dinesh, E.R.; Karunakaran, T.; Govindhasamy, C.; Rajasekar, T.D.; Jeyakumar, A.; Suresh, A.; Augustine, D.; Kumar, P.A.; Kumar, R.; Dutta, S.; Toteja, G.S.; Gupta, N.; Mehendale, S.M. Burden of dengue infection in India, 2017: a cross-sectional population based serosurvey. Lancet Glob. Health, 2019, 7(8), e1065-e1073.
[http://dx.doi.org/10.1016/S2214-109X(19)30250-5] [PMID: 31201130]
[38]
Nujum, Z.T.; Vijayakumar, K.; Meenakshy, V.; Beegum, M.S. Burden of dengue in Kerala using disability-adjusted life years from 2006 to 2016. Indian J. Public Health, 2019, 63(2), 107-113.
[http://dx.doi.org/10.4103/ijph.IJPH_166_18] [PMID: 31219058]
[39]
Prasad, N.; Novak, J.E.; Patel, M.R. Kidney diseases associated with parvovirus b19, hanta, ebola, and dengue virus infection: a brief review. Adv. Chronic Kidney Dis., 2019, 26(3), 207-219.
[http://dx.doi.org/10.1053/j.ackd.2019.01.006] [PMID: 31202393]
[40]
Ly, S.; Fortas, C.; Duong, V.; Benmarhnia, T.; Sakuntabhai, A.; Paul, R.; Huy, R.; Sorn, S.; Nguon, K.; Chan, S.; Kimsan, S.; Ong, S.; Kim, K.S.; Buoy, S.; Voeung, L.; Dussart, P.; Buchy, P.; Tarantola, A. Asymptomatic dengue virus infections, Cambodia, 2012-2013. Emerg. Infect. Dis., 2019, 25(7), 1354-1362.
[http://dx.doi.org/10.3201/eid2507.181794] [PMID: 31211672]
[41]
Swaminathan, A.; Kirupanandhan, S.; Rathnavelu, E. Challenges in a unique presentation of congenital dengue with congenital heart disease. BMJ Case Rep., 2019, 12(6), e228855.
[http://dx.doi.org/10.1136/bcr-2018-228855] [PMID: 31213434]
[42]
Xi, Y.; Xu, C.Z.; Xie, Z.Z.; Zhu, D.L.; Dong, J.M. Rapid and visual detection of dengue virus using recombinase polymerase amplification method combined with lateral flow dipstick. Mol. Cell. Probes, 2019, 46, 101413.
[http://dx.doi.org/10.1016/j.mcp.2019.06.003] [PMID: 31202830]
[43]
Manappallil, R.G.; Nair, S.V.; Kakkattil, A.; Josphine, B. Transient splenial lesion due to non-cirrhotic hyperammonaemia in dengue fever. BMJ Case Rep., 2019, 12(6), e229407.
[http://dx.doi.org/10.1136/bcr-2019-229407] [PMID: 31253660]
[44]
Muhie, S.; Campbell, R.; Gautam, A.; Hammamieh, R.; Cummings, C.; Jett, M. Molecular alterations induced by Yersinia pestis, dengue virus and Staphylococcal enterotoxin B under severe stress. Brain Behav. Immun., 2019, 80, 725-741.
[http://dx.doi.org/10.1016/j.bbi.2019.05.022] [PMID: 31100372]
[45]
Harapan, H.; Michie, A.; Yohan, B.; Shu, P.Y.; Mudatsir, M.; Sasmono, R.T.; Imrie, A. Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Rev. Med. Virol., 2019, 29(4), e2037.
[http://dx.doi.org/10.1002/rmv.2037] [PMID: 31099110]
[46]
Chang, A. Malnutrition and Suspected Dengue Virus Infection in Children in Coastal Ecuador Curr Dev Nutr, 2019, 3(1) nzz034.P10-120-19.
[47]
Dengue statistics of wold of year 2010, 2010. Available from: https://en.wikipedia.org/wiki/Dengue_fever_outbreaks
[49]
Mohammed Yusuf, A.; Abdurashid Ibrahim, N. Knowledge, attitude and practice towards dengue fever prevention and associated factors among public health sector health-care professionals: in Dire Dawa, eastern Ethiopia. Risk Manag. Healthc. Policy, 2019, 12, 91-104.
[http://dx.doi.org/10.2147/RMHP.S195214] [PMID: 31239796]
[50]
Guerrero, N.A.S.; Bello, F.J. Comparative assessment of the replication efficiency of dengue, yellow fever, and chikungunya arboviruses in some insect and mammalian cell lines. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180511.
[http://dx.doi.org/10.1590/0037-8682-0511-2018] [PMID: 31038623]
[51]
Inizan, C. Dengue in New Caledonia: Knowledge and Gaps Trop Med Infect Dis, 2019, 4(2), 95.
[52]
Li, H.M. The authors respond to “Higher incidence of stroke in patients with dengue fever: Spurious association or causal link?”. CMAJ, 2019, 191(24), E671.
[http://dx.doi.org/10.1503/cmaj.72114] [PMID: 31209137]
[53]
Yildiz, M.; Ghosh, S.; Bell, J.A.; Sherman, W.; Hardy, J.A. Allosteric inhibition of the NS2B-NS3 protease from dengue virus. ACS Chem. Biol., 2013, 8(12), 2744-2752.
[http://dx.doi.org/10.1021/cb400612h] [PMID: 24164286]
[54]
Cahour, A.; Falgout, B.; Lai, C.J. Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J. Virol., 1992, 66(3), 1535-1542.
[http://dx.doi.org/10.1128/JVI.66.3.1535-1542.1992] [PMID: 1531368]
[55]
Miller, S.; Kastner, S.; Krijnse-Locker, J.; Bühler, S.; Bartenschlager, R. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem., 2007, 282(12), 8873-8882.
[http://dx.doi.org/10.1074/jbc.M609919200] [PMID: 17276984]
[56]
Umareddy, I.; Chao, A.; Sampath, A.; Gu, F.; Vasudevan, S.G. Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J. Gen. Virol., 2006, 87(Pt 9), 2605-2614.
[http://dx.doi.org/10.1099/vir.0.81844-0] [PMID: 16894199]
[57]
Nemésio, H.; Palomares-Jerez, F.; Villalaín, J. NS4A and NS4B proteins from dengue virus: membranotropic regions. Biochim. Biophys. Acta, 2012, 1818(11), 2818-2830.
[http://dx.doi.org/10.1016/j.bbamem.2012.06.022] [PMID: 22772157]
[58]
Chambers, T.J.; Weir, R.C.; Grakoui, A.; McCourt, D.W.; Bazan, J.F.; Fletterick, R.J.; Rice, C.M. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc. Natl. Acad. Sci. USA, 1990, 87(22), 8898-8902.
[http://dx.doi.org/10.1073/pnas.87.22.8898] [PMID: 2147282]
[59]
Rothan, H.A.; Han, H.C.; Ramasamy, T.S.; Othman, S.; Rahman, N.A.; Yusof, R. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect. Dis., 2012, 12, 314.
[http://dx.doi.org/10.1186/1471-2334-12-314] [PMID: 23171075]
[60]
Wensing, A.M.J.; van Maarseveen, N.M.; Nijhuis, M. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antiviral Res., 2010, 85(1), 59-74.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.003] [PMID: 19853627]
[61]
Pearlman, B.L. Protease inhibitors for the treatment of chronic hepatitis C genotype-1 infection: the new standard of care. Lancet Infect. Dis., 2012, 12(9), 717-728.
[http://dx.doi.org/10.1016/S1473-3099(12)70060-9] [PMID: 22647717]
[62]
Melino, S.; Paci, M. Progress for dengue virus diseases. Towards the NS2B-NS3pro inhibition for a therapeutic-based approach. FEBS J., 2007, 274(12), 2986-3002.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05831.x] [PMID: 17509079]
[63]
Nitsche, C.; Behnam, M.A.; Steuer, C.; Klein, C.D. Retro peptide-hybrids as selective inhibitors of the Dengue virus NS2B-NS3 protease. Antiviral Res., 2012, 94(1), 72-79.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.008] [PMID: 22391061]
[64]
Noble, C.G.; Chen, Y.L.; Dong, H.; Gu, F.; Lim, S.P.; Schul, W.; Wang, Q.Y.; Shi, P.Y. Strategies for development of Dengue virus inhibitors. Antiviral Res., 2010, 85(3), 450-462.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.011] [PMID: 20060421]
[65]
Ryan, M.D.; Monaghan, S.; Flint, M. Virus-encoded proteinases of the Flaviviridae. J. Gen. Virol., 1998, 79(Pt 5), 947-959.
[http://dx.doi.org/10.1099/0022-1317-79-5-947] [PMID: 9603310]
[66]
Leung, D.; Schroder, K.; White, H.; Fang, N.X.; Stoermer, M.J.; Abbenante, G.; Martin, J.L.; Young, P.R.; Fairlie, D.P. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J. Biol. Chem., 2001, 276(49), 45762-45771.
[http://dx.doi.org/10.1074/jbc.M107360200] [PMID: 11581268]
[67]
Babu, A.N.; Niehaus, E.; Shah, S.; Unnithan, C.; Ramkumar, P.S.; Shah, J.; Binoy, V.V.; Soman, B.; Arunan, M.C.; Jose, C.P. Smartphone geospatial apps for dengue control, prevention, prediction, and education: MOSapp, DISapp, and the mosquito perception index (MPI). Environ. Monit. Assess., 2019, 191(Suppl. 2), 393.
[http://dx.doi.org/10.1007/s10661-019-7425-0] [PMID: 31254076]
[68]
Ayolabi, C.I.; Olusola, B.A.; Ibemgbo, S.A.; Okonkwo, G.O. Detection of Dengue viruses among febrile patients in Lagos, Nigeria and phylogenetics of circulating Dengue serotypes in Africa. Infect. Genet. Evol., 2019, 75, 103947.
[http://dx.doi.org/10.1016/j.meegid.2019.103947] [PMID: 31276800]
[69]
Casas, I.; Delmelle, E. Landscapes of healthcare utilization during a dengue fever outbreak in an urban environment of Colombia. Environ. Monit. Assess., 2019, 191(Suppl. 2), 279.
[http://dx.doi.org/10.1007/s10661-019-7415-2] [PMID: 31254116]
[70]
Sánchez-Vargas, L.A.; Kounlavouth, S.; Smith, M.L.; Anderson, K.B.; Srikiatkhachorn, A.; Ellison, D.W.; Currier, J.R.; Endy, T.P.; Mathew, A.; Rothman, A.L. Longitudinal analysis of memory b and t cell responses to dengue virus in a 5-year prospective cohort study in Thailand. Front. Immunol., 2019, 10, 1359.
[http://dx.doi.org/10.3389/fimmu.2019.01359] [PMID: 31263466]
[71]
Wang, F.; Delannay, C.; Goindin, D.; Deng, L.; Guan, S.; Lu, X.; Fouque, F.; Vega-Rúa, A.; Picimbon, J.F. Cartography of odor chemicals in the dengue vector mosquito (Aedes aegypti L., Diptera/Culicidae). Sci. Rep., 2019, 9(1), 8510.
[http://dx.doi.org/10.1038/s41598-019-44851-7] [PMID: 31186462]
[72]
Lalla, J.K.; S.O., Shraddha, Seth A Review on Dengue and Treatments. J Pharmacol Toxicol Stud, 2014, 2(4), 13-23.
[73]
de Alwis, R.; Bangs, D.J.; Angelo, M.A.; Cerpas, C.; Fernando, A.; Sidney, J.; Peters, B.; Gresh, L.; Balmaseda, A.; de Silva, A.D.; Harris, E.; Sette, A.; Weiskopf, D. Immunodominant Dengue Virus-Specific CD8+ T Cell Responses Are Associated with a Memory PD-1+ Phenotype. J. Virol., 2016, 90(9), 4771-4779.
[http://dx.doi.org/10.1128/JVI.02892-15] [PMID: 26912627]
[74]
Rahayu, A.; Saraswati, U.; Supriyati, E.; Kumalawati, D.A.; Hermantara, R.; Rovik, A.; Daniwijaya, E.W.; Fitriana, I.; Setyawan, S.; Ahmad, R.A.; Wardana, D.S.; Indriani, C.; Utarini, A.; Tantowijoyo, W.; Arguni, E. Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti. Int. J. Environ. Res. Public Health, 2019, 16(10), E1742.
[http://dx.doi.org/10.3390/ijerph16101742] [PMID: 31100967]
[75]
Rothman, A.L.; Ennis, F.A. Dengue Vaccine: The Need, the Challenges, and Progress. J. Infect. Dis., 2016, 214(6), 825-827.
[http://dx.doi.org/10.1093/infdis/jiw068] [PMID: 26908750]
[76]
Low, J.G.; Sung, C.; Wijaya, L.; Wei, Y.; Rathore, A.P.S.; Watanabe, S.; Tan, B.H.; Toh, L.; Chua, L.T.; Hou, Y.; Chow, A.; Howe, S.; Chan, W.K.; Tan, K.H.; Chung, J.S.; Cherng, B.P.; Lye, D.C.; Tambayah, P.A.; Ng, L.C.; Connolly, J.; Hibberd, M.L.; Leo, Y.S.; Cheung, Y.B.; Ooi, E.E.; Vasudevan, S.G. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis., 2014, 14(8), 706-715.
[http://dx.doi.org/10.1016/S1473-3099(14)70730-3] [PMID: 24877997]
[77]
Chen, Y.L.; Abdul Ghafar, N.; Karuna, R.; Fu, Y.; Lim, S.P.; Schul, W.; Gu, F.; Herve, M.; Yokohama, F.; Wang, G.; Cerny, D.; Fink, K.; Blasco, F.; Shi, P.Y. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J. Virol., 2014, 88(3), 1740-1747.
[http://dx.doi.org/10.1128/JVI.02841-13] [PMID: 24257621]
[78]
clinicaltrials.gov. https://clinicaltrials.gov/ct2/home2017.
[79]
Warfield, K.L. The Iminosugar UV-4 is a Broad Inhibitor of Influenza A and B Viruses ex Vivo and in Mice Viruses-Basel, 2016, 8(3), 71.
[80]
Balasubramanian, A.; Pilankatta, R.; Teramoto, T.; Sajith, A.M.; Nwulia, E.; Kulkarni, A.; Padmanabhan, R. Inhibition of dengue virus by curcuminoids. Antiviral Res., 2019, 162, 71-78.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.002] [PMID: 30529358]
[81]
Diosa-Toro, M.; Troost, B.; van de Pol, D.; Heberle, A.M.; Urcuqui-Inchima, S.; Thedieck, K.; Smit, J.M. Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Res., 2019, 161, 90-99.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.011] [PMID: 30468746]
[82]
Osman, H.; Idris, N.H.; Kamarulzaman, E.E.; Wahab, H.A.; Hassan, M.Z. 3,5-Bis(arylidene)-4-piperidones as potential dengue protease inhibitors. Acta Pharm. Sin. B, 2017, 7(4), 479-484.
[http://dx.doi.org/10.1016/j.apsb.2017.04.009] [PMID: 28752033]
[83]
Xu, S.; Li, H.; Shao, X.; Fan, C.; Ericksen, B.; Liu, J.; Chi, C.; Wang, C. Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem., 2012, 55(15), 6881-6887.
[http://dx.doi.org/10.1021/jm300655h] [PMID: 22780881]
[84]
Brecher, M.; Li, Z.; Liu, B.; Zhang, J.; Koetzner, C.A.; Alifarag, A.; Jones, S.A.; Lin, Q.; Kramer, L.D.; Li, H. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog., 2017, 13(5), e1006411.
[http://dx.doi.org/10.1371/journal.ppat.1006411] [PMID: 28542603]
[85]
Tseng, C.K.; Lin, C.K.; Wu, Y.H.; Chen, Y.H.; Chen, W.C.; Young, K.C.; Lee, J.C. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci. Rep., 2016, 6, 32176.
[http://dx.doi.org/10.1038/srep32176] [PMID: 27553177]
[86]
Weigel, L.F.; Nitsche, C.; Graf, D.; Bartenschlager, R.; Klein, C.D. Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors. J. Med. Chem., 2015, 58(19), 7719-7733.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00612] [PMID: 26367391]
[87]
Tomlinson, S.M.; Malmstrom, R.D.; Russo, A.; Mueller, N.; Pang, Y.P.; Watowich, S.J. Structure-based discovery of dengue virus protease inhibitors. Antiviral Res., 2009, 82(3), 110-114.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.190] [PMID: 19428601]
[88]
Behnam, M.A.M.; Graf, D.; Bartenschlager, R.; Zlotos, D.P.; Klein, C.D. Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue. J. Med. Chem., 2015, 58(23), 9354-9370.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01441] [PMID: 26562070]
[89]
Raut, R.; Beesetti, H.; Tyagi, P.; Khanna, I.; Jain, S.K.; Jeankumar, V.U.; Yogeeswari, P.; Sriram, D.; Swaminathan, S. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virol. J., 2015, 12, 16.
[http://dx.doi.org/10.1186/s12985-015-0248-x] [PMID: 25886260]
[90]
Wu, H.; Bock, S.; Snitko, M.; Berger, T.; Weidner, T.; Holloway, S.; Kanitz, M.; Diederich, W.E.; Steuber, H.; Walter, C.; Hofmann, D.; Weißbrich, B.; Spannaus, R.; Acosta, E.G.; Bartenschlager, R.; Engels, B.; Schirmeister, T.; Bodem, J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother., 2015, 59(2), 1100-1109.
[http://dx.doi.org/10.1128/AAC.03543-14] [PMID: 25487800]
[91]
Yang, C.C.; Hu, H.S.; Wu, R.H.; Wu, S.H.; Lee, S.J.; Jiaang, W.T.; Chern, J.H.; Huang, Z.S.; Wu, H.N.; Chang, C.M.; Yueh, A. A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob. Agents Chemother., 2014, 58(1), 110-119.
[http://dx.doi.org/10.1128/AAC.01281-13] [PMID: 24145533]
[92]
Viswanathan, U.; Tomlinson, S.M.; Fonner, J.M.; Mock, S.A.; Watowich, S.J. Identification of a novel inhibitor of dengue virus protease through use of a virtual screening drug discovery Web portal. J. Chem. Inf. Model., 2014, 54(10), 2816-2825.
[http://dx.doi.org/10.1021/ci500531r] [PMID: 25263519]
[93]
Deng, J.; Li, N.; Liu, H.; Zuo, Z.; Liew, O.W.; Xu, W.; Chen, G.; Tong, X.; Tang, W.; Zhu, J.; Zuo, J.; Jiang, H.; Yang, C.G.; Li, J.; Zhu, W. Discovery of novel small molecule inhibitors of dengue viral NS2B-NS3 protease using virtual screening and scaffold hopping. J. Med. Chem., 2012, 55(14), 6278-6293.
[http://dx.doi.org/10.1021/jm300146f] [PMID: 22742496]
[94]
Talarico, L.B.; Noseda, M.D.; Ducatti, D.R.B.; Duarte, M.E.R.; Damonte, E.B. Differential inhibition of dengue virus infection in mammalian and mosquito cells by iota-carrageenan. J. Gen. Virol., 2011, 92(Pt 6), 1332-1342.
[http://dx.doi.org/10.1099/vir.0.028522-0] [PMID: 21325483]
[95]
Yang, C.C.; Hsieh, Y.C.; Lee, S.J.; Wu, S.H.; Liao, C.L.; Tsao, C.H.; Chao, Y.S.; Chern, J.H.; Wu, C.P.; Yueh, A. Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob. Agents Chemother., 2011, 55(1), 229-238.
[http://dx.doi.org/10.1128/AAC.00855-10] [PMID: 20937790]
[96]
Takhampunya, R.; Ubol, S.; Houng, H.S.; Cameron, C.E.; Padmanabhan, R. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J. Gen. Virol., 2006, 87(Pt 7), 1947-1952.
[http://dx.doi.org/10.1099/vir.0.81655-0] [PMID: 16760396]
[97]
Yu, J.S.; Tseng, C.K.; Lin, C.K.; Hsu, Y.C.; Wu, Y.H.; Hsieh, C.L.; Lee, J.C. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antiviral Res., 2017, 137, 49-57.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.010] [PMID: 27847245]
[98]
Tarantino, D.; Cannalire, R.; Mastrangelo, E.; Croci, R.; Querat, G.; Barreca, M.L.; Bolognesi, M.; Manfroni, G.; Cecchetti, V.; Milani, M. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res., 2016, 134, 226-235.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.007] [PMID: 27649989]
[99]
Kato, F.; Ishida, Y.; Oishi, S.; Fujii, N.; Watanabe, S.; Vasudevan, S.G.; Tajima, S.; Takasaki, T.; Suzuki, Y.; Ichiyama, K.; Yamamoto, N.; Yoshii, K.; Takashima, I.; Kobayashi, T.; Miura, T.; Igarashi, T.; Hishiki, T. Novel antiviral activity of bromocriptine against dengue virus replication. Antiviral Res., 2016, 131, 141-147.
[http://dx.doi.org/10.1016/j.antiviral.2016.04.014] [PMID: 27181378]
[100]
Xu, H.T.; Colby-Germinario, S.P.; Hassounah, S.; Quashie, P.K.; Han, Y.; Oliveira, M.; Stranix, B.R.; Wainberg, M.A. Identification of a Pyridoxine-Derived Small-Molecule Inhibitor Targeting Dengue Virus RNA-Dependent RNA Polymerase. Antimicrob. Agents Chemother., 2015, 60(1), 600-608.
[http://dx.doi.org/10.1128/AAC.02203-15] [PMID: 26574011]
[101]
Byrd, C.M.; Dai, D.; Grosenbach, D.W.; Berhanu, A.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Wineinger, K.A.; Page, J.M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M.A.; Bartenschlager, R.; Scaturro, P.; Hruby, D.E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25.
[http://dx.doi.org/10.1128/AAC.01429-12] [PMID: 23070172]
[102]
Chen, Y.L.; Yin, Z.; Lakshminarayana, S.B.; Qing, M.; Schul, W.; Duraiswamy, J.; Kondreddi, R.R.; Goh, A.; Xu, H.Y.; Yip, A.; Liu, B.; Weaver, M.; Dartois, V.; Keller, T.H.; Shi, P.Y. Inhibition of dengue virus by an ester prodrug of an adenosine analog. Antimicrob. Agents Chemother., 2010, 54(8), 3255-3261.
[http://dx.doi.org/10.1128/AAC.00397-10] [PMID: 20516277]
[103]
Kinney, R.M.; Huang, C.Y.; Rose, B.C.; Kroeker, A.D.; Dreher, T.W.; Iversen, P.L.; Stein, D.A. Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J. Virol., 2005, 79(8), 5116-5128.
[http://dx.doi.org/10.1128/JVI.79.8.5116-5128.2005] [PMID: 15795296]
[104]
Koff, W.C.; Elm, J.L., Jr; Halstead, S.B. Inhibition of dengue virus replication by amantadine hydrochloride. Antimicrob. Agents Chemother., 1980, 18(1), 125-129.
[http://dx.doi.org/10.1128/AAC.18.1.125] [PMID: 7416739]
[105]
Villegas, P.M.; Ortega, E.; Villa-Tanaca, L.; Barrón, B.L.; Torres-Flores, J. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Arch. Virol., 2018, 163(5), 1331-1335.
[http://dx.doi.org/10.1007/s00705-018-3757-2] [PMID: 29392497]
[106]
Wang, Q.Y.; Dong, H.; Zou, B.; Karuna, R.; Wan, K.F.; Zou, J.; Susila, A.; Yip, A.; Shan, C.; Yeo, K.L.; Xu, H.; Ding, M.; Chan, W.L.; Gu, F.; Seah, P.G.; Liu, W.; Lakshminarayana, S.B.; Kang, C.; Lescar, J.; Blasco, F.; Smith, P.W.; Shi, P.Y. Discovery of Dengue Virus NS4B Inhibitors. J. Virol., 2015, 89(16), 8233-8244.
[http://dx.doi.org/10.1128/JVI.00855-15] [PMID: 26018165]
[107]
Vincetti, P.; Caporuscio, F.; Kaptein, S.; Gioiello, A.; Mancino, V.; Suzuki, Y.; Yamamoto, N.; Crespan, E.; Lossani, A.; Maga, G.; Rastelli, G.; Castagnolo, D.; Neyts, J.; Leyssen, P.; Costantino, G.; Radi, M. Discovery of Multitarget Antivirals Acting on Both the Dengue Virus NS5-NS3 Interaction and the Host Src/Fyn Kinases. J. Med. Chem., 2015, 58(12), 4964-4975.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00108] [PMID: 26039671]
[108]
Basavannacharya, C.; Vasudevan, S.G. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem. Biophys. Res. Commun., 2014, 453(3), 539-544.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.113] [PMID: 25281902]
[109]
Fraser, J.E.; Watanabe, S.; Wang, C.; Chan, W.K.; Maher, B.; Lopez-Denman, A.; Hick, C.; Wagstaff, K.M.; Mackenzie, J.M.; Sexton, P.M.; Vasudevan, S.G.; Jans, D.A. A nuclear transport inhibitor that modulates the unfolded protein response and provides in vivo protection against lethal dengue virus infection. J. Infect. Dis., 2014, 210(11), 1780-1791.
[http://dx.doi.org/10.1093/infdis/jiu319] [PMID: 24903662]
[110]
Byrd, C.M.; Grosenbach, D.W.; Berhanu, A.; Dai, D.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Yang, G.; Tyavanagimatt, S.; Harver, C.; Wineinger, K.A.; Page, J.; Stavale, E.; Stone, M.A.; Fuller, K.P.; Lovejoy, C.; Leeds, J.M.; Hruby, D.E.; Jordan, R. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob. Agents Chemother., 2013, 57(4), 1902-1912.
[http://dx.doi.org/10.1128/AAC.02251-12] [PMID: 23403421]
[111]
Xie, X.; Wang, Q.Y.; Xu, H.Y.; Qing, M.; Kramer, L.; Yuan, Z.; Shi, P.Y. Inhibition of dengue virus by targeting viral NS4B protein. J. Virol., 2011, 85(21), 11183-11195.
[http://dx.doi.org/10.1128/JVI.05468-11] [PMID: 21865382]
[112]
Youhei Takagi, K.M. Haruaki Nobori, Haruka Maeda, Akihiko Sato, Takeshi Kurosu, Yasuko Orba, Hirofumi Sawa, Kazunari Hattori, Kenichi Higashino, Yoshito Numata, Yutaka Yoshida, Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg. Med. Chem. Lett., 2017, 27, 3586-3590.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.027]
[113]
Timiri, A.K.; Selvarasu, S.; Kesherwani, M.; Vijayan, V.; Sinha, B.N.; Devadasan, V.; Jayaprakash, V. Synthesis and molecular modelling studies of novel sulphonamide derivatives as dengue virus 2 protease inhibitors. Bioorg. Chem., 2015, 62, 74-82.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.005] [PMID: 26247308]
[114]
Behnam, M.A.M.; Nitsche, C.; Vechi, S.M.; Klein, C.D. C-terminal residue optimization and fragment merging: discovery of a potent Peptide-hybrid inhibitor of dengue protease. ACS Med. Chem. Lett., 2014, 5(9), 1037-1042.
[http://dx.doi.org/10.1021/ml500245v] [PMID: 25221663]
[115]
Pambudi, S.; Kawashita, N.; Phanthanawiboon, S.; Omokoko, M.D.; Masrinoul, P.; Yamashita, A.; Limkittikul, K.; Yasunaga, T.; Takagi, T.; Ikuta, K.; Kurosu, T. A small compound targeting the interaction between nonstructural proteins 2B and 3 inhibits dengue virus replication. Biochem. Biophys. Res. Commun., 2013, 440(3), 393-398.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.078] [PMID: 24070610]
[116]
Verma, R.J. Identification of inhibitors of dengue virus (DENV1, DENV2 AND DENV3) ns3B/ns3 serine protease: a molevular docking and simulation approach Asian J. Pharm. Clin. Res., 2015, 8(1), 287-292.
[117]
Vishvakarma, V.K.; Shukla, N.; Reetu, ; Kumari, K.; Patel, R.; Singh, P. A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds. Heliyon, 2019, 5(8), e02124.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02124] [PMID: 31406937]
[118]
Vishvakarma, V.K.; Singh, P.; Kumar, V.; Kumari, K.; Patel, R.; Chandra, R. Pyrrolothiazolones as Potential Inhibitors for the nsP2B-nsP3 Protease of Dengue Virus and Their Mechanism of Synthesis. ChemistrySelect, 2019, 4(32), 9410-9419.
[http://dx.doi.org/10.1002/slct.201901119]
[119]
Anand, K.C.; Prashant, S.; Kamlesh, K. One pot green synthesis of biological potent thiazolopyrans and docking against human pancreatic lipase related protein 1 receptors Int. J. Curr. Adv. Res., 2016, 5(1), 559-563.
[120]
Durgesh, K.; Prashant, S.; Ramesh, C. Impact of Gemini Surfactants on the stability of Insulin using computational tools J. Nanomed.   Biotherap., 2017, 7, 1-5.
[121]
Kamlesh, K.; Vijay, K.V.; Prashant, S.; Ramesh, C. Sulphonylurea, Metformin, TZDs: Potential drugs to cure Diabetes International Journal of Advanced Biomedicine, 2017, 1, 25-31.
[122]
Kumar, D.; Kumari, K.; Jayaraj, A.; Kumar, V.; Kumar, R.V.; Dass, S.K.; Chandra, R.; Singh, P. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J. Biomol. Struct. Dyn., 2020, 1-14.
[PMID: 32362235]
[123]
Kumari, M.; Maurya, J.K.; Singh, U.K.; Khan, A.B.; Ali, M.; Singh, P.; Patel, R. Spectroscopic and docking studies on the interaction between pyrrolidinium based ionic liquid and bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 349-356.
[http://dx.doi.org/10.1016/j.saa.2014.01.012] [PMID: 24508873]
[124]
Neeraj, C.; Anjali, G.; Bhaskara, N.; Prashant, S.; Amit, M.; Kamlesh, K.; Anita, Y.; Ramesh, C. A Theoretical Study on Inclusion Complexes of Various Noscapines with Different Cyclodextrin Int. J. Nano. Chem., 2016, 2(3), 1-9.
[125]
Prashant, S.; Kamlesh, K.; Ramesh, C. Energy optimization and qsar properties of thiazolidine-2,4-dione and its analogue. J Pharmaceut Appl Chem, 2016, 2, 1-11.
[126]
Prashant, S.; Kamlesh, K.; Ramesh, C. Synthesis, Computational   Docking Studies of Bis-(4-Hydroxycoumarin-3-Yl) Methanes As Potential Inhibitor For Carbonic Anhydrase, Glyceraldehyde-3-Phosphate Dehydrogenase J Pharmaceut Appl Chem, 2016, 2, 81-101.
[127]
Prashant, S.; Kamlesh, K.; Ramesh, C. Green synthesis of Tetrazines and their role as human cytomegalovirus (HCMV) protease inhibitor. J Theoret Comput Sci, 2016, 3, 1-5.
[128]
Prashant, S.; Kamlesh, K.; Satish, K.A.; Ramesh, C. Virtual screening and docking studies of synthesized chalcones. Potent Anti-Malarial Drug. Int J Drug Develop Res, 2016, 8(1), 49-56.
[129]
Prashant, S.; Vijay, K.V.; Bhaskarnand, P.; Sandeep, Y. Mohd. Aslam; Jaibeer, Y.; Anita, Y.; Kamlesh, K.; Rajan, P.; Ramesh, C. Computational docking studies of Noscapines: A potential bioactive agent American. J. Pharmacol. Pharmacother., 2017, 4(1), 9-14.
[130]
Rajan, P.; Meena, K.; Neeraj, D.; Abul, B.K.; Prashant, S.; Maqsood, A.A.M.; Amit, K. Interaction between pyrolidium based ionic liquid and bouvine serum albumin: A Spectroscopic and molecular docking insight. Biochem. Anal. Biochem., 2016, 5, 1-8.
[131]
Rohit, B.A. A.G., Prashant, S.; Sanju Invitro and Insilico antimicrobial study of Stannane of Pyridoxal 5-Phosphate Inter. J. Pharm. Pharm. Sci., 2017, 9, 145-153.
[132]
Vijay, K.V.; Kamlesh, K.; Prashant, S. Interaction between Bovine Serum Albumin and Gemini Surfactants using Molecular Docking Characterization Information Science Letter 2017, 3, 1-9.
[133]
Vijay, K.V.; Prashant, S.; Kamlesh, K.; Ramesh, C. Rational Design of Threo as Well Erythro Noscapines, an Anticancer Drug: A Molecular Docking and Molecular Dynamic Approach Biochemistry   Pharmacology 2017, 6(3), 1-7.
[134]
Vishvakarma, V.K.; Kumari, K.; Patel, R.; Dixit, V.S.; Singh, P.; Mehrotra, G.K.; Chandra, R.; Chakrawarty, A.K. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 143, 319-323.
[http://dx.doi.org/10.1016/j.saa.2015.01.068] [PMID: 25766242]
[135]
Vishvakarma, V.K.; Singh, P.; Dubey, M.; Kumari, K.; Chandra, R.; Pandey, N.D. Quantitative structure-activity relationship analysis of thiazolidineones: potent antidiabetic compounds. Drug Metabol. Drug Interact., 2013, 28(1), 31-47.
[http://dx.doi.org/10.1515/dmdi-2012-0036] [PMID: 23417104]
[137]
[138]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[139]
Yang, J.M.; Chen, C.C. GEMDOCK: a generic evolutionary method for molecular docking. Proteins, 2004, 55(2), 288-304.
[http://dx.doi.org/10.1002/prot.20035] [PMID: 15048822]
[140]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[141]
Ritchie, D.W.; Kemp, G.J.L. Protein docking using spherical polar Fourier correlations. Proteins, 2000, 39(2), 178-194.
[http://dx.doi.org/10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6] [PMID: 10737939]
[142]
[143]
BIOVIA, D.S., Discovery Studio Modelling Environment, Release 2017 2017.
[144]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[145]
Kumari, R.; Kumar, R.; Lynn, A. Open Source Drug Discovery Consortium. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[146]
Kagami, L.P.; das Neves, G.M.; da Silva, A.W.S.; Caceres, R.A.; Kawano, D.F.; Eifler-Lima, V.L. LiGRO: a graphical user interface for protein-ligand molecular dynamics. J. Mol. Model., 2017, 23(11), 304.
[http://dx.doi.org/10.1007/s00894-017-3475-9] [PMID: 28980073]
[147]
Frisch, M.J.T. G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian 16, Revision C.01, 2016.
[148]
Dennington Roy; Keith, T.A.M., John M., GaussView Version 6
[150]
[151]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[152]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol. Inform., 2011, 30(2-3), 241-250.
[http://dx.doi.org/10.1002/minf.201000151] [PMID: 27466777]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy