Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

miRNAs Modulate the Dichotomy of Cisplatin Resistance or Sensitivity in Breast Cancer: An Update of Therapeutic Implications

Author(s): Asma Safi, Milad Bastami, Soheila Delghir, Khandan Ilkhani, Farhad Seif and Mohammad R. Alivand*

Volume 21, Issue 9, 2021

Published on: 03 September, 2020

Page: [1069 - 1081] Pages: 13

DOI: 10.2174/1871520620666200903145939

Price: $65

Abstract

Cisplatin has a broad-spectrum antitumor activity and is widely used for the treatment of various malignant tumors. However, acquired or intrinsic resistance of cisplatin is a major problem for patients during the therapy. Recently, it has been reported Cancer Stem Cell (CSC)-derived drug resistance is a great challenge of tumor development and recurrence; therefore, the sensitivity of Breast Cancer Stem Cells (BCSCs) to cisplatin is of particular importance. Increasing evidence has shown that there is a relationship between cisplatin resistance/sensitivity genes and related miRNAs. It is known that dysregulation of relevant miRNAs plays a critical role in regulating target genes of cisplatin resistance/sensitivity in various pathways such as cellular uptake/efflux, Epithelial-Mesenchymal Transition (EMT), hypoxia, and apoptosis. Furthermore, the efficacy of the current chemotherapeutic drugs, including cisplatin, for providing personalized medicine, can be improved by controlling the expression of miRNAs. Thus, potential targeting of miRNAs can lead to miRNA-based therapies, which will help overcome drug resistance and develop more effective personalized anti-cancer and cotreatment strategies in breast cancer. In this review, we summarized the general understandings of miRNAregulated biological processes in breast cancer, particularly focused on the role of miRNA in cisplatin resistance/ sensitivity.

Keywords: Cisplatin, breast cancer, drug resistance, miRNAs, EMT, cancer stem cell.

Graphical Abstract
[1]
Cataldo, A.; Cheung, D.G.; Balsari, A.; Tagliabue, E.; Coppola, V.; Iorio, M.V.; Palmieri, D.; Croce, C.M. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget, 2016, 7(1), 786-797.
[http://dx.doi.org/10.18632/oncotarget.6381] [PMID: 26623722]
[2]
Peláez-García, A.; Yébenes, L.; Berjón, A.; Angulo, A.; Zamora, P.; Sánchez-Méndez, J.I.; Espinosa, E.; Redondo, A.; Heredia-Soto, V.; Mendiola, M.; Feliú, J.; Hardisson, D. Comparison of risk classification between EndoPredict and MammaPrint in ER-positive/HER2-negative primary invasive breast cancer. PLoS One, 2017, 12(9), e0183452.
[http://dx.doi.org/10.1371/journal.pone.0183452]] [PMID: 28886093]
[3]
Pan, S.T.; Li, Z.L.; He, Z.X.; Qiu, J.X.; Zhou, S.F. Molecular mechanisms for tumour resistance to chemotherapy. Clin. Exp. Pharmacol. Physiol., 2016, 43(8), 723-737.
[http://dx.doi.org/10.1111/1440-1681.12581] [PMID: 27097837]
[4]
Li, J.; Liu, J.; Li, P.; Zhou, C.; Liu, P. The downregulation of WWOX induces epithelial-mesenchymal transition and enhances stemness and chemoresistance in breast cancer. Exp. Biol. Med. (Maywood), 2018, 243(13), 1066-1073.
[http://dx.doi.org/10.1177/1535370218806455] [PMID: 30335523]
[5]
Chen, L.; Zeng, Y.; Zhou, S-F. Role of apoptosis in cancer resistance to chemotherapy. Curr. Understanding Apoptosis: Programm; Cell Death, 2018, p. 125.
[http://dx.doi.org/10.5772/intechopen.80056]
[6]
Jamieson, E.R.; Lippard, S.J. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev., 1999, 99(9), 2467-2498.
[http://dx.doi.org/10.1021/cr980421n] [PMID: 11749487]
[7]
Tan, X.; Peng, J.; Fu, Y.; An, S.; Rezaei, K.; Tabbara, S.; Teal, C.B.; Man, Y.G.; Brem, R.F.; Fu, S.W. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res., 2014, 16(5), 435.
[http://dx.doi.org/10.1186/s13058-014-0435-5] [PMID: 25228385]
[8]
Florea, A-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[9]
Drayton, R.M. The role of microRNA in the response to cisplatin treatment. Biochem. Soc. Trans., 2012, 40(4), 821-825.
[http://dx.doi.org/10.1042/BST20120055]
[10]
Tian, W.; Chen, J.; He, H.; Deng, Y. MicroRNAs and drug resistance of breast cancer: Basic evidence and clinical applications. Clin. Transl. Oncol., 2013, 15(5), 335-342.
[http://dx.doi.org/10.1007/s12094-012-0929-5] [PMID: 22914907]
[11]
Rojas, K.; Stuckey, A. Breast cancer epidemiology and risk factors. Clin. Obstet. Gynecol., 2016, 59(4), 651-672.
[http://dx.doi.org/10.1097/GRF.0000000000000239] [PMID: 27681694]
[12]
Kamińska, M.; Ciszewski, T.; Łopacka-Szatan, K.; Miotła, P.; Starosławska, E. Breast cancer risk factors. Menopause Rev., 2015, 14(3), 196-202.
[http://dx.doi.org/10.5114/pm.2015.54346]]
[13]
Parise, C.A.; Bauer, K.R.; Brown, M.M.; Caggiano, V. Breast cancer subtypes as defined by the Estrogen Receptor (ER), Progesterone Receptor (PR), and the Human Epidermal growth factor Receptor 2 (HER2) among women with invasive breast cancer in California, 1999-2004. Breast J., 2009, 15(6), 593-602.
[http://dx.doi.org/10.1111/j.1524-4741.2009.00822.x] [PMID: 19764994]
[14]
Cejalvo, J.M.; Pascual, T.; Fernández-Martínez, A.; Brasó-Maristany, F.; Gomis, R.R.; Perou, C.M.; Muñoz, M.; Prat, A. Clinical implications of the non-luminal intrinsic subtypes in hormone receptor-positive breast cancer. Cancer Treat. Rev., 2018, 67, 63-70.
[http://dx.doi.org/10.1016/j.ctrv.2018.04.015] [PMID: 29763779]
[15]
Deng, L.; Lei, Q.; Wang, Y.; Wang, Z.; Xie, G.; Zhong, X.; Wang, Y.; Chen, N.; Qiu, Y.; Pu, T.; Bu, H.; Zheng, H. Downregulation of miR-221-3p and upregulation of its target gene PARP1 are prognostic biomarkers for triple negative breast cancer patients and associated with poor prognosis. Oncotarget, 2017, 8(65), 108712-108725.
[http://dx.doi.org/10.18632/oncotarget.21561] [PMID: 29312562]
[16]
Sun, Y-S.; Zhao, Z.; Yang, Z-N.; Xu, F.; Lu, H-J.; Zhu, Z-Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[17]
Harbeck, N.; Gnant, M. Early breast cancer: treatment concepts and biology. J. Breast Cancer, 2016, 18(4), 303-312.
[18]
Bozorgi, A.; Khazaei, M.; Khazaei, M.R. New findings on breast cancer stem cells: A review. J. Breast Cancer, 2015, 18(4), 303-312.
[http://dx.doi.org/10.4048/jbc.2015.18.4.303] [PMID: 26770236]
[19]
Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther., 2016, 160, 145-158.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[20]
Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]
[21]
Lee, Y-M.; Lee, J-Y.; Ho, C-C.; Hong, Q-S.; Yu, S-L.; Tzeng, C-R.; Yang, P.C.; Chen, H.W. miRNA-34b as a tumor suppressor in estrogen-dependent growth of breast cancer cells. Breast Cancer Res., 2011, 13(6), R116.
[http://dx.doi.org/10.1186/bcr3059] [PMID: 22113133]
[22]
Hu, W.; Tan, C.; He, Y.; Zhang, G.; Xu, Y.; Tang, J. Functional miRNAs in breast cancer drug resistance. OncoTargets Ther., 2018, 11, 1529-1541.
[http://dx.doi.org/10.2147/OTT.S152462] [PMID: 29593419]
[23]
Geretto, M.; Pulliero, A.; Rosano, C.; Zhabayeva, D.; Bersimbaev, R.; Izzotti, A. Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am. J. Cancer Res., 2017, 7(6), 1350-1371.
[PMID: 28670496]
[24]
Weeraratne, S.D.; Amani, V.; Neiss, A.; Teider, N.; Scott, D.K.; Pomeroy, S.L.; Cho, Y.J. miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro-oncol., 2011, 13(2), 165-175.
[http://dx.doi.org/10.1093/neuonc/noq179] [PMID: 21177782]
[25]
Cai, J.; Yang, C.; Yang, Q.; Ding, H.; Jia, J.; Guo, J.; Wang, J.; Wang, Z. Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin. Oncogenesis, 2013, 2(10), e75.
[http://dx.doi.org/10.1038/oncsis.2013.39]] [PMID: 24100610]
[26]
Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[27]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[28]
Alderden, R.A.; Hall, M.D.; Hambley, T.W. The discovery and development of cisplatin. J. Chem. Educ., 2006, 83(5), 728.
[http://dx.doi.org/10.1021/ed083p728]
[29]
Petrović, M.; Todorović, D. Biochemical and molecular mechanisms of action of cisplatin in cancer cells. Med. Biol., 2016, 18(1), 12-18.
[30]
Kartalou, M.; Essigmann, J.M. Mechanisms of resistance to cisplatin. Mutat. Res., 2001, 478(1-2), 23-43.
[http://dx.doi.org/10.1016/S0027-5107(01)00141-5] [PMID: 11406167]
[31]
Fuertes, M.A.; Alonso, C.; Pérez, J.M. Biochemical modulation of Cisplatin mechanisms of action: Enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev., 2003, 103(3), 645-662.
[http://dx.doi.org/10.1021/cr020010d] [PMID: 12630848]
[32]
Smith, L.; Welham, K.J.; Watson, M.B.; Drew, P.J.; Lind, M.J.; Cawkwell, L. The proteomic analysis of cisplatin resistance in breast cancer cells. Oncol. Res., 2007, 16(11), 497-506.
[http://dx.doi.org/10.3727/096504007783438358] [PMID: 18306929]
[33]
Sun, C-Y.; Zhang, Q-Y.; Zheng, G-J.; Feng, B. Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed. Pharmacother., 2019, 110, 518-527.
[http://dx.doi.org/10.1016/j.biopha.2018.12.010] [PMID: 30530287]
[34]
Eds.; Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. In: Seminars in Cancer Biology; Elsevier, 2016.
[35]
Chiou, Y.S.; Li, S.; Ho, C.T.; Pan, M.H. Prevention of breast cancer by natural phytochemicals: Focusing on molecular targets and combinational strategy. Mol. Nutr. Food Res., 2018, 62(23), e1800392.
[http://dx.doi.org/10.1002/mnfr.201800392] [PMID: 30168668]
[36]
Islam, S.S.; Al-Sharif, I.; Sultan, A.; Al-Mazrou, A.; Remmal, A.; Aboussekhra, A. Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-κB signaling pathway. Mol. Carcinog., 2018, 57(3), 333-346.
[http://dx.doi.org/10.1002/mc.22758] [PMID: 29073729]
[37]
Yu, M.; Qi, B.; Xiaoxiang, W.; Xu, J.; Liu, X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed. Pharmacother., 2017, 90, 677-685.
[http://dx.doi.org/10.1016/j.biopha.2017.04.001] [PMID: 28415048]
[38]
Liao, X-Z.; Tao, L-T.; Liu, J-H.; Gu, Y-Y.; Xie, J.; Chen, Y.; Lin, M.G.; Liu, T.L.; Wang, D.M.; Guo, H.Y.; Mo, S.L. Matrine combined with cisplatin synergistically inhibited urothelial bladder cancer cells via down-regulating VEGF/PI3K/Akt signaling pathway. Cancer Cell Int., 2017, 17(1), 124.
[http://dx.doi.org/10.1186/s12935-017-0495-6] [PMID: 29299027]
[39]
Tripathi, R.; Samadder, T.; Gupta, S.; Surolia, A.; Shaha, C. Anticancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors. Mol. Cancer Ther., 2011, 10(2), 255-268.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0606] [PMID: 21216935]
[40]
Zhou, P.; Zhang, R.; Wang, Y.; Xu, D.; Zhang, L.; Qin, J.; Su, G.; Feng, Y.; Chen, H.; You, S.; Rui, W.; Liu, H.; Chen, S.; Chen, H.; Wang, Y. Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget, 2017, 8(67), 111144-111160.
[http://dx.doi.org/10.18632/oncotarget.22676] [PMID: 29340044]
[41]
Gately, D.P.; Howell, S.B. Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer, 1993, 67(6), 1171-1176.
[http://dx.doi.org/10.1038/bjc.1993.221] [PMID: 8512802]
[42]
Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res., 2016, 106, 27-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.001] [PMID: 26804248]
[43]
Jiang, P.; Wu, X.; Wang, X.; Huang, W.; Feng, Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016, 7(28), 43337-43351.
[http://dx.doi.org/10.18632/oncotarget.9712] [PMID: 27270317]
[44]
Kuo, M.T.; Chen, H.H.; Song, I-S.; Savaraj, N.; Ishikawa, T. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev., 2007, 26(1), 71-83.
[http://dx.doi.org/10.1007/s10555-007-9045-3] [PMID: 17318448]
[45]
Xiao, F.; Li, Y.; Wan, Y.; Xue, M. MircroRNA-139 sensitizes ovarian cancer cell to cisplatin-based chemotherapy through regulation of ATP7A/B. Cancer Chemother. Pharmacol., 2018, 81(5), 935-947.
[http://dx.doi.org/10.1007/s00280-018-3548-1] [PMID: 29594361]
[46]
Song, L.; Li, Y.; Li, W.; Wu, S.; Li, Z. miR-495 enhances the sensitivity of non-small cell lung cancer cells to platinum by modulation of copper-transporting P-type Adenosine Triphosphatase A (ATP7A). J. Cell. Biochem., 2014, 115(7), 1234-1242.
[http://dx.doi.org/10.1002/jcb.24665] [PMID: 24038379]
[47]
Zhu, H.; Wu, H.; Liu, X.; Evans, B.R.; Medina, D.J.; Liu, C-G.; Yang, J.M. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem. Pharmacol., 2008, 76(5), 582-588.
[http://dx.doi.org/10.1016/j.bcp.2008.06.007] [PMID: 18619946]
[48]
Yi, D.; Xu, L.; Wang, R.; Lu, X.; Sang, J. miR-381 overcomes cisplatin resistance in breast cancer by targeting MDR1. Cell Biol. Int., 2019, 43(1), 12-21.
[http://dx.doi.org/10.1002/cbin.11071] [PMID: 30444043]
[49]
Pogribny, I.P.; Filkowski, J.N.; Tryndyak, V.P.; Golubov, A.; Shpyleva, S.I.; Kovalchuk, O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer, 2010, 127(8), 1785-1794.
[http://dx.doi.org/10.1002/ijc.25191] [PMID: 20099276]
[50]
Huang, R.S.; Zheng, Y.L.; Zhao, J.; Chun, X. microRNA-381 suppresses the growth and increases cisplatin sensitivity in non-small cell lung cancer cells through inhibition of nuclear factor-κB signaling. Biomed. Pharmacother., 2018, 98, 538-544.
[http://dx.doi.org/10.1016/j.biopha.2017.12.092] [PMID: 29287202]
[51]
O’Brien, C.S.; Farnie, G.; Howell, S.J.; Clarke, R.B. Are stem-like cells responsible for resistance to therapy in breast cancer? Therapeutic Resistance to Anti-Hormonal Drugs in Breast Cancer; Springer, 2009, pp. 97-110.
[http://dx.doi.org/10.1007/978-1-4020-8526-0_6]
[52]
Morrison, R.; Schleicher, S.M.; Sun, Y.; Niermann, K.J.; Kim, S.; Spratt, D.E. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J. Oncol., 2011, 2011 Article ID 941876.
[http://dx.doi.org/10.1155/2011/941876]
[53]
Abdullah, L.N.; Chow, E.K-H. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med., 2013, 2(1), 3.
[http://dx.doi.org/10.1186/2001-1326-2-3] [PMID: 23369605]
[54]
Zhou, Q.; Ye, M.; Lu, Y.; Zhang, H.; Chen, Q.; Huang, S.; Su, S. Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem cell-like breast cancer cells. PLoS One, 2015, 10(8), e0136694.
[http://dx.doi.org/10.1371/journal.pone.0136694] [PMID: 26305906]
[55]
Cheng, S.; Huang, Y.; Lou, C.; He, Y.; Zhang, Y.; Zhang, Q. FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol. Ther., 2019, 20(3), 328-337.
[http://dx.doi.org/10.1080/15384047.2018.1529101] [PMID: 30336071]
[56]
Sasaki, A.; Tsunoda, Y.; Furuya, K.; Oyamada, H.; Tsuji, M.; Udaka, Y. Cancer stem-like cells have cisplatin resistance and miR-93 regulate p21 expression in breast cancer. Cancer Transl. Med., 2018, 4(2), 48.
[http://dx.doi.org/10.4103/ctm.ctm_41_17]
[57]
Brozovic, A. The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch. Toxicol., 2017, 91(2), 605-619.
[http://dx.doi.org/10.1007/s00204-016-1912-7] [PMID: 28032148]
[58]
Voulgari, A.; Pintzas, A. Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta, 2009, 1796(2), 75-90.
[PMID: 19306912]
[59]
Huang, J.; Li, H.; Ren, G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int. J. Oncol., 2015, 47(3), 840-848.
[http://dx.doi.org/10.3892/ijo.2015.3084] [PMID: 26202679]
[60]
Ghahhari, N.M.; Babashah, S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur. J. Cancer, 2015, 51(12), 1638-1649.
[http://dx.doi.org/10.1016/j.ejca.2015.04.021] [PMID: 26025765]
[61]
Wang, Z.; Li, Y.; Ahmad, A.; Azmi, A.S.; Kong, D.; Banerjee, S.; Sarkar, F.H. Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resist. Updat., 2010, 13(4-5), 109-118.
[http://dx.doi.org/10.1016/j.drup.2010.07.001] [PMID: 20692200]
[62]
Tan, X.; Fu, Y.; Chen, L.; Lee, W.; Lai, Y.; Rezaei, K.; Tabbara, S.; Latham, P.; Teal, C.B.; Man, Y.G.; Siegel, R.S.; Brem, R.F.; Fu, S.W. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget, 2016, 7(1), 293-307.
[http://dx.doi.org/10.18632/oncotarget.6344] [PMID: 26588055]
[63]
Bockhorn, J.; Dalton, R.; Nwachukwu, C.; Huang, S.; Prat, A.; Yee, K.; Chang, Y.F.; Huo, D.; Wen, Y.; Swanson, K.E.; Qiu, T.; Lu, J.; Park, S.Y.; Dolan, M.E.; Perou, C.M.; Olopade, O.I.; Clarke, M.F.; Greene, G.L.; Liu, H. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat. Commun., 2013, 4, 1393.
[http://dx.doi.org/10.1038/ncomms2393] [PMID: 23340433]
[64]
Luan, Q.X.; Zhang, B.G.; Li, X.J.; Guo, M.Y. MiR-129-5p is downregulated in breast cancer cells partly due to promoter H3K27m3 modification and regulates epithelial-mesenchymal transition and multi-drug resistance. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(20), 4257-4265.
[PMID: 27831649]
[65]
Raza, U.; Saatci, Ö.; Uhlmann, S.; Ansari, S.A.; Eyüpoğlu, E.; Yurdusev, E.; Mutlu, M.; Ersan, P.G.; Altundağ, M.K.; Zhang, J.D.; Doğan, H.T.; Güler, G.; Şahin, Ö. The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget, 2016, 7(31), 49859-49877.
[http://dx.doi.org/10.18632/oncotarget.10489] [PMID: 27409664]
[66]
Jiang, L.; He, D.; Yang, D.; Chen, Z.; Pan, Q.; Mao, A.; Cai, Y.; Li, X.; Xing, H.; Shi, M.; Chen, Y.; Bruce, I.C.; Wang, T.; Jin, L.; Qi, X.; Hua, D.; Jin, J.; Ma, X. MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett., 2014, 588(11), 2009-2015.
[http://dx.doi.org/10.1016/j.febslet.2014.04.024] [PMID: 24786471]
[67]
Patel, N.; Garikapati, K.R.; Makani, V.K.K.; Nair, A.D.; Vangara, N.; Bhadra, U.; Pal Bhadra, M. Regulating BMI1 expression via miRNAs promote Mesenchymal to Epithelial Transition (MET) and sensitizes breast cancer cell to chemotherapeutic drug. PLoS One, 2018, 13(2), e0190245.
[http://dx.doi.org/10.1371/journal.pone.0190245] [PMID: 29394261]
[68]
Gonçalves, N.N.; Colombo, J.; Lopes, J.R.; Gelaleti, G.B.; Moschetta, M.G.; Sonehara, N.M.; Hellmén, E.; Zanon, C.F.; Oliani, S.M.; Zuccari, D.A. Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS One, 2016, 11(3), e0150407.
[http://dx.doi.org/10.1371/journal.pone.0150407] [PMID: 26934679]
[69]
Gu, J.; Lu, Z.; Ji, C.; Chen, Y.; Liu, Y.; Lei, Z.; Wang, L.; Zhang, H.T.; Li, X. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed. Pharmacother., 2017, 93, 969-975.
[http://dx.doi.org/10.1016/j.biopha.2017.07.010] [PMID: 28724215]
[70]
Ferreira, L.C.; Orso, F.; Dettori, D.; Lacerda, J.Z.; Borin, T.F.; Taverna, D.; Zuccari, D.A.P.C. The role of melatonin on miRNAs modulation in triple-negative breast cancer cells. PLoS One, 2020, 15(2), e0228062.
[http://dx.doi.org/10.1371/journal.pone.0228062] [PMID: 32012171]
[71]
Marques, J.H.M.; Mota, A.L.; Oliveira, J.G.; Lacerda, J.Z.; Stefani, J.P.; Ferreira, L.C.; Castro, T.B.; Aristizábal-Pachón, A.F.; Zuccari, D.A.P.C. Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: In vivo and in vitro studies. Life Sci., 2018, 208, 131-138.
[http://dx.doi.org/10.1016/j.lfs.2018.07.012] [PMID: 29990486]
[72]
Mao, L.; Summers, W.; Xiang, S.; Yuan, L.; Dauchy, R.T.; Reynolds, A.; Wren-Dail, M.A.; Pointer, D.; Frasch, T.; Blask, D.E.; Hill, S.M. Melatonin represses metastasis in Her2-postive human breast cancer cells by suppressing RSK2 expression. Mol. Cancer Res., 2016, 14(11), 1159-1169.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0158] [PMID: 27535706]
[73]
de Oliveira, J.G.; de Mora Marques, J.H.; Lacerda, J.Z.; Ferreira, L.C.; Coelho, M.M.C.; de Campos Zuccari, D.A.P. Melatonin down-regulates microRNA-10a and decreases invasion and migration of triple-negative breast cancer cells. Melatonin Res., 2019, 2(2), 86-99.
[http://dx.doi.org/10.32794/mr11250023]
[74]
Lacerda, J.Z.; Ferreira, L.C.; Lopes, B.C.; Aristizábal-Pachón, A.F.; Bajgelman, M.C.; Borin, T.F.; Zuccari, D.A.P.C. Therapeutic potential of melatonin in the regulation of miR-148a-3p and angiogenic factors in breast cancer. MicroRNA, 2019, 8(3), 237-247.
[http://dx.doi.org/10.2174/2211536608666190219095426] [PMID: 30806335]
[75]
Liu, Z.J.; Semenza, G.L.; Zhang, H.F. Hypoxia-inducible factor 1 and breast cancer metastasis. J. Zhejiang Univ. Sci. B, 2015, 16(1), 32-43.
[http://dx.doi.org/10.1631/jzus.B1400221] [PMID: 25559953]
[76]
Roscigno, G.; Puoti, I.; Giordano, I.; Donnarumma, E.; Russo, V.; Affinito, A.; Adamo, A.; Quintavalle, C.; Todaro, M.; Vivanco, M.D.; Condorelli, G. MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget, 2017, 8(12), 19507-19521.
[http://dx.doi.org/10.18632/oncotarget.14470] [PMID: 28061479]
[77]
Ge, X.; Liu, X.; Lin, F.; Li, P.; Liu, K.; Geng, R.; Dai, C.; Lin, Y.; Tang, W.; Wu, Z.; Chang, J.; Lu, J.; Li, J. MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget, 2016, 7(17), 24466-24482.
[http://dx.doi.org/10.18632/oncotarget.8228] [PMID: 27016414]
[78]
Quintanilha, J.C.F.; Saavedra, K.F.; Visacri, M.B.; Moriel, P.; Salazar, L.A. Role of epigenetic mechanisms in cisplatin-induced toxicity. Crit. Rev. Oncol. Hematol., 2019, 137, 131-142.
[http://dx.doi.org/10.1016/j.critrevonc.2019.03.004] [PMID: 31014509]
[79]
Kala, R.; Peek, G.W.; Hardy, T.M.; Tollefsbol, T.O. MicroRNAs: An emerging science in cancer epigenetics. J. Clin. Bioinforma., 2013, 3(1), 6.
[http://dx.doi.org/10.1186/2043-9113-3-6] [PMID: 23497588]
[80]
Fabbri, M.; Calin, G.A. Epigenetics and miRNAs in human cancer. Advances in genetics; Elsevier, 2010, pp. 87-99.
[81]
Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sánchez-Céspedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; Gallagher, W.M.; Eccles, S.A.; Croce, C.M.; Esteller, M. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13556-13561.
[http://dx.doi.org/10.1073/pnas.0803055105] [PMID: 18768788]
[82]
Varambally, S.; Cao, Q.; Mani, R-S.; Shankar, S.; Wang, X.; Ateeq, B. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 2008, 322(5908), 1695-1699.
[83]
Chen, H.P.; Zhao, Y.T.; Zhao, T.C. Histone deacetylases and mechanisms of regulation of gene expression. Crit. Rev. Oncog., 2015, 20(1-2)
[http://dx.doi.org/10.1615/CritRevOncog.2015012997]]
[84]
Kim, H-J.; Bae, S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[85]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[86]
Kolesnikoff, N.; Attema, J.L.; Roslan, S.; Bert, A.G.; Schwarz, Q.P.; Gregory, P.A.; Goodall, G.J. Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: Implications for epithelial-mesenchymal transition. J. Biol. Chem., 2014, 289(16), 11194-11205.
[http://dx.doi.org/10.1074/jbc.M113.529172] [PMID: 24627491]
[87]
Mekala, J.R.; Naushad, S.M.; Ponnusamy, L.; Arivazhagan, G.; Sakthiprasad, V.; Pal-Bhadra, M. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene, 2018, 641, 248-258.
[http://dx.doi.org/10.1016/j.gene.2017.10.018] [PMID: 29038000]
[88]
Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14), 4333-4344.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[89]
Gong, P.; Wang, Y.; Jing, Y. Apoptosis induction by histone deacetylase inhibitors in cancer cells: Role of Ku70. Int. J. Mol. Sci., 2019, 20(7), 1601.
[http://dx.doi.org/10.3390/ijms20071601] [PMID: 30935057]
[90]
Rhodes, L.V.; Tate, C.R.; Segar, H.C.; Burks, H.E.; Phamduy, T.B.; Hoang, V.; Elliott, S.; Gilliam, D.; Pounder, F.N.; Anbalagan, M.; Chrisey, D.B.; Rowan, B.G.; Burow, M.E.; Collins-Burow, B.M. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res. Treat., 2014, 145(3), 593-604.
[http://dx.doi.org/10.1007/s10549-014-2979-6] [PMID: 24810497]
[91]
Ha, K.; Fiskus, W.; Choi, D.S.; Bhaskara, S.; Cerchietti, L.; Devaraj, S.G.; Shah, B.; Sharma, S.; Chang, J.C.; Melnick, A.M.; Hiebert, S.; Bhalla, K.N. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget, 2014, 5(14), 5637-5650.
[http://dx.doi.org/10.18632/oncotarget.2154] [PMID: 25026298]
[92]
Parton, M.; Dowsett, M.; Smith, I. Studies of apoptosis in breast cancer. BMJ, 2001, 322(7301), 1528-1532.
[http://dx.doi.org/10.1136/bmj.322.7301.1528] [PMID: 11420276]
[93]
Moela, P.; Motadi, L.R. Apoptotic molecular advances in breast cancer management. In:Cell Death: Autophagy, Apoptosis and Necrosis; InTech Open: UK. , 2015. p. 181.
[94]
Hassanzadeh, A.; Farshdousti Hagh, M.; Alivand, M.R.; Akbari, A.A.M.; Shams Asenjan, K.; Saraei, R.; Solali, S. Down-regulation of intracellular anti-apoptotic proteins, particularly c-FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J. Cell. Physiol., 2018, 233(10), 6470-6485.
[http://dx.doi.org/10.1002/jcp.26585] [PMID: 29741767]
[95]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[96]
Rathore, R.; McCallum, J.E.; Varghese, E.; Florea, A-M.; Büsselberg, D. Overcoming chemotherapy drug resistance by targeting Inhibitors of Apoptosis Proteins (IAPs). Apoptosis, 2017, 22(7), 898-919.
[http://dx.doi.org/10.1007/s10495-017-1375-1] [PMID: 28424988]
[97]
Williams, M.M.; Cook, R.S. Bcl-2 family proteins in breast development and cancer: Could Mcl-1 targeting overcome therapeutic resistance? Oncotarget, 2015, 6(6), 3519-3530.
[http://dx.doi.org/10.18632/oncotarget.2792] [PMID: 25784482]
[98]
Wang, S.; Bai, L.; Lu, J.; Liu, L.; Yang, C-Y.; Sun, H. Targeting Inhibitors of Apoptosis Proteins (IAPs) for new breast cancer therapeutics. J. Mammary Gland Biol. Neoplasia, 2012, 17(3-4), 217-228.
[http://dx.doi.org/10.1007/s10911-012-9265-1] [PMID: 23054134]
[99]
Pluta, P.; Jeziorski, A.; Cebula-Obrzut, A.P.; Wierzbowska, A.; Piekarski, J.; Smolewski, P. Expression of IAP family proteins and its clinical importance in breast cancer patients. Neoplasma, 2015, 62(4), 666-673.
[http://dx.doi.org/10.4149/neo_2015_080] [PMID: 25997966]
[100]
Gerl, R.; Vaux, D.L. Apoptosis in the development and treatment of cancer. Carcinogenesis, 2005, 26(2), 263-270.
[http://dx.doi.org/10.1093/carcin/bgh283] [PMID: 15375012]
[101]
Woźniak, K.; Błasiak, J. WoŸniak, K. Recognition and repair of DNA-cisplatin adducts. Acta Biochim. Pol., 2002, 49(3), 583-596.
[http://dx.doi.org/10.18388/abp.2002_3768] [PMID: 12422229]
[102]
Damia, G.; Broggini, M. Platinum resistance in ovarian cancer: Role of DNA repair. Cancers (Basel), 2019, 11(1), 119.
[http://dx.doi.org/10.3390/cancers11010119] [PMID: 30669514]
[103]
Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[104]
Wu, G.; Zhou, W.; Pan, X.; Sun, Y.; Xu, H.; Shi, P.; Li, J.; Gao, L.; Tian, X. miR-100 reverses cisplatin resistance in breast cancer by suppressing HAX-1. Cell. Physiol. Biochem., 2018, 47(5), 2077-2087.
[http://dx.doi.org/10.1159/000491476] [PMID: 29975932]
[105]
Sun, X.; Li, Y.; Zheng, M.; Zuo, W.; Zheng, W. MicroRNA-223 increases the sensitivity of triple-negative breast cancer stem cells to TRAIL-induced apoptosis by targeting HAX-1. PLoS One, 2016, 11(9), e0162754.
[http://dx.doi.org/10.1371/journal.pone.0162754] [PMID: 27618431]
[106]
Xie, Q.; Wang, S.; Zhao, Y.; Zhang, Z.; Qin, C.; Yang, X. MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1. Oncotarget, 2017, 8(13), 22003-22013.
[http://dx.doi.org/10.18632/oncotarget.15781] [PMID: 28423543]
[107]
Zhang, R.; Li, Y.; Dong, X.; Peng, L.; Nie, X. MiR-363 sensitizes cisplatin-induced apoptosis targeting in Mcl-1 in breast cancer. Med. Oncol., 2014, 31(12), 347.
[http://dx.doi.org/10.1007/s12032-014-0347-3] [PMID: 25416050]
[108]
Zhou, S.; Huang, Q.; Zheng, S.; Lin, K.; You, J.; Zhang, X. miR-27a regulates the sensitivity of breast cancer cells to cisplatin treatment via BAK-SMAC/DIABLO-XIAP axis. Tumour Biol., 2016, 37(5), 6837-6845.
[http://dx.doi.org/10.1007/s13277-015-4500-1] [PMID: 26662313]
[109]
Ye, Z.; Hao, R.; Cai, Y.; Wang, X.; Huang, G. Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumour Biol., 2016, 37(4), 4509-4515.
[http://dx.doi.org/10.1007/s13277-015-4267-4] [PMID: 26503209]
[110]
Wang, X.; Zhu, J. Mir-1307 regulates cisplatin resistance by targeting Mdm4 in breast cancer expressing wild type P53. Thorac. Cancer, 2018, 9(6), 676-683.
[http://dx.doi.org/10.1111/1759-7714.12607] [PMID: 29697201]
[111]
Gurbuz, N.; Ozpolat, B. MicroRNA-based targeted therapeutics in pancreatic cancer. Anticancer Res., 2019, 39(2), 529-532.
[http://dx.doi.org/10.21873/anticanres.13144] [PMID: 30711926]
[112]
Takahashi, R.U.; Prieto-Vila, M.; Kohama, I.; Ochiya, T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci., 2019, 110(4), 1140-1147.
[http://dx.doi.org/10.1111/cas.13965] [PMID: 30729639]
[113]
Ding, L.; Gu, H.; Xiong, X.; Ao, H.; Cao, J.; Lin, W.; Yu, M.; Lin, J.; Cui, Q. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells, 2019, 8(12), 1492.
[http://dx.doi.org/10.3390/cells8121492] [PMID: 31766744]
[114]
Tomar, D.; Yadav, A.S.; Kumar, D.; Bhadauriya, G.; Kundu, G.C. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim. Biophys. Acta (BBA)-. Gene Regul. Mech., 2020, 1863(4), 194378.
[115]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[116]
Wang, S.; Zhang, J.; Wang, Y.; Chen, M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine (Lond.), 2016, 12(2), 411-420.
[http://dx.doi.org/10.1016/j.nano.2015.09.014] [PMID: 26711968]
[117]
Devulapally, R.; Sekar, N.M.; Sekar, T.V.; Foygel, K.; Massoud, T.F.; Willmann, J.K.; Paulmurugan, R. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano, 2015, 9(3), 2290-2302.
[http://dx.doi.org/10.1021/nn507465d] [PMID: 25652012]
[118]
Tang, T.; Cheng, Y.; She, Q.; Jiang, Y.; Chen, Y.; Yang, W.; Li, Y. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed. Pharmacother., 2018, 107, 338-346.
[http://dx.doi.org/10.1016/j.biopha.2018.07.076] [PMID: 30098551]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy