Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Electrochemical Behavior and Square-Wave Stripping Voltammetric Determination of Roflumilast in Pharmaceutical Dosage Forms

Author(s): Mustafa Çelebier, Aysegul Dogan, İncilay Süslü* and Sacide Altınöz

Volume 24 , Issue 3 , 2021

Published on: 01 September, 2020

Page: [400 - 408] Pages: 9

DOI: 10.2174/1386207323666200901102526

Price: $65

Abstract

Background: Bronchial asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic diseases. Roflumilast is a novel, potent, selective, and long-acting phosphodiesterase 4 (PDE-4) inhibitor for the treatment of bronchial asthma and COPD. It has anti-inflammatory effects, and it has been shown to reduce exacerbations and improve pulmonary function in patients with COPD. Although there have been some other analytical methodologies reported for the determination of roflumilast in pharmaceutical dosage forms, there has not yet been any electrochemical methodology proposed for determination of this unique active pharmaceutical ingredient in its dosage forms.

Objective: The aim of this study was to develop an easily applied, selective, sensitive, accurate, and precise square-wave stripping voltammetric (SWSV) method for the determination of roflumilast in its pharmaceutical dosage forms. In addition, the electrochemical behavior of roflumilast was investigated.

Methods: The proposed method was based on electrochemical reduction of roflumilast at a hanging mercury drop electrode (HMDE) in 0.1 M K2HPO4 and 0.1 M Na2B4O7 (1:1, v/v) buffer at pH 5.0. Two reduction peaks were observed at -1150 mV and -1260 mV with 30 s of accumulation time and -850 mV of accumulation potential time versus Ag/AgCl reference electrode.

Results: The highest peak current values with the best peak definition were observed at a frequency of 50 Hz, scan increment of 5 mV, and pulse amplitude 25 mV. The proposed method was validated by evaluating validation parameters such as linearity, sensitivity, repeatability, accuracy, precision, selectivity, recovery, robustness, and ruggedness. A good linear correlation (r=0.9948) was obtained between the electrochemical response of roflumilast and its concentration in the range of 0.74-3.05 μg mL-1 under the optimum conditions. The obtained accuracy results were between 2.04% and -2.04% while the relative standard deviation of the results was at least 2.78% for intraday and inter-day studies. The mean recovery for the real applications was 100.63% ± 0.52. The electrochemical behavior of roflumilast was investigated by cyclic voltammetry. The cyclic voltammogram of roflumilast exhibited two peaks and the reduction reaction was reversible.

Conclusion: This developed and validated SWSV method was applied successfully for the determination of roflumilast in tablet dosage form (Daxas®) to assess active roflumilast content. Since high- -performance liquid chromatography is a dominant technique in industry for quality control of active pharmaceutical ingredients, the finding in the present study demonstrated that square-wave stripping voltammetry could be easily utilized in routine applications to determine roflumilast content in its dosage forms.

Keywords: Roflumilast, square-wave stripping voltammetry, cyclic voltammetry, reduction, electrochemistry, validation.

[1]
Jeon, Y.H.; Heo, Y.S.; Kim, C.M.; Hyun, Y.L.; Lee, T.G.; Ro, S.; Cho, J.M. Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell. Mol. Life Sci., 2005, 62(11), 1198-1220.
[http://dx.doi.org/10.1007/s00018-005-4533-5] [PMID: 15798894]
[2]
Field, S.K. Roflumilast: an oral, once-daily selective PDE-4 inhibitor for the management of COPD and asthma. Expert Opin. Investig. Drugs, 2008, 17(5), 811-818.
[http://dx.doi.org/10.1517/13543784.17.5.811] [PMID: 18447606]
[3]
Bethke, T.D.; Böhmer, G.M.; Hermann, R.; Hauns, B.; Fux, R.; Mörike, K.; David, M.; Knoerzer, D.; Wurst, W.; Gleiter, C.H. Dose-proportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor. J. Clin. Pharmacol., 2007, 47(1), 26-36.
[http://dx.doi.org/10.1177/0091270006294529] [PMID: 17192499]
[4]
Hauns, B.; Hermann, R.; Hünnemeyer, A.; Herzog, R.; Hauschke, D.; Zech, K.; Bethke, T.D. Investigation of a potential food effect on the pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, in healthy subjects. J. Clin. Pharmacol., 2006, 46(10), 1146-1153.
[http://dx.doi.org/10.1177/0091270006291621] [PMID: 16988203]
[5]
Hermann, R.; Siegmund, W.; Giessmann, T.; Westphal, K.; Weinbrenner, A.; Hauns, B.; Reutter, F.; Lahu, G.; Zech, K.; Bethke, T.D. The oral, once-daily phosphodiesterase 4 inhibitor roflumilast lacks relevant pharmacokinetic interactions with inhaled budesonide. J. Clin. Pharmacol., 2007, 47(8), 1005-1013.
[http://dx.doi.org/10.1177/0091270007300950] [PMID: 17660483]
[6]
Fabbri, L.M.; Calverley, P.M.; Izquierdo-Alonso, J.L.; Bundschuh, D.S.; Brose, M.; Martinez, F.J.; Rabe, K.F.; Grp, M-S.; Grp, M-S. M2-127 and M2-128 study groups. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet, 2009, 374(9691), 695-703.
[http://dx.doi.org/10.1016/S0140-6736(09)61252-6] [PMID: 19716961]
[7]
Barhate, V.D.; Deosthalee, P. Rapid liquid chromatographic method for the determination of roflumilast in the presence of degradation products. Indian J. Pharm. Sci., 2010, 72(3), 401-404.
[http://dx.doi.org/10.4103/0250-474X.70496] [PMID: 21188058]
[8]
Fang, T. Development and Validation of Stability-Indicating HPLC Method for Roflumilast and Related Substances. Adv. Mat. Res., 2013, 781-784, 68-71.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.781-784.68]
[9]
Pinheiro, M.; Marins, R.; Cabral, L.; de Sousa, V. Development and validation of a RP-HPLC method for Roflumilast and its degradation products. J. Liq. Chromatogr. Relat. Technol., 2018, 41(5), 223-231.
[http://dx.doi.org/10.1080/10826076.2018.1436067]
[10]
Belal, S.T.; Ahmed, M.H.; Mahrous, S.M.; Daabees, G.H.; Baker, M.M. Validated stability-indicating HPLC-DAD method for determination of the phosphodiesterase (PDE-4) inhibitor roflumilast. Bull. Fac. Pharm. Cairo Univ., 2014, 52(1), 79-89.
[http://dx.doi.org/10.1016/j.bfopcu.2014.04.002]
[11]
Knebel, N.G.; Herzog, R.; Reutter, F.; Zech, K. Sensitive quantification of roflumilast and roflumilast N-oxide in human plasma by LC-MS/MS employing parallel chromatography and electrospray ionisation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 82-91.
[http://dx.doi.org/10.1016/j.jchromb.2012.02.038] [PMID: 22425388]
[12]
Thappali, S.R.; Varanasi, K.V.; Veeraraghavan, S.; Vakkalanka, S.K.; Mukkanti, K. Simultaneous quantitation of IC87114, roflumilast and its active metabolite roflumilast N-oxide in plasma by LC-MS/MS: application for a pharmacokinetic study. J. Mass Spectrom., 2012, 47(12), 1612-1619.
[http://dx.doi.org/10.1002/jms.3103] [PMID: 23280750]
[13]
Cui, X.; Huang, J.; Zheng, X.; Jiang, J.; Kuang, Y.; Hu, P. Simultaneous determination of roflumilast and its metabolite in human plasma by LC-MS/MS: Application for a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1029-1030, 60-67.
[http://dx.doi.org/10.1016/j.jchromb.2016.06.001] [PMID: 27423044]
[14]
Moussa, B.A.; El-Zaher, A.A.; El-Ashrey, M.K.; Fouad, M.A. Roflumilast analogs with improved metabolic stability, plasma protein binding, and pharmacokinetic profile. Drug Test. Anal., 2019, 11(6), 886-897.
[http://dx.doi.org/10.1002/dta.2562] [PMID: 30578615]
[15]
Patel, K.R.; Desai, D.G.; Zanwar, A.; Sen, A.K.; Seth, A.K. Development and validatıon of UV spectroscopy method for estimatıon of roflumilast ın bulk and tablet dosage form. Pharma Sci. Monitor, 2013, 4(3), 274-280.
[16]
Ladani, J.J.; Bhimani, R.D.; Vyas, K.B.; Nimavat, K.S. Method development and validation of roflumilast in tablet dosage form by UV spectrophotometry. Journal of Atoms and Molecules, 2012, 2(5), 369-374.
[17]
Guray, T. A New Validated Method For Determinatıon of Roflumilast in Tablet by CZE-UV. Quim. Nova, 2019, 42(5), 522-526.
[http://dx.doi.org/10.21577/0100-4042.20170371]
[18]
Bakirhan, N.K.; Ozkan, S.A. Recent Advances and Future Perspectives in Pharmaceutical Analysis. Curr. Pharm. Anal., 2020, 16(1), 2-4.
[http://dx.doi.org/10.2174/157341291601191023100143]
[19]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[20]
Lim, C-K.; Lord, G. Current developments in LC-MS for pharmaceutical analysis. Biol. Pharm. Bull., 2002, 25(5), 547-557.
[http://dx.doi.org/10.1248/bpb.25.547] [PMID: 12033491]
[21]
Suntornsuk, L. Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal. Bioanal. Chem., 2010, 398(1), 29-52.
[http://dx.doi.org/10.1007/s00216-010-3741-5] [PMID: 20437226]
[22]
Koh, H-L.; Yau, W-P.; Ong, P-S.; Hegde, A. Current trends in modern pharmaceutical analysis for drug discovery. Drug Discov. Today, 2003, 8(19), 889-897.
[http://dx.doi.org/10.1016/S1359-6446(03)02846-0] [PMID: 14554017]
[23]
Watson, D.G.; Pgce, B.P. Pharmaceutical analysis E-book: a textbook for pharmacy students and pharmaceutical chemists.; Elsevier; , 2020.
[24]
Shamsi, M.; Sedaghatkish, A.; Dejam, M.; Saghafian, M.; Mohammadi, M.; Sanati-Nezhad, A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv., 2018, 25(1), 846-861.
[http://dx.doi.org/10.1080/10717544.2018.1455764] [PMID: 29589479]
[25]
Manshadi, M.K.D.; Saadat, M.; Mohammadi, M.; Shamsi, M.; Dejam, M.; Kamali, R.; Sanati-Nezhad, A. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy. Drug Deliv., 2018, 25(1), 1963-1973.
[http://dx.doi.org/10.1080/10717544.2018.1497106] [PMID: 30799655]
[26]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[27]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: an update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[28]
Tekkeli, S.E.K.; Kiziltas, M.V. Current HPLC methods for assay of nano drug delivery systems. Curr. Top. Med. Chem., 2017, 17(13), 1588-1594.
[http://dx.doi.org/10.2174/1568026616666161222112305] [PMID: 28017146]
[29]
Dogan-Topal, B.; Ozkan, S.A.; Uslu, B. The analytical applications of square wave voltammetry on pharmaceutical analysis. Open Chemical and Biomedical Methods Journal, 2010, 3, 56-73.
[http://dx.doi.org/10.2174/1875038901003010056]
[30]
Dos Santos, L.B.; Abate, G.; Masini, J.C. Determination of atrazine using square wave voltammetry with the Hanging Mercury Drop Electrode (HMDE). Talanta, 2004, 62(4), 667-674.
[http://dx.doi.org/10.1016/j.talanta.2003.08.034] [PMID: 18969346]
[31]
Romani, A.; Minunni, M.; Mulinacci, N.; Pinelli, P.; Vincieri, F.F.; Del Carlo, M.; Mascini, M. Comparison among differential pulse voltammetry, amperometric biosensor, and HPLC/DAD analysis for polyphenol determination. J. Agric. Food Chem., 2000, 48(4), 1197-1203.
[http://dx.doi.org/10.1021/jf990767e] [PMID: 10775372]
[32]
Esteve, M.; Farré, R.; Frigola, A.; López, J.; Romera, J.; Ramírez, M.; Gil, A. Comparison of voltammetric and high performance liquid chromatographic methods for ascorbic acid determination in infant formulas. Food Chem., 1995, 52(1), 99-102.
[http://dx.doi.org/10.1016/0308-8146(94)P4188-L]
[33]
Šeruga, M.; Novak, I.; Jakobek, L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem., 2011, 124(3), 1208-1216.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.047]
[34]
Alvarez Lueje, A.; Pena, C.; Núñez Vergara, L.J.; Squella, J. Electrochemical study of flutamide, an anticancer drug, and its polarographic, UV spectrophotometric and HPLC determination in tablets. Electroanalysis, 1998, 10(15), 1043-1051.
[http://dx.doi.org/10.1002/(SICI)1521-4109(199810)10:15<1043::AID-ELAN1043>3.0.CO;2-V]
[35]
Raggi, M.A.; Casamenti, G.; Mandrioli, R.; Izzo, G.; Kenndler, E. Quantitation of olanzapine in tablets by HPLC, CZE, derivative spectrometry and linear voltammetry. J. Pharm. Biomed. Anal., 2000, 23(6), 973-981.
[http://dx.doi.org/10.1016/S0731-7085(00)00382-4] [PMID: 11095298]
[36]
Özkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33(3), 155-181.
[http://dx.doi.org/10.1080/713609162]
[37]
Greef, R.; Peat, R.; Peter, L.M.; Pletcher, D.; Robinson, J. Instrumental Methods in Electrochemistry.; Ellis Horwood Limited; , 1990, pp. 180-185.
[38]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications.; Wiley: New York; , 1980.
[39]
Laviron, E.; Roullier, L.; Degrand, C. A A Multilayer Model for the Study of Space Dıstrıbuted Redox Modıfıed Electrodes. 2. Theory and Applicatıon of Linear Potential Sweep Voltammetry For A Simple Reaction. J. Electroanal. Chem., 1980, 112(1), 11-23.
[http://dx.doi.org/10.1016/S0022-0728(80)80003-9]
[40]
Hammam, E.; El-Desoky, H.; Tawfik, A.; Ghoneim, M. Voltammetric behavior and quantification of the anti-leukemia drug imatinib in bulk form, pharmaceutical formulation, and human serum at a mercury electrode. Can. J. Chem., 2004, 82(7), 1203-1209.
[http://dx.doi.org/10.1139/v04-060]
[41]
Rix, K. Electrochemical Reduction of Amides and C=C Bonds.; Imperial College: London; , 2013.
[42]
I.C.H.; Validation of analytical procedures: text and methodology Q2 (R1); ; Tripartite, I.H., Ed.; Geneva, Switzerland, 2005..

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy