Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

A Comprehensive Review of Effective Adsorbents Used for the Removal of Dyes from Wastewater

Author(s): Dhanya Vishnu, Balaji Dhandapani*, Swetha Authilingam and Shri Vigneshwar Sivakumar

Volume 18, Issue 3, 2022

Published on: 31 August, 2020

Page: [255 - 268] Pages: 14

DOI: 10.2174/1573411016999200831111155

Price: $65

Abstract

The objective of the review paper aims to explore and provide insight into various low-cost adsorbents prepared and used in the removal of hazardous dye pollutants from the contaminated industrial effluents

Background: The major untreated discharge from the textile industries constitutes a wide range of organic contaminants with the enhanced concentration of biological oxygen demand and chemical oxygen demand in the water bodies. Dyes are considered the major water contaminants and this quest the researchers to adopt various technologies to remove the hazardous dye pollutants from the aquatic environment. Dyes are the chemical compounds that tend to adhere themselves to metal or salts by covalent bond formation or complexes by mechanical retention or physical adsorption so as to impart colours to which it is being applied.

Objective: The use of numerous treatment methodologies which have been applied to the degradation of dyes. The current study has been focused on the distinct low cost and cost-effective adsorbents used in the removal of various dye pollutants. Moreover, the application of nanoparticles in the removal of the hazardous dye pollutants had received great interest because of its size and high reactive nature.

Methods: The treatment technologies used in the removal of dye pollutants from wastewater have been listed as adsorption, coagulation, electrocoagulation, flocculation, membrane filtration, oxidation and biological treatment.

Results: The complex structure of the dyes causes a great harmful impact on the aquatic environment. Though numerous treatment technologies have been applied, adsorption has been preferred by various researchers because of its cost-effective nature.

Conclusion: The various adsorbents are used in the removal of cationic, anionic and non-ionic dyes. The different types of adsorbent from agricultural waste, activated carbons, nanomaterials and biomaterials have been discussed with the advantages and limitations.

Keywords: Adsorbent, adsorption, dyes, kinetics, nanoparticles, pollutants.

Graphical Abstract
[1]
Bensalah, N.; Alfaro, M.A.Q.; Martínez-Huitle, C.A. Electrochemical treatment of synthetic wastewaters containing Alphazurine A Dye. Chem. Eng. J., 2009, 149(1–3), 348-352.
[http://dx.doi.org/10.1016/j.cej.2008.11.031]
[2]
Dawood, S.; Sen, T.K.; Phan, C. Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption. Water Air Soil Pollut., 2014, 225(1)
[http://dx.doi.org/10.1007/s11270-013-1818-4]
[3]
Shahid, M. Shahid-Ul-Islam; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean. Prod., 2013, 53, 310-331.
[http://dx.doi.org/10.1016/j.jclepro.2013.03.031]
[4]
Sen, T.K.; Afroze, S.; Ang, H.M. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of pinus radiata. Water Air Soil Pollut., 2011, 218(1-4), 499-515.
[http://dx.doi.org/10.1007/s11270-010-0663-y]
[5]
Yagub, M.T.; Sen, T.K.; Ang, H.M. Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water Air Soil Pollut., 2012, 223(8), 5267-5282.
[http://dx.doi.org/10.1007/s11270-012-1277-3]
[6]
Malik, R.; Ramteke, D.S.; Wate, S.R. Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag., 2007, 27(9), 1129-1138.
[http://dx.doi.org/10.1016/j.wasman.2006.06.009] [PMID: 17029775]
[7]
Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol., 2003, 87(1), 129-132.
[http://dx.doi.org/10.1016/S0960-8524(02)00201-8] [PMID: 12733586]
[8]
Dinçer, A.R.; Güneş, Y.; Karakaya, N.; Güneş, E. Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresour. Technol., 2007, 98(4), 834-839.
[http://dx.doi.org/10.1016/j.biortech.2006.03.009] [PMID: 16697184]
[9]
Shen, D.; Fan, J.; Zhou, W.; Gao, B.; Yue, Q.; Kang, Q. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J. Hazard. Mater., 2009, 172(1), 99-107.
[http://dx.doi.org/10.1016/j.jhazmat.2009.06.139] [PMID: 19631461]
[10]
Mohan, S.V.; Bhaskar, Y.V.; Karthikeyan, J. Biological Decolourisation of Simulated Azo Dye in Aqueous Phase by Algae Spirogyra Species. Int. J. Environ. Pollut., 2004, 21(3), 211-222.
[http://dx.doi.org/10.1504/IJEP.2004.004190]
[11]
Greluk, M.; Hubicki, Z. Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions. Chem. Eng. Res. Des., 2013, 91(7), 1343-1351.
[http://dx.doi.org/10.1016/j.cherd.2013.01.019]
[12]
Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Advances, 2015, 5(39), 30801-30818.
[http://dx.doi.org/10.1039/C4RA16959J]
[13]
Lee, K.E.; Morad, N.; Teng, T.T.; Poh, B.T. Factorial experimental design for reactive dye flocculation using inorganic-organic composite polymer. APCBEE Procedia, 2012, 1(January), 59-65.
[http://dx.doi.org/10.1016/j.apcbee.2012.03.011]
[14]
Mezzanotte, V.; Fornaroli, R.; Canobbio, S.; Zoia, L.; Orlandi, M. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing. Chemosphere, 2013, 91(5), 629-634.
[http://dx.doi.org/10.1016/j.chemosphere.2013.01.001] [PMID: 23363621]
[15]
Rivera, M.; Pazos, M.; Sanromán, M.Á. Development of an electrochemical cell for the removal of reactive Black 5. Desalination, 2011, 274(1–3), 39-43.
[http://dx.doi.org/10.1016/j.desal.2011.01.074]
[16]
del Río, A.I.; Fernández, J.; Molina, J.; Bonastre, J.; Cases, F. Electrochemical treatment of a synthetic wastewater containing a sulphonated azo dye. Determination of naphthalenesulphonic compounds produced as main by-products. Desalination, 2011, 273(2–3), 428-435.
[http://dx.doi.org/10.1016/j.desal.2011.01.070]
[17]
Raval, N.P.; Shah, P.U.; Shah, N.K. Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review. Environ. Sci. Pollut. Res. Int., 2016, 23(15), 14810-14853.
[http://dx.doi.org/10.1007/s11356-016-6970-0] [PMID: 27255316]
[18]
Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng., 2018, 6(4), 4676-4697.
[http://dx.doi.org/10.1016/j.jece.2018.06.060]
[19]
Ong, S.T.; Lee, C.K.; Zainal, Z. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresour. Technol., 2007, 98(15), 2792-2799.
[http://dx.doi.org/10.1016/j.biortech.2006.05.011] [PMID: 17400446]
[20]
Anastopoulos, I.; Kyzas, G.Z. Agricultural peels for dye adsorption: A review of recent literature. J. Mol. Liq., 2014, 200, 381-389.
[21]
Wang, S.; Li, H. Kinetic modelling and mechanism of dye adsorption on unburned carbon. Dyes Pigments, 2007, 72(3), 308-314.
[http://dx.doi.org/10.1016/j.dyepig.2005.09.005]
[22]
Wang, X.; Gu, X.; Lin, D.; Dong, F.; Wan, X. Treatment of acid rose dye containing wastewater by ozonizing - biological aerated filter. Dyes Pigments, 2007, 74(3), 736-740.
[http://dx.doi.org/10.1016/j.dyepig.2006.05.009]
[23]
Afroze, S.; Sen, T.K. A Review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut., 2018, 229(7), 1.
[http://dx.doi.org/10.1007/s11270-018-3869-z]
[24]
Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 2018, 197, 210-227.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.195] [PMID: 29366952]
[25]
Reza, K.M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A Review. Appl. Water Sci., 2017, 7(4), 1569-1578.
[http://dx.doi.org/10.1007/s13201-015-0367-y]
[26]
Blue, B.; An, H.; Yoon, J.; Park, Y.; Kawai, F. Identification of clostridium perfringens ab & j and its uptake of identification of clostridium perfringens ab & j and its uptake of; No. May, 2014.
[27]
Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage., 2016, 182, 351-366.
[http://dx.doi.org/10.1016/j.jenvman.2016.07.090] [PMID: 27497312]
[28]
Crini, G.; Badot, P.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci., 2008, 33(4), 399-447.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001]
[29]
Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manage., 2017, 191, 35-57.
[http://dx.doi.org/10.1016/j.jenvman.2016.12.031] [PMID: 28086140]
[30]
Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci., 2014, 209, 172-184.
[http://dx.doi.org/10.1016/j.cis.2014.04.002] [PMID: 24780401]
[31]
Pan, Y.; Wang, Y.; Zhou, A.; Wang, A.; Wu, Z.; Lv, L.; Li, X.; Zhang, K.; Zhu, T. Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chem. Eng. J., 2017, 326, 454-461.
[http://dx.doi.org/10.1016/j.cej.2017.05.146]
[32]
Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M.A.; Panizza, M. Removal of Procion Red MX-5B Dye from wastewater by conductive-diamond electrochemical oxidation. Electrochim. Acta, 2018, 263, 1-7.
[http://dx.doi.org/10.1016/j.electacta.2018.01.052]
[33]
Schmidt, A.; Bach, E.; Schoomeyer, E. The dyeing of natural fibres with reactive disperse dyes in supercritical carbon dioxide. Dyes Pigments, 2003, 56(1), 27-35.
[http://dx.doi.org/10.1016/S0143-7208(02)00108-0]
[34]
Yi, Z.; Jihong, F.; Shuilin, C. Dyeing of polyester using micro-encapsulated disperse dyes in the absence of auxiliaries. Color. Technol., 2005, 121(2), 76-80.
[http://dx.doi.org/10.1111/j.1478-4408.2005.tb00255.x]
[35]
Burkinshaw, S.M.; Son, Y.A. The dyeing of supermicrofibre nylon with acid and vat dyes. Dyes Pigments, 2010, 87(2), 132-138.
[http://dx.doi.org/10.1016/j.dyepig.2010.03.009]
[36]
Bakan, E.; Karcı, F.; Avinc, O. Synthetic fiber dyeing with new pyrazole disperse dyes and their colorimetric and fastness properties. Fibers Polym., 2018, 19(3), 670-681.
[http://dx.doi.org/10.1007/s12221-018-7227-y]
[37]
Tang, A.Y.L.; Lee, C.H.; Wang, Y.M.; Kan, C.W. Dyeing cotton with reactive dyes: a comparison between conventional water-based and solvent-assisted peg-based reverse micellar dyeing systems. Cellulose, 2019, 26(2), 1399-1408.
[http://dx.doi.org/10.1007/s10570-018-2150-3]
[38]
Gur‐arieh, Z.; Ingamells, W.; Peters, R.H. The Dyeing of Acrilan with Basic Dyes in the Presence of Benzyl Alcohol. J. Soc. Dyers Colour., 1976, 92(9), 332-336.
[http://dx.doi.org/10.1111/j.1478-4408.1976.tb03299.x]
[39]
Adeel, S.; Usman, M.; Haider, W.; Saeed, M.; Muneer, M.; Ali, M. Dyeing of gamma irradiated cotton using direct Yellow 12 and Direct Yellow 27: Improvement in colour strength and fastness properties. Cellulose, 2015, 22(3), 2095-2105.
[http://dx.doi.org/10.1007/s10570-015-0596-0]
[40]
Musa, H. Studies on the dyeing of wool and nylon fabrics with some acid dyes. IOSR J. Appl. Chem., 2013, 5(1), 11-17.
[http://dx.doi.org/10.9790/5736-0511117]
[41]
Jaruhar, P.; Chakraborty, J. Dyeing of cotton with sulfur dyes using alkaline protease. Text. Res. J., 2013, 83(13), 1345-1355.
[http://dx.doi.org/10.1177/0040517512461703]
[42]
Patra, S.K.; Patra, A.K.; Ojha, P.; Shekhawat, N.S.; Khandual, A. Vat dyeing at room temperature. Cellulose, 2018, 25(9), 5349-5359.
[http://dx.doi.org/10.1007/s10570-018-1901-5]
[43]
Chowdhary, P.; Raj, A.; Bharagava, R.N. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere, 2018, 194, 229-246.
[http://dx.doi.org/10.1016/j.chemosphere.2017.11.163] [PMID: 29207355]
[44]
Zhang, W.; Jiang, F. Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size. Water Res., 2019, 157, 445-453.
[http://dx.doi.org/10.1016/j.watres.2018.07.069] [PMID: 30981119]
[45]
An, A.K.; Guo, J.; Jeong, S.; Lee, E.J.; Tabatabai, S.A.A.; Leiknes, T. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation. Water Res., 2016, 103, 362-371.
[http://dx.doi.org/10.1016/j.watres.2016.07.060] [PMID: 27486044]
[46]
Zhu, Z.; Wu, Q.; Di, X.; Li, S.; Barba, F.J.; Koubaa, M.; Roohinejad, S.; Xiong, X.; He, J. Multistage recovery process of seaweed pigments: investigation of ultrasound assisted extraction and ultra-filtration performances. Food Bioprod. Process., 2017, 104, 40-47.
[http://dx.doi.org/10.1016/j.fbp.2017.04.008]
[47]
Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, 2018, 209, 201-219.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.043] [PMID: 29933158]
[48]
Wu, J.S.; Liu, C.H.; Chu, K.H.; Suen, S.Y. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J. Membr. Sci., 2008, 309(1–2), 239-245.
[http://dx.doi.org/10.1016/j.memsci.2007.10.035]
[49]
Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett., 2019, 17(1), 195-213.
[http://dx.doi.org/10.1007/s10311-018-0786-8]
[50]
Ma, H.; Kong, A.; Ji, Y.; He, B.; Song, Y.; Li, J. Ultrahigh adsorption capacities for anionic and cationic dyes from wastewater using only chitosan. J. Clean. Prod., 2019, 214, 89-94.
[http://dx.doi.org/10.1016/j.jclepro.2018.12.217]
[51]
Hassaan, M.A.; El Nemr, A.; Madkour, F.F. Advanced oxidation processes of mordant violet 40 dye in freshwater and seawater. Egypt. J. Aquat. Res., 2017, 43(1), 1-9.
[http://dx.doi.org/10.1016/j.ejar.2016.09.004]
[52]
Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater treatment by advanced oxidation process and their worldwide research trends. Int. J. Environ. Res. Public Health, 2019, 17(1)E170
[http://dx.doi.org/10.3390/ijerph17010170] [PMID: 31881722]
[53]
Khamparia, S.; Jaspal, D.K. Adsorption in combination with ozonation for the treatment of textile waste water: A critical review. Front. Environ. Sci. Eng., 2017, 11(1), 1-18.
[http://dx.doi.org/10.1007/s11783-017-0899-5]
[54]
Çalışkan, Y.; Yatmaz, H.C.; Bektaş, N. Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor. Process Saf. Environ. Prot., 2017, 111, 428-438.
[http://dx.doi.org/10.1016/j.psep.2017.08.003]
[55]
Hu, Z.; Mi, Y.; Ji, Y.; Wang, R.; Zhou, W.; Qiu, X.; Liu, X.; Fang, Z.; Wu, X. Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu2O core-shell nanorods. Nanoscale, 2019, 11(35), 16445-16454.
[http://dx.doi.org/10.1039/C9NR03943K] [PMID: 31441922]
[56]
Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res., 2016, 55(16), 4363-4389.
[http://dx.doi.org/10.1021/acs.iecr.5b04703]
[57]
Huang, H.; Schwab, K.; Jacangelo, J.G. Pretreatment for low pressure membranes in water treatment: A review. Environ. Sci. Technol., 2009, 43(9), 3011-3019.
[http://dx.doi.org/10.1021/es802473r] [PMID: 19534107]
[58]
Plácido, J.; Chanagá, X.; Ortiz-Monsalve, S.; Yepes, M.; Mora, A. Degradation and detoxification of synthetic dyes and textile industry effluents by newly isolated leptosphaerulina sp. from colombia. Bioresour. Bioprocess., 2016, 3(1), 1.
[http://dx.doi.org/10.1186/s40643-016-0084-x]
[59]
Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett., 2016, 14(3), 317-329.
[http://dx.doi.org/10.1007/s10311-016-0566-2]
[60]
Bhatia, D.; Sharma, N.R.; Singh, J.; Kanwar, R.S. Biological methods for textile dye removal from wastewater: A Review. Crit. Rev. Environ. Sci. Technol., 2017, 47(19), 1836-1876.
[http://dx.doi.org/10.1080/10643389.2017.1393263]
[61]
Balamurugan, B.; Thirumarimurugan, M.; Kannadasan, T. Anaerobic degradation of textile dye bath effluent using Halomonas sp. Bioresour. Technol., 2011, 102(10), 6365-6369.
[http://dx.doi.org/10.1016/j.biortech.2011.03.017] [PMID: 21463931]
[62]
Liu, X.; Tian, J.; Li, Y.; Sun, N.; Mi, S.; Xie, Y.; Chen, Z. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J. Hazard. Mater., 2019, 373, 397-407.
[http://dx.doi.org/10.1016/j.jhazmat.2019.03.103] [PMID: 30933862]
[63]
Fernández, C.; Larrechi, M.S.; Callao, M.P. An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC - Trends Analyt. Chem., 2010, 29(10), 1202-1211.
[http://dx.doi.org/10.1016/j.trac.2010.07.011]
[64]
Yang, Y.; Yu, W.; He, S.; Yu, S.; Chen, Y.; Lu, L.; Shu, Z.; Cui, H.; Zhang, Y.; Jin, H. Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites. Appl. Clay Sci., 2018, 2019(168), 304-311.
[http://dx.doi.org/10.1016/j.clay.2018.11.013]
[65]
Gnanasekaran, R.; Dhandapani, B.; Saravanan, A. Biosorption of methylene blue dye by chemically modified aspergillus japonicus MG183814: Kinetics, thermodynamic and equilibrium studies. desalin. Water Treat., 2018, 122, 132-145.
[http://dx.doi.org/10.5004/dwt.2018.22711]
[66]
Temel, F.; Turkyilmaz, M.; Kucukcongar, S. Removal of methylene blue from aqueous solutions by silica gel supported Calix[4]Arene Cage: Investigation of adsorption properties. Eur. Polym. J., 2020, 125(January)109540
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109540]
[67]
Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The utilization of leaf-based adsorbents for dyes removal: A review. J. Mol. Liq., 2019, 276, 728-747.
[http://dx.doi.org/10.1016/j.molliq.2018.12.001]
[68]
Mahmoodi, N.M.; Arami, M.; Bahrami, H.; Khorramfar, S. Novel Biosorbent (Canola Hull): Surface characterization and dye removal ability at different cationic dye concentrations. Desalination, 2010, 264(1–2), 134-142.
[http://dx.doi.org/10.1016/j.desal.2010.07.017]
[69]
Khorramfar, S.; Mahmoodi, N.M.; Arami, M.; Gharanjig, K. Equilibrium and kinetic studies of the cationic dye removal capability of a novel biosorbent tamarindus indica from textile wastewater. Color. Technol., 2010, 126(5), 261-268.
[http://dx.doi.org/10.1111/j.1478-4408.2010.00256.x]
[70]
Konicki, W.; Cendrowski, K.; Bazarko, G.; Mijowska, E. Study on efficient removal of anionic, cationic and nonionic dyes from aqueous solutions by means of mesoporous carbon nanospheres with empty cavity. Chem. Eng. Res. Des., 2015, 94(August), 242-253.
[http://dx.doi.org/10.1016/j.cherd.2014.08.006]
[71]
Puri, C.; Sumana, G. Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Appl. Clay Sci., 2018, 166(April), 102-112.
[http://dx.doi.org/10.1016/j.clay.2018.09.012]
[72]
Khanday, W.A.; Asif, M.; Hameed, B.H. Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int. J. Biol. Macromol., 2017, 95, 895-902.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.075] [PMID: 27789331]
[73]
Postai, D.L.; Rodrigues, C.A. Adsorption of cationic dyes using waste from fruits of eugenia umbelliflora berg (Myrtaceae). Arab. J. Sci. Eng., 2018, 43(5), 2425-2440.
[http://dx.doi.org/10.1007/s13369-017-2819-1]
[74]
Abd-Elhamid, A.I.; Emran, M.; El-Sadek, M.H.; El-Shanshory, A.A.; Soliman, H.M.A.; Akl, M.A.; Rashad, M. Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Appl. Water Sci., 2020, 10(1), 1-11.
[http://dx.doi.org/10.1007/s13201-019-1128-0]
[75]
Kyi, P.P.; Quansah, J.O.; Lee, C.G.; Moon, J.K.; Park, S.J. The removal of crystal violet from textile wastewater using palm kernel shell-derived biochar. J. Appl. Sci. (Faisalabad), 2020, 10(7), 2251.
[http://dx.doi.org/10.3390/app10072251]
[76]
Sharma, P.; Kaur, R.; Baskar, C.; Chung, W. Removal of methylene blue from aqueous waste using rice husk and rice husk ash. DES, 2010, 259(1–3), 249-257.
[http://dx.doi.org/10.1016/j.desal.2010.03.044]
[77]
Mahmoodi, N.M.; Hayati, B.; Arami, M.; Lan, C. Adsorption of textile dyes on pine cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 2011, 268(1-3), 117-125.
[http://dx.doi.org/10.1016/j.desal.2010.10.007]
[78]
El Haddad, M.; Slimani, R.; Mamouni, R.; ElAntri, S.; Lazar, S. Removal of two textile dyes from aqueous solutions onto calcined bones. J. Assoc. Arab Univ. Basic Appl. Sci., 2013, 14(1), 51-59.
[http://dx.doi.org/10.1016/j.jaubas.2013.03.002]
[79]
Wong, S.; Tumari, H.H.; Ngadi, N.; Mohamed, N.B.; Hassan, O.; Mat, R.; Saidina Amin, N.A. Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL). J. Clean. Prod., 2019, 206, 394-406.
[http://dx.doi.org/10.1016/j.jclepro.2018.09.201]
[80]
Fu, J.; Zhu, J.; Wang, Z.; Wang, Y.; Wang, S.; Yan, R.; Xu, Q. Highly-efficient and selective adsorption of anionic dyes onto hollow polymer microcapsules having a high surface-density of amino groups: Isotherms, kinetics, thermodynamics and mechanism. J. Colloid Interface Sci., 2019, 542, 123-135.
[http://dx.doi.org/10.1016/j.jcis.2019.01.131] [PMID: 30735887]
[81]
XinxinYang, ; Li, Y.; Gao, H.; Wang, C.; Zhang, X.; Zhou, H. One-step fabrication of chitosan-Fe(OH)3 beads for efficient adsorption of anionic dyes. Int. J. Biol. Macromol., 2018, 117, 30-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.137] [PMID: 29792966]
[82]
Wang, W.; Huang, G.; An, C.; Zhao, S.; Chen, X.; Zhang, P. Adsorption of anionic azo dyes from aqueous solution on cationic gemini surfactant-modified flax shives: Synchrotron infrared, optimization and modeling studies. J. Clean. Prod., 2018, 172, 1986-1997.
[http://dx.doi.org/10.1016/j.jclepro.2017.11.227]
[83]
Munagapati, V.S.; Yarramuthi, V.; Kim, Y.; Lee, K.M.; Kim, D.S. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol. Environ. Saf., 2018, 148(148), 601-607.
[http://dx.doi.org/10.1016/j.ecoenv.2017.10.075] [PMID: 29127823]
[84]
Al-Zoubi, H.; Zubair, M.; Manzar, M.S.; Manda, A.A.; Blaisi, N.I.; Qureshi, A.; Matani, A. Comparative adsorption of anionic dyes (eriochrome black t and congo red) onto jojoba residues: isotherm, kinetics and thermodynamic studies. Arab. J. Sci. Eng., 2020, 45, 7275-7287.
[http://dx.doi.org/10.1007/s13369-020-04418-5]
[85]
Wong, S.; Ghafar, N.A.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep., 2020, 10(1), 2928.
[http://dx.doi.org/10.1038/s41598-020-60021-6] [PMID: 32076087]
[86]
Aziz, E.K.; Abdelmajid, R.; Rachid, L.M.; Mohammadine, E.H. Adsorptive removal of anionic dye from aqueous solutions using powdered and calcined vegetables wastes as low-cost adsorbent. arab. J. Basic Appl. Sci., 2018, 25(3), 93-102.
[http://dx.doi.org/10.1080/25765299.2018.1517861]
[87]
Munagapati, V.S.; Kim, D.S. Adsorption of anionic azo dye congo red from aqueous solution by cationic modified orange peel powder. J. Mol. Liq., 2016, 220, 540-548.
[http://dx.doi.org/10.1016/j.molliq.2016.04.119]
[88]
Chen, H. Recent advances in azo dye degrading enzyme research. Curr. Protein Pept. Sci., 2006, 7(2), 101-111.
[http://dx.doi.org/10.2174/138920306776359786] [PMID: 16611136]
[89]
Li, Q.; Yue, Q.Y.; Sun, H.J.; Su, Y.; Gao, B.Y. A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite. J. Environ. Manage., 2010, 91(7), 1601-1611.
[http://dx.doi.org/10.1016/j.jenvman.2010.03.001] [PMID: 20359811]
[90]
Wang, L. Removal of Disperse Red dye by bamboo-based activated carbon: optimisation, kinetics and equilibrium. Environ. Sci. Pollut. Res. Int., 2013, 20(7), 4635-4646.
[http://dx.doi.org/10.1007/s11356-012-1421-z] [PMID: 23288676]
[91]
Bayramoğlu, G.; Ozalp, V.C.; Arıca, M.Y. Removal of Disperse Red 60 dye from aqueous solution using free and composite fungal biomass of Lentinus concinnus. Water Sci. Technol., 2017, 75(2), 366-377.
[http://dx.doi.org/10.2166/wst.2016.529] [PMID: 28112664]
[92]
Tiwari, M.; Shukla, S.P.; Mohan, D.; Bhargava, D.S.; Kisku, G.C. Modified cenospheres as an adsorbent for the removal of disperse dyes. Adv. Environ. Chem., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/349254]
[93]
Markandeya; Shukla, S. P.; Dhiman, N. Characterization and adsorption of disperse dyes from wastewater onto cenospheres activated carbon composites. Environ. Earth Sci., 2017, 76(20), 1.
[http://dx.doi.org/10.1007/s12665-017-7030-x]
[94]
Li, M.; Lu, J.; Li, X.; Ge, M.; Li, Y. Removal of Disperse Dye from Alcoholysis Products of Waste PET fabrics by nitric acid-modified activated carbon as an adsorbent: Kinetic and thermodynamic studies. Text. Res. J., 2020, 2021, 1.
[95]
Kisku, G.C. Markandeya; Shukla, S. P.; Singh, D. Sen; Murthy, R. C. Characterization and adsorptive capacity of coal fly ash from aqueous solutions of disperse blue and disperse orange dyes. Environ. Earth Sci., 2015, 74(2), 1125-1135.
[http://dx.doi.org/10.1007/s12665-015-4098-z]
[96]
Tezcan Un, U.; Ates, F. Low-Cost adsorbent prepared from poplar sawdust for removal of disperse orange 30 dye from aqueous solutions. Int. J. Environ. Sci. Technol., 2019, 16(2), 899-908.
[http://dx.doi.org/10.1007/s13762-018-1716-9]
[97]
Tara, N.; Siddiqui, S.I.; Rathi, G.; Chaudhry, S.A. Inamuddin; Asiri, A. M. Nano-Engineered adsorbent for the removal of dyes from water: A review. Curr. Anal. Chem., 2019, 16(1), 14-40.
[http://dx.doi.org/10.2174/1573411015666190117124344]
[98]
Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science (80-.),, 2014, 346(6205), 1.
[http://dx.doi.org/10.1126/science.1247390]
[99]
Rahman, N.; Abedin, Z.; Hossain, M.A. Rapid degradation of azo dyes using nano-scale zero valent iron. Am. J. Environ. Sci., 2014, 10(2), 157-163.
[http://dx.doi.org/10.3844/ajessp.2014.157.163]
[100]
Zhang, Z.; Kong, J. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater., 2011, 193, 325-329.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.033] [PMID: 21813238]
[101]
Alzahrani, E. Photodegradation of Eosin Y using silver-doped magnetic nanoparticles. Int. J. Anal. Chem., 2015, 2015797606
[http://dx.doi.org/10.1155/2015/797606] [PMID: 26617638]
[102]
Vishnu, D.; Dhandapani, B.K.S. The symbiotic effect of integrated muraya koenigii extract and surface-modified magnetic microspheres–a green biosorbent for the removal of Cu(II) and Cr(VI) Ions from Aqueous Solutions. Chem. Eng. Commun., 2019, 6445, 1.
[http://dx.doi.org/10.1080/00986445.2019.1691538]
[103]
Wang, Z.; Fang, C.; Megharaj, M. Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem.& Eng., 2014, 2(4), 1022-1025.
[http://dx.doi.org/10.1021/sc500021n]
[104]
Al-Arfaj, A.A.; Alakhras, F.; Al-Abbad, E.; Alzamel, N.O.; Al-Omair, N.A.; Ouerfelli, N. Removal of orange 2G dye from aqueous solutions using TiO2-Based nanoparticles: Isotherm and kinetic studies. Asian J. Chem., 2018, 30(7), 1645-1649.
[http://dx.doi.org/10.14233/ajchem.2018.21298]
[105]
Yavari, S.; Mahmodi, N.M.; Teymouri, P.; Shahmoradi, B.; Maleki, A. Cobalt ferrite nanoparticles: Preparation, characterization and anionic dye removal capability. J. Taiwan Inst. Chem. Eng., 2016, 59, 320-329.
[http://dx.doi.org/10.1016/j.jtice.2015.08.011]
[106]
Asfaram, A.; Ghaedi, M.; Hajati, S.; Goudarzi, A.; Dil, E.A. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrason. Sonochem., 2017, 34, 1-12.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.011] [PMID: 27773223]
[107]
El-Gamal, S.M.A.; Amin, M.S.; Ahmed, M.A. Removal of methyl orange and bromophenol blue dyes from aqueous solution using sorel’s cement nanoparticles. J. Environ. Chem. Eng., 2015, 3(3), 1702-1712.
[http://dx.doi.org/10.1016/j.jece.2015.06.022]
[108]
Zhou, Z.; Lin, S.; Yue, T.; Lee, T.C. Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J. Food Eng., 2014, 126, 133-141.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.11.014]
[109]
Agarwal, S.; Tyagi, I.; Gupta, V.K.; Mashhadi, S.; Ghasemi, M. Kinetics and thermodynamics of malachite green dye removal from aqueous phase using iron nanoparticles loaded on ash. J. Mol. Liq., 2016, 223, 1340-1347.
[http://dx.doi.org/10.1016/j.molliq.2016.04.039]
[110]
Shanehsaz, M.; Seidi, S.; Ghorbani, Y.; Shoja, S.M.R.; Rouhani, S. Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 149, 481-486.
[http://dx.doi.org/10.1016/j.saa.2015.04.114] [PMID: 25978015]
[111]
Yu, Z.; Hu, C.; Dichiara, A.B.; Jiang, W.; Gu, J. Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials (Basel), 2020, 10(1), 1-20.
[http://dx.doi.org/10.3390/nano10010169] [PMID: 31963846]
[112]
Homaeigohar, S. The Nanosized Dye Adsorbents for water treatment. Nanomaterials (Basel), 2020, 10(2), 1-42.
[http://dx.doi.org/10.3390/nano10020295] [PMID: 32050582]
[113]
Vishnu, D.; Dhandapani, B. Integration of Cynodon dactylon and Muraya koenigii plant extracts in amino-functionalized silicacoated magnetic nanoparticle as an effective sorbent for the removal of Chromium (VI) metal pollutants IET Nanobiotechnology, 2020.https://doi.org
[114]
Al Abbad, E.; Alakhras, F. Removal of Dye Acid Red 1 from aqueous solutions using chitosan-iso-vanillin sorbent material. Indones. J. Sci. Technol., 2020, 5(3), 352-365.
[http://dx.doi.org/10.3390/app10072251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy