Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation

Author(s): Jahnavi Sharma, Roshani Kumari, Arpit Bhargava, Rajnarayan Tiwari and Pradyumna K. Mishra*

Volume 27, Issue 2, 2021

Published on: 26 August, 2020

Page: [159 - 176] Pages: 18

DOI: 10.2174/1381612826666200826165735

Price: $65

Abstract

Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.

Keywords: Mitochondrial targeting, mitochondrial medicine, mitochondrial-nuclear cross-talk, epigenomic signatures, translational research, DNA methylation.

[1]
Milane L, Trivedi M, Singh A, Talekar M, Amiji M. Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207: 40-58. [http://dx.doi.org/10.1016/j.jconrel.2015.03.036]. [PMID: 25841699].
[2]
van der Bliek AM, Sedensky MM, Morgan PG. Cell biology of the mitochondrion. Genetics 2017; 207(3): 843-71. [http://dx.doi.org/10.1534/genetics.117.300262]. [PMID: 29097398].
[3]
Dasgupta A, Wu D, Tian L. Mitochondria in the pulmonary vasculature in health and disease: oxygen-sensing, metabolism, and dynamics. Compr Physiol 2020; 10(2): 713-65. [http://dx.doi.org/10.1002/cphy.c190027]. [PMID: 32163206].
[4]
Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res 2013; 112(8): 1171-88. [http://dx.doi.org/10.1161/CIRCRESAHA.111.300233]. [PMID: 23580773].
[5]
Lee HC, Huang KH, Yeh TS, Chi CW. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol 2014; 20(14): 3950-9. [http://dx.doi.org/10.3748/wjg.v20.i14.3950]. [PMID: 24744584].
[6]
Khan S, Raghuram GV, Bhargava A. Role and clinical significance of lymphocyte mitochondrial dysfunction in type 2 diabetes mellitus. Transl Res 2011; 158(6): 344-59. [http://dx.doi.org/10.1016/j.trsl.2011.08.007]. [PMID: 22061042].
[7]
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139(3): 381-99. [http://dx.doi.org/10.1007/s00439-020-02119-5]. [PMID: 31997134].
[8]
Khan S, Raghuram GV, Pathak N, Jain SK, Chandra DH, Mishra PK. Impairment of mitochondrial-nuclear cross talk in neutrophils of patients with type 2 diabetes mellitus. Indian J Clin Biochem 2014; 29(1): 38-44. [http://dx.doi.org/10.1007/s12291-013-0321-4]. [PMID: 24478547].
[9]
Mishra PK, Raghuram GV, Jain D, Jain SK, Khare NK, Pathak N. Mitochondrial oxidative stress-induced epigenetic modifications in pancreatic epithelial cells. Int J Toxicol 2014; 33(2): 116-29. [http://dx.doi.org/10.1177/1091581814524064]. [PMID: 24563415].
[10]
Monickaraj F, Aravind S, Gokulakrishnan K. Accelerated aging as evidenced by increased telomere shortening and mitochondrial DNA depletion in patients with type 2 diabetes. Mol Cell Biochem 2012; 365(1-2): 343-50. [http://dx.doi.org/10.1007/s11010-012-1276-0]. [PMID: 22411737].
[11]
Bhargava A, Tamrakar S, Aglawe A. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. Environ Pollut 2018; 234: 406-19. [http://dx.doi.org/10.1016/j.envpol.2017.11.093]. [PMID: 29202419].
[12]
Redmann M, Dodson M, Boyer-Guittaut M, Darley-Usmar V, Zhang J. Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol 2014; 53: 127-33. [http://dx.doi.org/10.1016/j.biocel.2014.05.010]. [PMID: 24842106].
[13]
Panwar H, Raghuram GV, Jain D. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis. Environ Toxicol 2014; 29(3): 284-97. [http://dx.doi.org/10.1002/tox.21757]. [PMID: 22223508].
[14]
Bunkar N, Bhargava A, Khare NK, Mishra PK. Mitochondrial anomalies: driver to age associated degenerative human ailments. Front Biosci 2016; 21: 769-93. [http://dx.doi.org/10.2741/4420]. [PMID: 26709805].
[15]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91. [http://dx.doi.org/10.3233/JPD-130230]. [PMID: 24252804].
[16]
Chandel NS. Mitochondria as signaling organelles. BMC Biol 2014; 12: 34. [http://dx.doi.org/10.1186/1741-7007-12-34]. [PMID: 24884669].
[17]
Kabekkodu SP, Chakrabarty S, Shukla V. Mitochondrial biology: From molecules to diseases. Mitochondrion 2015; 24: 93-8. [http://dx.doi.org/10.1016/j.mito.2015.07.008]. [PMID: 26210788].
[18]
Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: Epigenetics and environment. Environ Mol Mutagen 2019; 60(8): 668-82. [http://dx.doi.org/10.1002/em.22319]. [PMID: 31335990].
[19]
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865(2): 285-97. [http://dx.doi.org/10.1016/j.bbadis.2018.09.035]. [PMID: 30419337].
[20]
Yu JN, Chung CU, Kwak M. The complete mitochondrial genome sequence of the Korean hare (Lepus coreanus). Mitochondrial DNA 2015; 26(1): 129-30. [http://dx.doi.org/10.3109/19401736.2013.815170]. [PMID: 23883283].
[21]
van der Wijst MG, van Tilburg AY, Ruiters MH, Rots MG. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci Rep 2017; 7(1): 177. [http://dx.doi.org/10.1038/s41598-017-00263-z]. [PMID: 28282966].
[22]
Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 2013; 110(1-2): 25-34. [http://dx.doi.org/10.1016/j.ymgme.2013.07.012]. [PMID: 23920043].
[23]
Krasich R, Copeland WC. DNA polymerases in the mitochondria: A critical review of the evidence. Front Biosci 2017; 22: 692-709. [http://dx.doi.org/10.2741/4510]. [PMID: 27814640].
[24]
Farge G, Falkenberg M. Organization of DNA in mammalian mitochondria. Int J Mol Sci 2019; 20(11): 2770. [http://dx.doi.org/10.3390/ijms20112770]. [PMID: 31195723].
[25]
Sen D, Patel G, Patel SS. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE. Nucleic Acids Res 2016; 44(9): 4200-10. [http://dx.doi.org/10.1093/nar/gkw098]. [PMID: 26887820].
[26]
van Loon B, Samson LD. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB). DNA Repair (Amst) 2013; 12: 177-87. [http://dx.doi.org/10.1016/j.dnarep.201 2.11.009].
[27]
Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial quality control mechanisms and the PHB (Prohibitin) complex. Cells 2018; 7(12): 238. [http://dx.doi.org/10.3390/cells7120238]. [PMID: 30501123].
[28]
Biala AK, Dhingra R, Kirshenbaum LA. Mitochondrial dynamics: Orchestrating the journey to advanced age. J Mol Cell Cardiol 2015; 83: 37-43. [http://dx.doi.org/10.1016/j.yjmcc.2015.04.015]. [PMID: 25918048].
[29]
Huang Z, Chen Y, Zhang Y. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci 2020; 45: 84. [http://dx.doi.org/10.1007/s12038-020-00055-0]. [PMID: 32661211].
[30]
Wilding M. Potential long-term risks associated with maternal aging (the role of the mitochondria). Fertil Steril 2015; 103(6): 1397-401. [http://dx.doi.org/10.1016/j.fertnstert.2015.03.034]. [PMID: 25936236].
[31]
Giannoccaro MP, La Morgia C, Rizzo G, Carelli V. Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease. Mov Disord 2017; 32(3): 346-63. [http://dx.doi.org/10.1002/mds.26966]. [PMID: 28251677].
[32]
Ishikawa K, Imanishi H, Takenaga K, Hayashi J. Regulation of metastasis; mitochondrial DNA mutations have appeared on stage. J Bioenerg Biomembr 2012; 44(6): 639-44. [http://dx.doi.org/10.1007/s10863-012-9468-6]. [PMID: 22895836].
[33]
Grivennikova VG, Kozlovsky VS, Vinogradov AD. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction. Biochim Biophys Acta Bioenerg 2017; 1858(2): 109-17. [http://dx.doi.org/10.1016/j.bbabio.2016.10.008]. [PMID: 27810396].
[34]
Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab 2015; 22(2): 204-6. [http://dx.doi.org/10.1016/j.cmet.2015.05.013]. [PMID: 26073494].
[35]
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24: 32-49. [http://dx.doi.org/10.1016/j.mito.2015.06.002]. [PMID: 26134435].
[36]
Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol 2020; 33101426 [http://dx.doi.org/10.1016/j.redox.2020.101426]. [PMID: 31928788].
[37]
Hoppins S, Lackner LL, Lee JE, Mears JA. and assays for mitochondrial fission and fusionMethods Cell Biol 2020; 155: 491-518. [http://dx.doi.org/10.1016/bs.mcb.2019.11.010]. [PMID: 32183974].
[38]
Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 2018; 62(3): 341-60. [http://dx.doi.org/10.1042/EBC20170104]. [PMID: 30030364].
[39]
Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. Biochim Biophys Acta 2015; 1847(11): 1387-400. [http://dx.doi.org/10.1016/j.bbabio.2015.05.021]. [PMID: 26050974].
[40]
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc 2018; 93(2): 933-49. [http://dx.doi.org/10.1111/brv.12378]. [PMID: 29068134].
[41]
Strappazzon F, Cecconi F. The multifaceted mitochondrion: An attractive candidate for therapeutic strategies. Pharmacol Res 2015; 99: 425-33. [http://dx.doi.org/10.1016/j.phrs.2015.03.007]. [PMID: 25818167].
[42]
Zorov DB, Vorobjev IA, Popkov VA. Lessons from the discovery of mitochondrial fragmentation (Fission): A review and update. Cells 2019; 8(2): 175. [http://dx.doi.org/10.3390/cells8020175]. [PMID: 30791381].
[43]
Bhargava A, Khare NK, Bunkar N, Lenka RK, Mishra PK. Role of mitochondrial oxidative stress on lymphocyte homeostasis in patients diagnosed with extra-pulmonary tuberculosis. Cell Biol Int 2016; 40(2): 166-76. [http://dx.doi.org/10.1002/cbin.10549]. [PMID: 26431927].
[44]
Dombi E, Mortiboys H, Poulton J. Modulating mitophagy in mitochondrial disease. Curr Med Chem 2018; 25(40): 5597-612. [http://dx.doi.org/10.2174/0929867324666170616101741]. [PMID: 28618992].
[45]
Lemasters JJ. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2014; 2: 749-54. [http://dx.doi.org/10.1016/j.redox.2014.06.004]. [PMID: 25009776].
[46]
Metzger MB, Scales JL, Dunklebarger MF, Loncarek J, Weissman AM. A protein quality control pathway at the mitochondrial outer membrane. eLife 2020; 9e51065 [http://dx.doi.org/10.7554/eLife.51065]. [PMID: 32118579].
[47]
Bowling JL, Skolfield MC, Riley WA, Nolin AP, Wolf LC, Nelson DE. Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway. BMC Mol Cell Biol 2019; 20(1): 33. [http://dx.doi.org/10.1186/s12860-019-0220-5]. [PMID: 31412778].
[48]
Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metab 2015; 3: 4. [http://dx.doi.org/10.1186/s40170-015-0130-8]. [PMID: 25810907].
[49]
Gao A, Jiang J, Xie F, Chen L. Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin Chim Acta 2020; 506: 72-83. [http://dx.doi.org/10.1016/j.cca.2020.02.024]. [PMID: 32092316].
[50]
Shaughnessy DT, McAllister K, Worth L. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 2014; 122(12): 1271-8. [http://dx.doi.org/10.1289/ehp.1408418]. [PMID: 25127496].
[51]
Lu Y, Ding W, Wang B. Positive regulation of human PINK1 and Parkin gene expression by nuclear respiratory factor 1. Mitochondrion 2020; 51: 22-9. [http://dx.doi.org/10.1016/j.mito.2019.12.002]. [PMID: 31862413].
[52]
Boyer-Guittaut M, Poillet L, Liang Q. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014; 10(6): 986-1003. [http://dx.doi.org/10.4161/auto.28390]. [PMID: 24879149].
[53]
Roque W, Cuevas-Mora K, Romero F. Mitochondrial quality control in age-related pulmonary fibrosis. Int J Mol Sci 2020; 21(2): 643. [http://dx.doi.org/10.3390/ijms21020643]. [PMID: 31963720].
[54]
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol 2017; 11: 637-45. [http://dx.doi.org/10.1016/j.redox.2017.01.013]. [PMID: 28131082].
[55]
Qiu Z, Wei Y, Song Q. The role of myocardial mitochondrial quality control in heart failure. Front Pharmacol 2019; 10: 1404. [http://dx.doi.org/10.3389/fphar.2019.01404]. [PMID: 31866862].
[56]
Bost F, Kaminski L. The metabolic modulator PGC-1α in cancer. Am J Cancer Res 2019; 9(2): 198-211.
[PMID: 30906622]
[57]
Kang C, Li Ji L. Role of PGC-1α signaling in skeletal muscle health and disease. Ann N Y Acad Sci 2012; 1271: 110-7. [http://dx.doi.org/10.1111/j.1749-6632.2012.06738.x]. [PMID: 23050972].
[58]
Akhtar S, Siragy HM. Pro-renin receptor suppresses mitochondrial biogenesis and function AMPK/SIRT-1/ PGC-1α pathway in diabetic kidney. PLoS One 2019; 14(12)e0225728 [http://dx.doi.org/10.1371/journal.pone.0225728]. [PMID: 31800607].
[59]
Bagul PK, Katare PB, Bugga P, Dinda AK, Banerjee SK. SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells 2018; 7(12): 235. [http://dx.doi.org/10.3390/cells7120235]. [PMID: 30487434].
[60]
Brenmoehl J, Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 2013; 13(6): 755-61. [http://dx.doi.org/10.1016/j.mito.2013.04.002]. [PMID: 23583953].
[61]
Rangarajan P, Karthikeyan A, Lu J, Ling EA, Dheen ST. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience 2015; 311: 398-414. [http://dx.doi.org/10.1016/j.neuroscience.2015.10.048]. [PMID: 26523980].
[62]
An Y, Wang B, Wang X, Dong G, Jia J, Yang Q. SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop. Cell Death Dis 2020; 11(2): 115. [http://dx.doi.org/10.1038/s41419-020-2308-4]. [PMID: 32051395].
[63]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50. [http://dx.doi.org/10.1152/physrev.00026.2013]. [PMID: 24987008].
[64]
Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 2019; 51(12): 1-13. [http://dx.doi.org/10.1038/s12276-019-0355-7]. [PMID: 31857574].
[65]
Hsu CC, Lee HC, Wei YH. Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma. World J Gastroenterol 2013; 19(47): 8880-6. [http://dx.doi.org/10.3748/wjg.v19.i47.8880]. [PMID: 24379611].
[66]
Bhargava A, Raghuram GV, Pathak N. Occult hepatitis C virus elicits mitochondrial oxidative stress in lymphocytes and triggers PI3-kinase-mediated DNA damage response. Free Radic Biol Med 2011; 51(9): 1806-14. [http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.009]. [PMID: 21893189].
[67]
Raghuram GV, Mishra PK. Stress induced premature senescence: a new culprit in ovarian tumorigenesis? Indian J Med Res 2014; 140(Suppl.): S120-9.
[PMID: 25673532]
[68]
Mazat JP, Devin A, Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77(3): 455-65. [http://dx.doi.org/10.1007/s00018-019-03381-1]. [PMID: 31748915].
[69]
Bhargava A, Shukla A, Bunkar N. .Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environ Pollut 2019; 252(Pt. A): 39-50. http://dx.doi.org/10.1016/j.envpol.2019.05.065 PMID: 31146237
[70]
Mishra PK, Raghuram GV, Panwar H, Jain D, Pandey H, Maudar KK. Mitochondrial oxidative stress elicits chromosomal instability after exposure to isocyanates in human kidney epithelial cells. Free Radic Res 2009; 43(8): 718-28. [http://dx.doi.org/10.1080/10715760903037699]. [PMID: 19513903].
[71]
Sousa JS, D’Imprima E, Vonck J. Mitochondrial respiratory chain complexes. Subcell Biochem 2018; 87: 167-227. [http://dx.doi.org/10.1007/978-981-10-7757-9_7]. [PMID: 29464561].
[72]
Kröller-Schön S, Steven S, Kossmann S. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 2014; 20(2): 247-66. [http://dx.doi.org/10.1089/ars.2012.4953]. [PMID: 23845067].
[73]
Zhang S, Yang C, Yang Z. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect. Am J Cancer Res 2015; 5(4): 1265-80.
[PMID: 26101696]
[74]
Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 2018; 1859(9): 940-50. [http://dx.doi.org/10.1016/j.bbabio.2018.05.019]. [PMID: 29859845].
[75]
Deshwal S, Di Sante M, Di Lisa F, Kaludercic N. Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 2017; 33: 64-9. [http://dx.doi.org/10.1016/j.coph.2017.04.003]. [PMID: 28528298].
[76]
Iacovino LG, Magnani F, Binda C. The structure of monoamine oxidases: past, present, and future. J Neural Transm (Vienna) 2018; 125(11): 1567-79. [http://dx.doi.org/10.1007/s00702-018-1915-z]. [PMID: 30167931].
[77]
Magnani F, Mattevi A. Structure and mechanisms of ROS generation by NADPH oxidases. Curr Opin Struct Biol 2019; 59: 91-7. [http://dx.doi.org/10.1016/j.sbi.2019.03.001]. [PMID: 31051297].
[78]
Hu C, Zhang H, Qiao Z, Wang Y, Zhang P, Yang D. Loss of thioredoxin 2 alters mitochondrial respiratory function and induces cardiomyocyte hypertrophy. Exp Cell Res 2018; 372(1): 61-72. [http://dx.doi.org/10.1016/j.yexcr.2018.09.010]. [PMID: 30236513].
[79]
Huang Q, Zhou HJ, Zhang H. Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 2015; 131(12): 1082-97. [http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012725]. [PMID: 25628390].
[80]
Suzuki Y, Ali M, Fischer M, Riemer J. Human copper chaperone for superoxide dismutase 1 mediates its own oxidation-dependent import into mitochondria. Nat Commun 2013; 4: 2430. [http://dx.doi.org/10.1038/ncomms3430]. [PMID: 24026195].
[81]
Del Río LA, López-Huertas E. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 2016; 57(7): 1364-76. [http://dx.doi.org/10.1093/pcp/pcw076]. [PMID: 27081099].
[82]
Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 2015; 40(8): 435-45. [http://dx.doi.org/10.1016/j.tibs.2015.05.001]. [PMID: 26067716].
[83]
Zinovkina LA. Mechanisms of mitochondrial DNA repair in mammals. Biochemistry (Mosc) 2018; 83(3): 233-49. [http://dx.doi.org/10.1134/S0006297918030045]. [PMID: 29625543].
[84]
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107: 216-27. [http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.050]. [PMID: 27915046].
[85]
Stein A, Sia EA. Mitochondrial DNA repair and damage tolerance. Front Biosci 2017; 22: 920-43. [http://dx.doi.org/10.2741/4525]. [PMID: 27814655].
[86]
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci 2017; 22: 1493-522. [http://dx.doi.org/10.2741/4555]. [PMID: 28199214].
[87]
Li M, Wilson DM III, Wilson III. Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal 2014; 20(4): 678-707. [http://dx.doi.org/10.1089/ars.2013.5492]. [PMID: 23834463].
[88]
Zhang Y, Guo P, Xiang W. Slowly repaired bulky DNA damages modulate cellular redox environment leading to premature senescence. Oxid Med Cell Longev 2020; 20205367102 [http://dx.doi.org/10.1155/2020/5367102]. [PMID: 32104534].
[89]
Jiang B, Glover JN, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes . Mech Ageing Dev 2017; 161(Pt. A): 130-40. http://dx.doi.org/10.1016/j.mad.2016.07.009 PMID: 27470939
[90]
Patwardhan GA, Beverly LJ, Siskind LJ. Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr 2016; 48(2): 153-68. [http://dx.doi.org/10.1007/s10863-015-9602-3]. [PMID: 25620271].
[91]
Bhargava A, Khan S, Panwar H. Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes. Virus Res 2010; 153(1): 143-50. [http://dx.doi.org/10.1016/j.virusres.2010.07.023]. [PMID: 20667493].
[92]
Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13(12): 780-8. [http://dx.doi.org/10.1038/nrm3479]. [PMID: 23175281].
[93]
Mishra PK, Khan S, Bhargava A. Regulation of isocyanate-induced apoptosis, oxidative stress, and inflammation in cultured human neutrophils: isocyanate-induced neutrophils apoptosis. Cell Biol Toxicol 2010; 26(3): 279-91. [http://dx.doi.org/10.1007/s10565-009-9127-9]. [PMID: 19455394].
[94]
Mishra PK, Panwar H, Bhargava A. Isocyanates induces DNA damage, apoptosis, oxidative stress, and inflammation in cultured human lymphocytes. J Biochem Mol Toxicol 2008; 22(6): 429-40. [http://dx.doi.org/10.1002/jbt.20260]. [PMID: 19111005].
[95]
Follis AV, Chipuk JE, Fisher JC. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 2013; 9(3): 163-8. [http://dx.doi.org/10.1038/nchembio.1166]. [PMID: 23340338].
[96]
Shi Y. A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 2001; 8(5): 394-401. [http://dx.doi.org/10.1038/87548]. [PMID: 11323712].
[97]
Panwar H, Jain D, Khan S. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction. Redox Biol 2013; 1: 163-71. [http://dx.doi.org/10.1016/j.redox.2013.01.009]. [PMID: 24024149].
[98]
Lambertini L, Byun HM. Mitochondrial epigenetics and environmental exposure. Curr Environ Health Rep 2016; 3(3): 214-24. [http://dx.doi.org/10.1007/s40572-016-0103-2]. [PMID: 27344144].
[99]
Stimpfel M, Jancar N, Virant-Klun I. New challenge: mitochondrial epigenetics? Stem Cell Rev Rep 2018; 14(1): 13-26. [http://dx.doi.org/10.1007/s12015-017-9771-z]. [PMID: 28980199].
[100]
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43(2): 59-81. [http://dx.doi.org/10.5653/cerm.2016.43.2.59]. [PMID: 27358824].
[101]
Mishra PK, Bunkar N, Raghuram GV, Khare NK, Pathak N, Bhargava A. Epigenetic dimension of oxygen radical injury in spermatogonial epithelial cells. Reprod Toxicol 2015; 52: 40-56. [http://dx.doi.org/10.1016/j.reprotox.2015.02.006]. [PMID: 25687723].
[102]
Raghuram GV, Pathak N, Jain D. Molecular mechanisms of isocyanate induced oncogenic transformation in ovarian epithelial cells. Reprod Toxicol 2010; 30(3): 377-86. [http://dx.doi.org/10.1016/j.reprotox.2010.05.087]. [PMID: 20685613].
[103]
Bhargava A, Kumari R, Khare S. Mapping the mitochondrial regulation of epigenetic modifications in association with carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbon exposure. Int J Toxicol 2020; 39(5): 465-76. [http://dx.doi.org/10.1177/1091581820932875]. [PMID: 32588678].
[104]
Tong H, Zhang L, Gao J, Wen S, Zhou H, Feng S. Methylation of mitochondrial DNA displacement loop region regulates mitochondrial copy number in colorectal cancer. Mol Med Rep 2017; 16(4): 5347-53. [http://dx.doi.org/10.3892/mmr.2017.7264]. [PMID: 28849075].
[105]
Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010; 10(1): 12-31. [http://dx.doi.org/10.1016/j.mito.2009.09.006]. [PMID: 19796712].
[106]
Mohammed SA, Ambrosini S, Lüscher T, Paneni F, Costantino S. Epigenetic Control of Mitochondrial Function in the Vasculature. Front Cardiovasc Med 2020; 7: 28. [http://dx.doi.org/10.3389/fcvm.2020.00028]. [PMID: 32195271].
[107]
Pirola CJ, Gianotti TF, Burgueño AL. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 2013; 62(9): 1356-63. [http://dx.doi.org/10.1136/gutjnl-2012-302962]. [PMID: 22879518].
[108]
Cheng Z, Almeida FA. Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle 2014; 13(6): 890-7. [http://dx.doi.org/10.4161/cc.28189]. [PMID: 24552811].
[109]
Gao D, Zhu B, Sun H, Wang X. Mitochondrial DNA methylation and related disease. Adv Exp Med Biol 2017; 1038: 117-32. [http://dx.doi.org/10.1007/978-981-10-6674-0_9]. [PMID: 29178073].
[110]
Patil V, Cuenin C, Chung F. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res 2019; 47(19): 10072-85. [http://dx.doi.org/10.1093/nar/gkz762]. [PMID: 31665742].
[111]
Bhargava A, Bunkar N, Aglawe A. Epigenetic biomarkers for risk assessment of particulate matter associated lung cancer. Curr Drug Targets 2018; 19(10): 1127-47. [http://dx.doi.org/10.2174/1389450118666170911114342]. [PMID: 28891455].
[112]
Bhargava A, Khare NK, Bunkar N. Cell-free circulating epigenomic signatures: non-invasive biomarker for cardiovascular and other age-related chronic diseases. Curr Pharm Des 2017; 23(8): 1175-87. [http://dx.doi.org/10.2174/1381612822666161027145359]. [PMID: 27817745].
[113]
Dostal V, Churchill MEA. Cytosine methylation of mitochondrial DNA at CpG sequences impacts transcription factor A DNA binding and transcription. Biochim Biophys Acta Gene Regul Mech 2019; 1862(5): 598-607. [http://dx.doi.org/10.1016/j.bbagrm.2019.01.006]. [PMID: 30807854].
[114]
Mitsudome T, Mon H, Xu J. Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori. Insect Biochem Mol Biol 2015; 58: 55-65. [http://dx.doi.org/10.1016/j.ibmb.2015.01.008]. [PMID: 25623240].
[115]
Ren W, Gao L, Song J. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes (Basel) 2018; 9(12): 620. [http://dx.doi.org/10.3390/genes9120620]. [PMID: 30544982].
[116]
Shukla A, Bunkar N, Kumar R. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci Total Environ 2019; 656: 760-77. [http://dx.doi.org/10.1016/j.scitotenv.2018.11.381]. [PMID: 30530146].
[117]
Zhu Y, Lu H, Zhang D. Integrated analyses of multi-omics reveal global patterns of methylation and hydroxymethylation and screen the tumor suppressive roles of HADHB in colorectal cancer. Clin Epigenetics 2018; 10: 30. [http://dx.doi.org/10.1186/s13148-018-0458-3]. [PMID: 29507648].
[118]
Koh CWQ, Goh YT, Toh JDW. Single-nucleotide-resolution sequencing of human N6-methyldeoxyadenosine reveals strand-asymmetric clusters associated with SSBP1 on the mitochondrial genome. Nucleic Acids Res 2018; 46(22): 11659-70. [http://dx.doi.org/10.1093/nar/gky1104]. [PMID: 30412255].
[119]
Maresca A, Zaffagnini M, Caporali L, Carelli V, Zanna C. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated? Front Genet 2015; 6: 90. [http://dx.doi.org/10.3389/fgene.2015.00090]. [PMID: 25815005].
[120]
Wakae K, Nishiyama T, Kondo S. Keratinocyte differentiation induces APOBEC3A, 3B, and mitochondrial DNA hypermutation. Sci Rep 2018; 8(1): 9745. [http://dx.doi.org/10.1038/s41598-018-27930-z]. [PMID: 29950685].
[121]
Slyvka A, Mierzejewska K, Bochtler M. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision. Sci Rep 2017; 7(1): 9001. [http://dx.doi.org/10.1038/s41598-017-07458-4]. [PMID: 28827588].
[122]
Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review) Oncol Rep 2017; 37(1): 3-9. [http://dx.doi.org/10.3892/or.2016.5236]. [PMID: 27841002].
[123]
Vendramin R, Marine JC, Leucci E. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. EMBO J 2017; 36(9): 1123-33. [http://dx.doi.org/10.15252/embj.201695546]. [PMID: 28314780].
[124]
Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov 2017; 16(3): 167-79. [http://dx.doi.org/10.1038/nrd.2016.117]. [PMID: 27444227].
[125]
Sas-Chen A, Srivastava S, Yarden Y. The short and the long: non-coding RNAs and growth factors in cancer progression. Biochem Soc Trans 2017; 45(1): 51-64. [http://dx.doi.org/10.1042/BST20160131]. [PMID: 28202659].
[126]
Li Q, Jiang B, Qi Y, Zhang H, Ma H. Long non-coding RNA SLCO4A1-AS1 drives the progression of non-small-cell lung cancer by modulating miR-223-3p/IKKα/NF-κB signaling. Cancer Biol Ther 2020; 21(9): 806-14. [http://dx.doi.org/10.1080/15384047.2020.1787757]. [PMID: 32687454].
[127]
Zhao Y, Sun L, Wang RR, Hu JF, Cui J. The effects of mitochondria-associated long noncoding RNAs in cancer mitochondria: New players in an old arena. Crit Rev Oncol Hematol 2018; 131: 76-82. [http://dx.doi.org/10.1016/j.critrevonc.2018.08.005]. [PMID: 30293709].
[128]
Zhang X, Zuo X, Yang B. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014; 158(3): 607-19. [http://dx.doi.org/10.1016/j.cell.2014.05.047]. [PMID: 25083871].
[129]
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014; 2014970607 [http://dx.doi.org/10.1155/2014/970607]. [PMID: 25180174].
[130]
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74(4): 631-46. [http://dx.doi.org/10.1007/s00018-016-2342-7]. [PMID: 27563705].
[131]
Shepherd DL, Hathaway QA, Pinti MV. Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase). J Mol Cell Cardiol 2017; 110: 15-25. [http://dx.doi.org/10.1016/j.yjmcc.2017.06.012]. [PMID: 28709769].
[132]
Giuliani A, Prattichizzo F, Micolucci L, Ceriello A, Procopio AD, Rippo MR. Mitochondrial (Dys) function in inflammaging: do mitomiRs influence the energetic, oxidative, and inflammatory status of senescent cells? Mediators Inflamm 2017; 20172309034 [http://dx.doi.org/10.1155/2017/2309034]. [PMID: 29445253].
[133]
He R, Ding C, Yin P. MiR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1. Exp Cell Res 2019; 378(1): 87-97. [http://dx.doi.org/10.1016/j.yexcr.2019.03.012]. [PMID: 30853447].
[134]
Wagner GR, Payne RM. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 2013; 288(40): 29036-45. [http://dx.doi.org/10.1074/jbc.M113.486753]. [PMID: 23946487].
[135]
Pan T. N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci 2013; 38(4): 204-9. [http://dx.doi.org/10.1016/j.tibs.2012.12.006]. [PMID: 23337769].
[136]
Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519(7544): 482-5. [http://dx.doi.org/10.1038/nature14281]. [PMID: 25799998].
[137]
Núñez C, Estévez SV, Del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem 2018; 23(3): 331-45. [http://dx.doi.org/10.1007/s00775-018-1542-z]. [PMID: 29453558].
[138]
King GA, Hashemi Shabestari M, Taris KH. Acetylation and phosphorylation of human TFAM regulate TFAM-DNA interactions contrasting mechanisms. Nucleic Acids Res 2018; 46(7): 3633-42. [http://dx.doi.org/10.1093/nar/gky204]. [PMID: 29897602].
[139]
Lu B, Lee J, Nie X. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 2013; 49(1): 121-32. [http://dx.doi.org/10.1016/j.molcel.2012.10.023]. [PMID: 23201127].
[140]
Lim S, Smith KR, Lim ST. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation Cell Biosci 2016; 14; 6: 25. http://dx.doi.org/10.1186/s13578-016-0089-3
[141]
He W, Newman JC, Wang MZ, Ho L, Verdin E. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol Metab 2012; 23(9): 467-76. [http://dx.doi.org/10.1016/j.tem.2012.07.004]. [PMID: 22902903].
[142]
Fan J, Shan C, Kang HB. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell 2014; 53(4): 534-48. [http://dx.doi.org/10.1016/j.molcel.2013.12.026]. [PMID: 24486017].
[143]
Chatterjee A, Seyfferth J, Lucci J. MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell 2016; 167(3): 722-38.e23. [http://dx.doi.org/10.1016/j.cell.2016.09.052]. [PMID: 27768893].
[144]
Wang L, Scott I, Zhu L. GCN5L1 modulates cross-talk between mitochondria and cell signaling to regulate FoxO1 stability and gluconeogenesis. Nat Commun 2017; 8(1): 523. [http://dx.doi.org/10.1038/s41467-017-00521-8]. [PMID: 28900165].
[145]
Savoia M, Cencioni C, Mori M. P300/CBP-associated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation. FASEB J 2019; 33(3): 4107-23. [http://dx.doi.org/10.1096/fj.201800788R]. [PMID: 30526058].
[146]
Patnaik S. Anupriya. Anupriya. Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front Pharmacol 2019; 10: 588. [http://dx.doi.org/10.3389/fphar.2019.00588]. [PMID: 31244652].
[147]
Baretti M, Azad NS. The role of epigenetic therapies in colorectal cancer. Curr Probl Cancer 2018; 42(6): 530-47. [http://dx.doi.org/10.1016/j.currproblcancer.2018.03.001]. [PMID: 29625794].
[148]
Pan ZY, Tan CP, Rao LS. Recoding cancer epigenome by intervening metabolism and iron homeostasis with mitochondria-targeted re(i) complexes. Angew Chem Int Ed Engl 2020 In press [http://dx.doi.org/10.1002/anie.202008624]. [PMID: 32634290].
[149]
Manev H, Dzitoyeva S. Progress in mitochondrial epigenetics. Biomol Concepts 2013; 4(4): 381-9. [http://dx.doi.org/10.1515/bmc-2013-0005]. [PMID: 25436587].
[150]
Battogtokh G, Choi YS, Kang DS. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 2018; 8(6): 862-80. [http://dx.doi.org/10.1016/j.apsb.2018.05.006]. [PMID: 30505656].
[151]
Battogtokh G, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Front Pharmacol 2018; 9: 922. [http://dx.doi.org/10.3389/fphar.2018.00922]. [PMID: 30174604].
[152]
Bunkar N, Shandilya R, Bhargava A. Nano-engineered flavonoids for cancer protection. Front Biosci 2019; 24: 1097-157. [http://dx.doi.org/10.2741/4771]. [PMID: 30844733].
[153]
Lu P, Bruno BJ, Rabenau M, Lim CS. Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J Control Release 2016; 240: 38-51. [http://dx.doi.org/10.1016/j.jconrel.2015.10.023]. [PMID: 26482081].
[154]
Bhargava A, Pathak N, Seshadri S. Pre-clinical validation of mito-targeted nano-engineered flavonoids isolated from selaginella bryopteris (sanjeevani) as a novel cancer prevention strategy. Anticancer Agents Med Chem 2018; 18(13): 1860-74. [http://dx.doi.org/10.2174/1871520618666171229223919]. [PMID: 29298656].
[155]
Hosseinifar N, Goodarzi N, Sharif AAM, Amini M, Esfandyari-Manesh M, Dinarvand R. Preparation and characterization of albumin nanoparticles of paclitaxel-triphenylphosphonium conjugates: new approach to subcellular targeting . Drug Res (Stuttg) 2020; 70(2-03): 71-9.http://dx.doi.org/10.1055/a-1016-6889 PMID: 31986546
[156]
Bae Y, Jung MK, Song SJ. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion 2017; 37: 27-40. [http://dx.doi.org/10.1016/j.mito.2017.06.005]. [PMID: 28669809].
[157]
Shi M, Zhang J, Li X. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int J Nanomedicine 2018; 13: 4209-26. [http://dx.doi.org/10.2147/IJN.S163858]. [PMID: 30140154].
[158]
Bae Y, Jung MK, Lee S. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur J Pharm Biopharm 2018; 124: 104-15. [http://dx.doi.org/10.1016/j.ejpb.2017.12.013]. [PMID: 29305141].
[159]
Wolfram RK, Heller L, Csuk R. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis. Eur J Med Chem 2018; 152: 21-30. [http://dx.doi.org/10.1016/j.ejmech.2018.04.031]. [PMID: 29684707].
[160]
Corra S, Shoshan MS, Wennemers H. Peptide mediated formation of noble metal nanoparticles-controlling size and spatial arrangement. Curr Opin Chem Biol 2017; 40: 138-44. [http://dx.doi.org/10.1016/j.cbpa.2017.09.005]. [PMID: 28961470].
[161]
Yamada Y, Harashima H. Targeting the mitochondrial genome a dual function MITO-Porter: evaluation of mtDNA levels and mitochondrial function. Methods Mol Biol 2015; 1265: 123-33. [http://dx.doi.org/10.1007/978-1-4939-2288-8_10]. [PMID: 25634272].
[162]
El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharm 2017; 528(1-2): 675-91. [http://dx.doi.org/10.1016/j.ijpharm.2017.06.052]. [PMID: 28629982].
[163]
Kadari A, Gudem S, Kulhari H. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv 2017; 24(1): 224-32. [http://dx.doi.org/10.1080/10717544.2016.1245366]. [PMID: 28156161].
[164]
Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 2012; 12(2): 190-201. [http://dx.doi.org/10.1016/j.mito.2011.11.001]. [PMID: 22138492].
[165]
Yamada Y, Takano Y. Satrialdi, Abe J, Hibino M, Harashima H. Therapeutic strategies for regulating mitochondrial oxidative stress. Biomolecules 2020; 10(1): 83. [http://dx.doi.org/10.3390/biom10010083]. [PMID: 31948035].
[166]
Yamada Y, Harashima H. A method for screening mitochondrial fusogenic envelopes for use in mitochondrial drug delivery. Methods Mol Biol 2014; 1141: 57-66. [http://dx.doi.org/10.1007/978-1-4939-0363-4_2]. [PMID: 24567130].
[167]
Wang Z, Guo W, Kuang X, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian J Pharm Sci 2017; 12(6): 498-508. [http://dx.doi.org/10.1016/j.ajps.2017.05.006]. [PMID: 32104363].
[168]
Furukawa R, Yamada Y, Kawamura E, Harashima H. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials 2015; 57: 107-15. [http://dx.doi.org/10.1016/j.biomaterials.2015.04.022]. [PMID: 25913255].
[169]
Zupančič Š, Kocbek P, Zariwala MG. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol Pharm 2014; 11(7): 2334-45. [http://dx.doi.org/10.1021/mp500003q]. [PMID: 24852198].
[170]
Haddad S, Abánades Lázaro I, Fantham M. Design of a functionalized metal-organic framework system for enhanced targeted delivery to mitochondria. J Am Chem Soc 2020; 142(14): 6661-74. [http://dx.doi.org/10.1021/jacs.0c00188]. [PMID: 32182066].
[171]
Yue C, Yang Y, Zhang C. ROS-Responsive Mitochondria-targeting blended nanoparticles: chemo-and photodynamic synergistic therapy for lung cancer with on-demand drug release upon irradiation with a single light source. Theranostics 2016; 6(13): 2352-66. [http://dx.doi.org/10.7150/thno.15433]. [PMID: 27877240].
[172]
Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta 2016; 1860(10): 2065-75. [http://dx.doi.org/10.1016/j.bbagen.2016.07.001]. [PMID: 27392941].
[173]
Wang H, Gao Z, Liu X. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun 2018; 9(1): 562. [http://dx.doi.org/10.1038/s41467-018-02915-8]. [PMID: 29422620].
[174]
Song X, Yue Z, Hong T, Wang Z, Zhang S. Sandwich-structured upconversion nanoprobes coated with a thin silica layer for mitochondria-targeted cooperative photodynamic therapy for solid malignant tumors. Anal Chem 2019; 91(13): 8549-57. [http://dx.doi.org/10.1021/acs.analchem.9b01805]. [PMID: 31247732].
[175]
Lin Y, Charchar P, Christofferson AJ. Surface dynamics and ligand-core interactions of quantum sized photoluminescent gold nanoclusters. J Am Chem Soc 2018; 140(51): 18217-26. [http://dx.doi.org/10.1021/jacs.8b04436]. [PMID: 30557016].
[176]
Nair RV, Santhakumar H, Jayasree RS. Gold nanorods decorated with a cancer drug for multimodal imaging and therapy. Faraday Discuss 2018; 207: 423-35. [http://dx.doi.org/10.1039/C7FD00185A]. [PMID: 29355869].
[177]
Liu Y, Crawford BM, Vo-Dinh T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy 2018; 10(13): 1175-88. [http://dx.doi.org/10.2217/imt-2018-0029]. [PMID: 30236026].
[178]
Zhang XY, Zhang PY. Mitochondria targeting nano agents in cancer therapeutics. Oncol Lett 2016; 12(6): 4887-90. [http://dx.doi.org/10.3892/ol.2016.5302]. [PMID: 28105197].
[179]
Kang EB, In I, Lee KD. Mitochondria-targeted fluorescent carbon nano-platform for NIR-triggered hyperthermia and mitochondrial inhibition. J Ind Eng Chem 2017; 55: 224-5. [http://dx.doi.org/10.1016/j.jiec.2017.06.053].
[180]
Gong N, Ma X, Ye X. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat Nanotechnol 2019; 14(4): 379-87. [http://dx.doi.org/10.1038/s41565-019-0373-6]. [PMID: 30778211].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy