Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Novel Coumarin Containing Dithiocarbamate Derivatives as Potent α-Glucosidase Inhibitors for Management of Type 2 Diabetes

Author(s): Marjan Mollazadeh, Maryam Mohammadi-Khanaposhtani, Yousef Valizadeh, Afsaneh Zonouzi, Mohammad A. Faramarzi, Mitra Kiani, Mahmood Biglar, Bagher Larijani, Haleh Hamedifar , Mohammad Mahdavi * and Mir Hamed Hajimiri*

Volume 17, Issue 3, 2021

Published on: 26 August, 2020

Page: [264 - 272] Pages: 9

DOI: 10.2174/1573406416666200826101205

Price: $65

Abstract

Background: α-Glucosidase is a hydrolyzing enzyme that plays a crucial role in the degradation of carbohydrates and starch to glucose. Hence, α-glucosidase is an important target in carbohydrate mediated diseases such as diabetes mellitus.

Objective: In this study, novel coumarin containing dithiocarbamate derivatives 4a-n were synthesized and evaluated against α-glucosidase in vitro and in silico.

Methods: These compounds were obtained from the reaction between 4-(bromomethyl)-7- methoxy-2H-chromen-2-one 1, carbon disulfide 2, and primary or secondary amines 3a-n in the presence of potassium hydroxide and ethanol at room temperature. In vitro α-glucosidase inhibition and kinetic study of these compounds were performed. Furthermore, a docking study of the most potent compounds was also performed by Auto Dock Tools (version 1.5.6).

Results: Obtained results showed that all the synthesized compounds exhibited prominent inhibitory activities (IC50 = 85.0 ± 4.0-566.6 ± 8.6 μM) in comparison to acarbose as a standard inhibitor (IC50 = 750.0 ± 9.0 μM). Among them, the secondary amine derivative 4d with pendant indole group was the most potent inhibitor. Enzyme kinetic study of the compound 4d revealed that this compound competes with a substrate to connect to the active site of α-glucosidase and therefore is a competitive inhibitor. Moreover, a molecular docking study predicted that this compound interacted with the α-glucosidase active site pocket.

Conclusion: Our results suggest that the coumarin-dithiocarbamate scaffold can be a promising lead structure for designing potent α-glucosidase inhibitors for the treatment of type 2 diabetes.

Keywords: Anti-diabetic activity, α-glucosidase, molecular docking, coumarin, dithiocarbamate, in vitro evaluation.

Graphical Abstract
[1]
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595-1607.
[http://dx.doi.org/10.2337/diab.37.12.1595] [PMID: 3056758]
[2]
Lebovitz, H.E. Insulin secretagogues: old and new. Diabetes Rev. (Alex.), 1999, 7, 139-153.
[3]
Diamant, M.; Heine, R.J. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs, 2003, 63(13), 1373-1405.
[http://dx.doi.org/10.2165/00003495-200363130-00004] [PMID: 12825962]
[4]
Lebovitz, H.E. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev. (Alex.), 1998, 6, 132-145.
[5]
Cusi, K.; DeFronzo, R.A. Metformin: a review of its metabolic effects. Diabetes Rev. (Alex.), 1998, 6, 89-131.
[6]
Ceriello, A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes, 2005, 54(1), 1-7.
[http://dx.doi.org/10.2337/diabetes.54.1.1] [PMID: 15616004]
[7]
Bell, D.S. Type 2 diabetes mellitus: what is the optimal treatment regimen? Am. J. Med., 2004, 116(Suppl. 5A), 23S-29S.
[http://dx.doi.org/10.1016/j.amjmed.2003.10.017] [PMID: 15019860]
[8]
Bischoff, H. Pharmacology of alpha-glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24(Suppl. 3), 3-10.
[PMID: 8001624]
[9]
Andrade, R.J.; Lucena, M.I.; Rodríguez-Mendizábal, M. Hepatic injury caused by acarbose. Ann. Intern. Med., 1996, 124(10), 931-931.
[http://dx.doi.org/10.7326/0003-4819-124-10-199605150-00030] [PMID: 8610937]
[10]
Reuser, A.J.J.; Wisselaar, H.A. An evaluation of the potential side-effects of α-glucosidase inhibitors used for the management of diabetes mellitus. Eur. J. Clin. Invest., 1994, 24(Suppl. 3), 19-24.
[http://dx.doi.org/10.1111/j.1365-2362.1994.tb02251.x] [PMID: 8001622]
[11]
Rawlings, A.J.; Lomas, H.; Pilling, A.W.; Lee, M.J.R.; Alonzi, D.S.; Rountree, J.S.; Jenkinson, S.F.; Fleet, G.W.; Dwek, R.A.; Jones, J.H.; Butters, T.D. Synthesis and biological characterisation of novel N-alkyl-deoxynojirimycin α-glucosidase inhibitors. ChemBioChem, 2009, 10(6), 1101-1105.
[http://dx.doi.org/10.1002/cbic.200900025] [PMID: 19294724]
[12]
Pili, R.; Chang, J.; Partis, R.A.; Mueller, R.A.; Chrest, F.J.; Passaniti, A. The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res., 1995, 55(13), 2920-2926.
[PMID: 7540952]
[13]
Zitzmann, N.; Mehta, A.S.; Carrouée, S.; Butters, T.D.; Platt, F.M.; McCauley, J.; Blumberg, B.S.; Dwek, R.A.; Block, T.M. Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus: implications for the development of broad spectrum anti-hepatitis virus agents. Proc. Natl. Acad. Sci. USA, 1999, 96(21), 11878-11882.
[http://dx.doi.org/10.1073/pnas.96.21.11878] [PMID: 10518544]
[14]
Khan, M.S.; Munawar, M.A.; Ashraf, M.; Alam, U.; Ata, A.; Asiri, A.M.; Kousar, S.; Khan, M.A. Synthesis of novel indenoquinoxaline derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2014, 22(3), 1195-1200.
[http://dx.doi.org/10.1016/j.bmc.2013.12.024] [PMID: 24398385]
[15]
Peng, X.M.; Damu, G.L.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[16]
Borges, M.F.M.; Roleira, F.M.F.; Milhazes, N.J.S.P.; Villare, E.U.; Penin, L.S. Simple coumarins: Privileged scaffolds in medicinal Chemistry. Reitz, A.B.; Choudhary, M.I.; Atta-ur-Rahman, Eds. Front. Med. Chem; , 2010, 4, pp. 23-85.
[17]
Saeedi, M.; Hadjiakhondi, A.; Nabavi, S.M.; Manayi, A. Heterocyclic Compounds: Effective α-Amylase and α-Glucosidase Inhibitors. Curr. Top. Med. Chem., 2017, 17(4), 428-440.
[http://dx.doi.org/10.2174/1568026616666160824104655] [PMID: 27558678]
[18]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F.; Rehman, A.U. Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Bioorg. Chem., 2015, 63, 36-44.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.004] [PMID: 26432614]
[19]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mohammadi-Khanaposhtani, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J. Chem., 2018, 17, 17267-17278.
[http://dx.doi.org/10.1039/C8NJ02495B]
[20]
Shen, Q.; Shao, J.; Peng, Q.; Zhang, W.; Ma, L.; Chan, A.S.; Gu, L. Hydroxycoumarin derivatives: novel and potent α-glucosidase inhibitors. J. Med. Chem., 2010, 53(23), 8252-8259.
[http://dx.doi.org/10.1021/jm100757r] [PMID: 21053896]
[21]
Mohammadi-Khanaposhtani, M.; Rezaei, S.; Khalifeh, R.; Imanparast, S.; Faramarzi, M.A.; Bahadorikhalili, S.; Safavi, M.; Bandarian, F.; Nasli Esfahani, E.; Mahdavi, M.; Larijani, B. Design, synthesis, docking study, α-glucosidase inhibition, and cytotoxic activities of acridine linked to thioacetamides as novel agents in treatment of type 2 diabetes. Bioorg. Chem., 2018, 80, 288-295.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.035] [PMID: 29980114]
[22]
Bakherad, Z.; Mohammadi-Khanaposhtani, M.; Sadeghi-Aliabadi, H.; Rezaei, S.; Fassihi, A.; Bakherad, M.; Rastegar, H.; Biglar, M.; Saghaie, L.; Larijani, B.; Mahdavi, M. New thiosemicarbazide-1, 2, 3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation. J. Mol. Struct., 2019, 1192, 192-200.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.082]
[23]
Barakat, A.; Ali, M.; Mohammed Al-Majid, A.; Yousuf, S.; Iqbal Choudhary, M.; Khalil, R.; Ul-Haq, Z. Synthesis of thiobarbituric acid derivatives: In vitro α-glucosidase inhibition and molecular docking studies. Bioorg. Chem., 2017, 75, 99-105.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.003] [PMID: 28926784]
[24]
Wang, G.; Peng, Z.; Gong, Z.; Li, Y. Synthesis, biological evaluation, and docking studies of novel 5,6-diaryl-1,2,4-triazine thiazole derivatives as a new class of α-glucosidase inhibitors. Bioorg. Chem., 2018, 78, 195-200.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.015] [PMID: 29587132]
[25]
Revankar, H.M.; Kulkarni, M.V.; Joshi, S.D.; More, U.A. Synthesis, biological evaluation and docking studies of 4-aryloxymethyl coumarins derived from substructures and degradation products of vancomycin. Eur. J. Med. Chem., 2013, 70, 750-757.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.047] [PMID: 24239622]
[26]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur. J. Med. Chem., 2018, 155, 353-363.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.046] [PMID: 29902721]
[27]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Hariono, M.; Yusuf, M.; Wahab, H. Synthesis of novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur. J. Med. Chem., 2015, 105, 156-170.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.017] [PMID: 26491979]
[28]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Wahab, H.; Khan, K.M. Synthesis, in vitro and docking studies of new flavone ethers as aglucosidase inhibitors. Chem. Biol. Drug Des., 2016, 87(3), 361-373.
[http://dx.doi.org/10.1111/cbdd.12666] [PMID: 26362113]
[29]
Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res., 2009, 37(Database issue), D387-D392.
[http://dx.doi.org/10.1093/nar/gkn750] [PMID: 18931379]
[30]
Taha, M.; Baharudin, M.S.; Ismail, N.H.; Imran, S.; Khan, M.N.; Rahim, F.; Selvaraj, M.; Chigurupati, S.; Nawaz, M.; Qureshi, F.; Vijayabalan, S. Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorg. Chem., 2018, 80, 36-42.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.021] [PMID: 29864686]
[31]
Bashary, R.; Khatik, G.L. Design, and facile synthesis of 1,3 diaryl-3-(arylamino)propan-1-one derivatives as the potential alpha-amylase inhibitors and antioxidants. Bioorg. Chem., 2019, 82, 156-162.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.010] [PMID: 30321778]
[32]
Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An Insight of Alpha-amylase Inhibitors as a Valuable Tool in the Management of Type 2 Diabetes Mellitus. Curr. Diabetes Rev., 2020, 16(2), 117-136.
[http://dx.doi.org/10.2174/1573399815666190618093315] [PMID: 31237215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy