Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Identification of Drug Candidates for Breast Cancer Therapy Through Scaffold Repurposing: A Brief Review

Author(s): Jubie Selvaraj*, Thangavelu Prabha and Neetu Yadav

Volume 13, Issue 1, 2021

Published on: 24 August, 2020

Page: [3 - 15] Pages: 13

DOI: 10.2174/2589977512666200824103019

Price: $65

Abstract

Conventional drug discovery is a time consuming and expensive expedition with less clinical preference achievement proportion intended for breast cancer therapy. Even if numerous novel approaches to the conformation of drugs have been introduced for breast cancer therapy, they are yet to be implemented in clinical practice. This tempting strategy facilitates a remarkable chance to take the entire benefit of existing drugs. Despite drug repurposing significantly decrease the investigational period and cost, it has got many objections and issues. Scaffold repurposing is an approach that procures a novel significance on the decrepit motto of “to commencement with a pristine drug” . Hence, we move into a probable and nearer approach, the exploitation of scaffolds, which was originally developed for other purposes, including anti-tumor activity. In this review, we summarize different drugs and scaffolds used in breast cancer therapy.

Keywords: Drug repurposing, scaffold, breast cancer, coumarins, statins, NSAIDs, benzimidazole, long-chain fatty acids, niclosamide, biphosphaonates.

Graphical Abstract
[1]
Boguski MS, Mandl KD, Sukhatme VP. Drug discovery. Repurposing with a difference. Science 2009; 324(5933): 1394-5.
[http://dx.doi.org/10.1126/science.1169920] [PMID: 19520944]
[2]
Issa NT, Kruger J, Byers SW, Dakshanamurthy S. Drug repurposing a reality: From computers to the clinic. Expert Rev Clin Pharmacol 2013; 6(2): 95-7.
[http://dx.doi.org/10.1586/ecp.12.79] [PMID: 23473587]
[3]
Xie L, Evangelidis T, Xie L, Bourne PE. Drug discovery using chemical systems biology: Weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLOS Comput Biol 2011; 7(4): e1002037.
[http://dx.doi.org/10.1371/journal.pcbi.1002037] [PMID: 21552547]
[4]
Chong CR, Xu J, Lu J, Bhat S, Sullivan DJ Jr, Liu JO. Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem Biol 2007; 2(4): 263-70.
[http://dx.doi.org/10.1021/cb600362d] [PMID: 17432820]
[5]
Johnson RE, Eissenberg T, Stitzer ML, Strain EC, Liebson IA, Bigelow GE. A placebo controlled clinical trial of buprenorphine as a treatment for opioid dependence. Drug Alcohol Depend 1995; 40(1): 17-25.
[http://dx.doi.org/10.1016/0376-8716(95)01186-2] [PMID: 8746920]
[6]
Aubé J. Drug repurposing and the medicinal chemist. ACS Med Chem Lett 2012; 3(6): 442-4.
[http://dx.doi.org/10.1021/ml300114c] [PMID: 24900492]
[7]
Thayer AM. Drug repurposing. Chem Eng News 2012; 90: 15-25.
[http://dx.doi.org/10.1021/cen-09040-cover]
[8]
Chen H, Wu J, Gao Y, Chen H, Zhou J. Scaffold repurposing of old drugs towards new cancer drug discovery. Curr Top Med Chem 2016; 16(19): 2107-14.
[http://dx.doi.org/10.2174/1568026616666160216155556] [PMID: 26881709]
[9]
Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46(4): 765-81.
[http://dx.doi.org/10.1016/j.ejca.2009.12.014] [PMID: 20116997]
[10]
Lalloo F, Evans DG. Familial breast cancer. Clin Genet 2012; 82(2): 105-14.
[http://dx.doi.org/10.1111/j.1399-0004.2012.01859.x] [PMID: 22356477]
[11]
De La Fuente NE, Chang S. Associations of breast cancer risk factors with tumor subtypes: A pooled analysis from the breast cancer association consortium studies. Yearbook of Oncology 2011; 11-2.
[12]
Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet 1991; 48(2): 232-42.
[PMID: 1990835]
[13]
Newman B, Austin MA, Lee M, King MC. Inheritance of human breast cancer: Evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci USA 1988; 85(9): 3044-8.
[http://dx.doi.org/10.1073/pnas.85.9.3044] [PMID: 3362861]
[14]
Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 2016; 30: 369-81.
[PMID: 27493913]
[15]
Miki Y, Swensen J, Shattuck-Eidens D, et al. Strong candidate for the breast and ovarian cancer. Science 1994; 266: 66-71.
[http://dx.doi.org/10.1126/science.7545954] [PMID: 7545954]
[16]
Richie RC, Swanson JO, John O, Swanson S. Breast cancer: A review of the literature. J Insur Med 2003; 35(2): 85-101.
[PMID: 14733031]
[17]
Angahar LT. An overview of breast cancer epidemiology, risk factors, pathophysiology, and cancer risks reduction. MOJ Biol Med 2017; 1(4): 92-6.
[http://dx.doi.org/10.15406/mojbm.2017.01.00019]
[18]
Reedijk M. Notch signaling and breast cancer. Adv Exp Med Biol 2012; 727: 241-57.
[http://dx.doi.org/10.1007/978-1-4614-0899-4_18] [PMID: 22399352]
[19]
Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004; 64(17): 6071-4.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0416] [PMID: 15342389]
[20]
Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266(5182): 66-71.
[http://dx.doi.org/10.1126/science.7545954] [PMID: 7545954]
[21]
Berg JW, Hutter RV. Breast cancer. Cancer 1995; 75(1)(Suppl.): 257-69.
[http://dx.doi.org/10.1002/1097-0142(19950101)75:1+<257::AID-CNCR2820751311>3.0.CO;2-Y] [PMID: 8001000]
[22]
Glass AG, Lacey JV Jr, Carreon JDHR, Hoover RN. Breast cancer incidence, 1980-2006: Combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status. J Natl Cancer Inst 2007; 99(15): 1152-61.
[http://dx.doi.org/10.1093/jnci/djm059] [PMID: 17652280]
[23]
Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006; 127(3): 469-80.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[24]
MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17(1): 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[25]
Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434(7035): 843-50.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[26]
Bhanot P, Brink M, Samos CH, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996; 382(6588): 225-30.
[http://dx.doi.org/10.1038/382225a0] [PMID: 8717036]
[27]
Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000; 407(6803): 535-8.
[http://dx.doi.org/10.1038/35035124] [PMID: 11029008]
[28]
Derynck R. Transforming growth factor alpha. Cell 1988; 54(5): 593-5.
[http://dx.doi.org/10.1016/S0092-8674(88)80001-1] [PMID: 3044605]
[29]
Bates SE, Davidson NE, Valverius EM, et al. Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988; 2(6): 543-55.
[http://dx.doi.org/10.1210/mend-2-6-543] [PMID: 3047554]
[30]
Lupu R, Wellstein A, Sheridan J, et al. Purification and characterization of a novel growth factor from human breast cancer cells. Biochemistry 1992; 31(32): 7330-40.
[http://dx.doi.org/10.1021/bi00147a018] [PMID: 1324710]
[31]
Salomon DS, Zwiebel JA, Bano M, Losonczy I, Fehnel P, Kidwell WR. Presence of transforming growth factors in human breast cancer cells. Cancer Res 1984; 44(9): 4069-77.
[PMID: 6331663]
[32]
Ahmed SR, Badger B, Wright C, Manni A. Role of transforming growth factor-a (tgf-a) in basal and hormone-stimulated growth by estradiol, prolactin and progesterone in human and rat mammary tumor cells: Studies using TGF-a and EGF receptor antibodies. J Steroid Biochem Mol Biol 1991; 38(6): 687-93.
[33]
Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ. Rat transforming growth factor type 1: Structure and relation to epidermal growth factor. Science 1984; 223(4640): 1079-82.
[http://dx.doi.org/10.1126/science.6320373] [PMID: 6320373]
[34]
Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): A melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev Immunol 2004; 24(4): 267-96.
[http://dx.doi.org/10.1615/CritRevImmunol.v24.i4.40] [PMID: 15588226]
[35]
Wilson BS, Imai K, Natali PG, Ferrone S. Distribution and molecular characterization of a cell-surface and a cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. Int J Cancer 1981; 28(3): 293-300.
[http://dx.doi.org/10.1002/ijc.2910280307] [PMID: 7033148]
[36]
Fowler AM, Alarid ET. Dynamic control of nuclear receptor transcription. Sci STKE 2004; 2004(256): p e51.
[PMID: 15507593]
[37]
Gruber CJ, Gruber DM, Gruber IML, Wieser F, Huber JC. Anatomy of the estrogen response element. Trends Endocrinol Metab 2004; 15(2): 73-8.
[http://dx.doi.org/10.1016/j.tem.2004.01.008] [PMID: 15036253]
[38]
Egan D, O’Kennedy R, Moran E, Cox D, Prosser E, Thornes RD. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab Rev 1990; 22(5): 503-29.
[http://dx.doi.org/10.3109/03602539008991449] [PMID: 2078993]
[39]
Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr Med Chem 2005; 12(8): 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[40]
Stanchev S, Momekov G, Jensen F, Manolov I. Synthesis, computational study and cytotoxic activity of new 4-hydroxycoumarin derivatives. Eur J Med Chem 2008; 43(4): 694-706.
[http://dx.doi.org/10.1016/j.ejmech.2007.05.005] [PMID: 17614164]
[41]
Thornes RD, Daly L, Lynch G, et al. Treatment with coumarin to prevent or delay recurrence of malignant melanoma. J Cancer Res Clin Oncol 1994; 120(Suppl.): S32-4.
[http://dx.doi.org/10.1007/BF01377122] [PMID: 8132701]
[42]
Marshall ME, Butler K, Fried A. Phase I evaluation of coumarin (1,2-benzopyrone) and cimetidine in patients with advanced malignancies. Mol Biother 1991; 3(3): 170-8.
[PMID: 1768368]
[43]
Mohler JL, Gomella LG, Crawford ED, et al. Phase II evaluation of coumarin (1,2-benzopyrone) in metastatic prostatic carcinoma. Prostate 1992; 20(2): 123-31.
[http://dx.doi.org/10.1002/pros.2990200208] [PMID: 1549551]
[44]
Beeby E, Magalhães M, Poças J, et al. Secondary metabolites (essential oils) from sand-dune plants induce cytotoxic effects in cancer cells. J Ethnopharmacol 2020; 258: 112803.
[http://dx.doi.org/10.1016/j.jep.2020.112803] [PMID: 32251759]
[45]
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr Cancer 2020; 72(3): 386-97.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[46]
Dawood DH, Batran RZ, Farghaly TA, Khedr MA, Abdulla MM. New coumarin derivatives as potent selective COX-2 inhibitors: Synthesis, anti-inflammatory, QSAR, and molecular modeling Studies. Arch Pharm (Weinheim) 2015; 348(12): 875-88.
[http://dx.doi.org/10.1002/ardp.201500274] [PMID: 26462142]
[47]
Hamdy AM, Khaddour Z, Al-Masoudi NA, et al. Synthesis of arylated coumarins by Suzuki-Miyaura cross-coupling. Reactions and anti-HIV activity. Bioorg Med Chem 2016; 24(21): 5115-26.
[http://dx.doi.org/10.1016/j.bmc.2016.08.029] [PMID: 27647368]
[48]
Abdelhafez OM, Amin KM, Ali HI, Maher TJ, Batran RZ. Dopamine release and molecular modeling study of some coumarin derivatives. Neurochem Int 2011; 59(6): 906-12.
[http://dx.doi.org/10.1016/j.neuint.2011.08.004] [PMID: 21871512]
[49]
Emami S, Dadashpour S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur J Med Chem 2015; 102: 611-30.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[50]
Kraljević TG, Harej A, Sedić M, et al. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4- substituted 1,2,3-triazole-coumarin hybrids. Eur J Med Chem 2016; 124: 794-808.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.062] [PMID: 27639370]
[51]
Abdel Latif NA, Batran RZ, Khedr MA, Abdalla MM. 3-Substituted-4-hydroxycoumarin as a new scaffold with potent CDK inhibition and promising anticancer effect: Synthesis, molecular modeling and QSAR studies. Bioorg Chem 2016; 67: 116-29.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.005] [PMID: 27372186]
[52]
Park SL, Won SY, Song JH, Lee SY, Kim WJ, Moon SK. Esculetin inhibits VEGF-induced angiogenesis both in Vitro and In vivo. Am J Chin Med 2016; 44(1): 61-76.
[http://dx.doi.org/10.1142/S0192415X1650004X] [PMID: 26916914]
[53]
Pan R, Dai Y, Gao XH, Lu D, Xia YF. Inhibition of vascular endothelial growth factor-induced angiogenesis by scopoletin through interrupting the autophosphorylation of VEGF receptor 2 and its downstream signaling pathways. Vascul Pharmacol 2011; 54(1-2): 18-28.
[http://dx.doi.org/10.1016/j.vph.2010.11.001] [PMID: 21078410]
[54]
Garcia-Carbonero R, Carnero A, Paz-Ares L. Inhibition of HSP90 molecular chaperones: Moving into the clinic. Lancet Oncol 2013; 14(9): e358-69.
[http://dx.doi.org/10.1016/S1470-2045(13)70169-4] [PMID: 23896275]
[55]
Hall JA, Forsberg LK, Blagg BS. Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med Chem 2014; 6(14): 1587-605.
[http://dx.doi.org/10.4155/fmc.14.89] [PMID: 25367392]
[56]
Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 2000; 275(47): 37181-6.
[http://dx.doi.org/10.1074/jbc.M003701200] [PMID: 10945979]
[57]
Marcu MG, Schulte TW, Neckers L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 2000; 92(3): 242-8.
[http://dx.doi.org/10.1093/jnci/92.3.242] [PMID: 10655441]
[58]
Blagg BSJ, Kerr TD. Hsp90 inhibitors: Small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 2006; 26(3): 310-38.
[http://dx.doi.org/10.1002/med.20052] [PMID: 16385472]
[59]
Gbelcová H, Rimpelová S, Knejzlík Z, et al. Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells. Lipids Health Dis 2017; 16(1): 250.
[http://dx.doi.org/10.1186/s12944-017-0641-0] [PMID: 29262834]
[60]
Ahn KS, Sethi G, Aggarwal BB. Simvastatin potentiates TNF-induced apoptosis through the down-regulation of NF-B-Dependent antiapoptotic gene products: Role of I B kinase and TGF-activated Kinase-1. J Immunol 2007; 178: 2507-16.
[http://dx.doi.org/10.4049/jimmunol.178.4.2507] [PMID: 17277159]
[61]
Ahn KS, Sethi G, Aggarwal BB. Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-kappaB pathway. Biochem Pharmacol 2008; 75(4): 907-13.
[http://dx.doi.org/10.1016/j.bcp.2007.10.010] [PMID: 18036510]
[62]
Chan KKW, Oza AM, Siu LL. The statins as anticancer agents. Clin Cancer Res 2003; 9(1): 10-9.
[PMID: 12538446]
[63]
Yang T, Liu J, Luo F, Lin Q, Rosol TJ, Deng X. Anticancer properties of Monascus metabolites. Anticancer Drugs 2014; 25(7): 735-44.
[http://dx.doi.org/10.1097/CAD.0000000000000102] [PMID: 24637578]
[64]
Prasanna P, Thibault A, Liu L, Samid D. Lipid metabolism as a target for brain cancer therapy: Synergistic activity of lovastatin and sodium phenylacetate against human glioma cells. J Neurochem 1996; 66(2): 710-6.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66020710.x] [PMID: 8592143]
[65]
Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR. Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res 1999; 5(8): 2223-9.
[PMID: 10473109]
[66]
Feleszko W, Zagozdzon R, Gołab J, Jakóbisiak M. Potentiated antitumour effects of cisplatin and lovastatin against MmB16 melanoma in mice. Eur J Cancer 1998; 34(3): 406-11.
[http://dx.doi.org/10.1016/S0959-8049(97)10034-X] [PMID: 9640231]
[67]
Fulton A, Roi L, Howard L, Russo J, Brooks S, Brennan MJ. Tumor-Associated prostaglandins in patients with primary breast cancer: Relationship to clinical parameters. Breast Cancer Res Treat 1982; 2: 331-7.
[http://dx.doi.org/10.1007/BF01805874]
[68]
Harris RE, Namboodiri KK, Farrar WB. Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology 1996; 7(2): 203-5.
[http://dx.doi.org/10.1097/00001648-199603000-00017] [PMID: 8834563]
[69]
Kollmorgen GM, King MM, Kosanke SD, Do C. Influence of dietary fat and indomethacin on the growth of transplantable mammary tumors in rats. Cancer Res 1983; 43(10): 4714-9.
[PMID: 6576855]
[70]
Fulton AM. In vivo effects of indomethacin on the growth of murine mammary tumors. Cancer Res 1984; 44(6): 2416-20.
[PMID: 6722783]
[71]
Strong HA, Warner NJ, Renwick AG, George CF. Sulindac metabolism: The importance of an intact colon. Clin Pharmacol Ther 1985; 38(4): 387-93.
[http://dx.doi.org/10.1038/clpt.1985.192] [PMID: 4042521]
[72]
Haanen C. Sulindac and its derivatives: A novel class of anticancer agents. Curr Opin Investig Drugs 2001; 2(5): 677-83.
[PMID: 11569947]
[73]
Zhou H, Liu W, Su Y, et al. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell 2010; 17(6): 560-73.
[http://dx.doi.org/10.1016/j.ccr.2010.04.023] [PMID: 20541701]
[74]
Huang L, Mackenzie G, Ouyang N, et al. The novel phospho-non-steroidal anti-inflammatory drugs, OXT-328, MDC-22 and MDC-917, inhibit adjuvant-induced arthritis in rats. Br J Pharmacol 2011; 162(7): 1521-33.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01162.x] [PMID: 21175575]
[75]
Xie G, Sun Y, Nie T, et al. Phospho-ibuprofen (MDC-917) is a novel agent against colon cancer: Efficacy, metabolism, and pharmacokinetics in mouse models. J Pharmacol Exp Ther 2011; 337(3): 876-86.
[http://dx.doi.org/10.1124/jpet.111.180224] [PMID: 21422165]
[76]
Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991; 88(24): 11460-4.
[http://dx.doi.org/10.1073/pnas.88.24.11460] [PMID: 1763060]
[77]
Chhikara BS, St Jean N, Mandal D, Kumar A, Parang K. Fatty acyl amide derivatives of doxorubicin: synthesis and in vitro anticancer activities. Eur J Med Chem 2011; 46(6): 2037-42.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.056] [PMID: 21420207]
[78]
Jubie S, Pawan KY, Moola JNC, Jeyapal GP, Chaitanya MVNL, Palanisamy D. Novel fatty acid analogues as fatty acid synthase-thio esterase domain inhibitors; Synthesis and their cytotoxicity screening. Lett Drug Des Discov 2015; 12(6): 495-9.
[http://dx.doi.org/10.2174/1570180812666141216210751]
[79]
Jubie S, Dhanabal P, Afzal Azam M, Muruganantham N, Kalirajan R, Elango K. Synthesis and characterization of some novel fatty acid analogues: A preliminary investigation on their activity against human lung carcinoma cell line. Lipids Health Dis 2013; 12: 45.
[http://dx.doi.org/10.1186/1476-511X-12-45] [PMID: 23537396]
[80]
Win DT. Oleic acid – The anti-breast cancer component in olive oil. Breast 2005; 9: 75-8.
[81]
Menendez JA, Vellon L, Colomer R, Lupu R. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin) in breast cancer cells with Her-2/neu oncogene amplification. Ann Oncol 2005; 16(3): 359-71.
[http://dx.doi.org/10.1093/annonc/mdi090] [PMID: 15642702]
[82]
Terry PD, Rohan TE, Wolk A. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: A review of the epidemiologic evidence. Am J Clin Nutr 2003; 77(3): 532-43.
[http://dx.doi.org/10.1093/ajcn/77.3.532] [PMID: 12600840]
[83]
Martin RJ. Modes of action of anthelmintic drugs. Vet J 1997; 154(1): 11-34.
[http://dx.doi.org/10.1016/S1090-0233(05)80005-X] [PMID: 9265850]
[84]
Hu Y, Ellis BL, Yiu YY, et al. An extensive comparison of the effect of anthelmintic classes on diverse nematodes. PLoS One 2013; 8(7): e70702.
[http://dx.doi.org/10.1371/journal.pone.0070702] [PMID: 23869246]
[85]
Martarelli D, Pompei P, Baldi C, Mazzoni G. Mebendazole inhibits growth of human adrenocortical carcinoma cell lines implanted in nude mice. Cancer Chemother Pharmacol 2008; 61(5): 809-17.
[http://dx.doi.org/10.1007/s00280-007-0538-0] [PMID: 17581752]
[86]
Larsen AR, Bai RY, Chung JH, et al. Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol Cancer Ther 2015; 14(1): 3-13.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0755-T] [PMID: 25376612]
[87]
Upcroft P, Upcroft JA. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev 2001; 14(1): 150-64.
[http://dx.doi.org/10.1128/CMR.14.1.150-164.2001] [PMID: 11148007]
[88]
Bertram GK. Clinical pharmacology of the anthelmintic drugs. 1992.
[89]
Pourgholami MH, Woon L, Almajd R, Akhter J, Bowery P, Morris DL. In Vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett 2001; 165(1): 43-9.
[http://dx.doi.org/10.1016/S0304-3835(01)00382-2] [PMID: 11248417]
[90]
Khalilzadeh A, Wangoo KT, Morris DL, Pourgholami MH. Epothilone-paclitaxel resistant leukemic cells CEM/dEpoB300 are sensitive to albendazole: Involvement of apoptotic pathways. Biochem Pharmacol 2007; 74(3): 407-14.
[http://dx.doi.org/10.1016/j.bcp.2007.05.006] [PMID: 17560963]
[91]
Chu SW, Badar S, Morris DL, Pourgholami MH. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res 2009; 29(10): 3791-6.
[PMID: 19846910]
[92]
Patel K, Doudican NA, Schiff PB, Orlow SJ. Albendazole sensitizes cancer cells to ionizing radiation. Radiat Oncol 2011; 6: 160.
[http://dx.doi.org/10.1186/1748-717X-6-160] [PMID: 22094106]
[93]
Kaushik NK, Kaushik N, Park D, Choi EH. Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment. PLoS One 2014; 9(7): 103349.
[http://dx.doi.org/10.1371/journal.pone.0103349] [PMID: 25068311]
[94]
Locatelli C, Pedrosa RC, De Bem AF, Creczynski-Pasa TB, Cordova CAS, Wilhelm-Filho DA. Comparative study of albendazole and mebendazole-induced, time-dependent oxidative stress. Redox Rep 2004; 9: 89-95.
[95]
Salimi A, Roudkenar MH, Sadeghi L, et al. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 2015; 6: 461-71.
[http://dx.doi.org/10.1016/j.redox.2015.08.021] [PMID: 26418626]
[96]
Afzal O, Kumar S, Haider MR, et al. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 2015; 97: 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[97]
Kumar S, Bawa S, Gupta H. Biological activities of quinoline derivatives. Mini Rev Med Chem 2009; 9(14): 1648-54.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[98]
Bawa S, Kumar S, Drabu S, Kumar R. Structural modifications of quinoline-based antimalarial agents: Recent developments. J Pharm Bioallied Sci 2010; 2(2): 64-71.
[http://dx.doi.org/10.4103/0975-7406.67002] [PMID: 21814435]
[99]
Shim JS, Matsui Y, Bhat S, et al. Effect of nitroxoline on angiogenesis and growth of human bladder cancer. J Natl Cancer Inst 2010; 102(24): 1855-73.
[http://dx.doi.org/10.1093/jnci/djq457] [PMID: 21088277]
[100]
Jiang H, Taggart JE, Zhang X, Benbrook DM, Lind SE, Ding WQ. Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline). Cancer Lett 2011; 312(1): 11-7.
[http://dx.doi.org/10.1016/j.canlet.2011.06.032] [PMID: 21899946]
[101]
Hamdoun S, Jung P, Efferth T. Drug repurposing of the anthelmintic niclosamide to treat multidrug-resistant leukemia. Front Pharmacol 2017; 8: 110.
[http://dx.doi.org/10.3389/fphar.2017.00110] [PMID: 28344555]
[102]
Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett 2014; 349(1): 8-14.
[http://dx.doi.org/10.1016/j.canlet.2014.04.003] [PMID: 24732808]
[103]
Van Poznak CH, Temin S, Yee GC, et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol 2011; 29(9): 1221-7.
[http://dx.doi.org/10.1200/JCO.2010.32.5209] [PMID: 21343561]
[104]
Hadji P, Body JJ, Aapro MS, et al. Practical guidance for the management of aromatase inhibitor-associated bone loss. Ann Oncol 2008; 19(8): 1407-16.
[http://dx.doi.org/10.1093/annonc/mdn164] [PMID: 18448451]
[105]
Wong MHF, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 2012; 2(2): CD003474.
[http://dx.doi.org/10.1002/14651858.CD003474.pub3] [PMID: 22336790]
[106]
Hillner BE, Ingle JN, Chlebowski RT, et al. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 2003; 21(21): 4042-57.
[http://dx.doi.org/10.1200/JCO.2003.08.017] [PMID: 12963702]
[107]
Rosen LS, Gordon D, Kaminski M, et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: A randomized, double-blind, multicenter, comparative trial. Cancer 2003; 98(8): 1735-44.
[http://dx.doi.org/10.1002/cncr.11701] [PMID: 14534891]
[108]
Major PP, Cook RJ, Chen B-L. ZM. Multiple event analysis of zoledronic acid trials in patients with cancer metastatic to bone. Proc Am Soc Clin Oncol 2003; 22: 762.
[109]
Rosen LS, Gordon DH, Dugan W Jr, et al. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer 2004; 100(1): 36-43.
[http://dx.doi.org/10.1002/cncr.11892] [PMID: 14692022]
[110]
Body JJ, Diel IJ, Lichinitser MR, et al. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann Oncol 2003; 14(9): 1399-405.
[http://dx.doi.org/10.1093/annonc/mdg367] [PMID: 12954579]
[111]
Body JJ, Diel IJ, Lichinitzer M, et al. Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: Results from two randomised, placebo-controlled phase III studies. Br J Cancer 2004; 90(6): 1133-7.
[http://dx.doi.org/10.1038/sj.bjc.6601663] [PMID: 15026791]
[112]
Tripathy D. BM. Assessing the efficacy of ibandronate for the prevention of Skeletal-Related Events (SREs) in metastatic bone disease: A methodological comparison. Bone 2004; 34: s91-2.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy