Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Recent Advances in the Scaffold Engineering of Protein Binders

Author(s): Mohammad K.B. Ahmadi, Seyed A. Mohammadi, Manoochehr Makvandi, Morteza Mamouei, Mohammad Rahmati*, Hesam Dehghani and David W. Wood

Volume 22, Issue 7, 2021

Published on: 24 August, 2020

Page: [878 - 891] Pages: 14

DOI: 10.2174/1389201021999200824101035

Price: $65

Abstract

In recent years, extensive attention has been given to the generation of new classes of ligand- specific binding proteins to supplement monoclonal antibodies. A combination of protein engineering and display technologies has been used to manipulate non-human antibodies for humanization and stabilization purposes or even the generation of new binding proteins. Engineered protein scaffolds can now be directed against therapeutic targets to treat cancer and immunological disorders. Although very few of these scaffolds have successfully passed clinical trials, their remarkable properties such as robust folding, high solubility, and small size motivate their employment as a tool for biology and applied science studies. Here, we have focused on the generation of new non-Ig binding proteins and single domain antibody manipulation, with a glimpse of their applications.

Keywords: Antibody, non-immunoglobulin, scaffold, protein binders, protein engineering, phage display.

Graphical Abstract
[1]
Dibo, M. Antibody therapy for the control of viral diseases. Curr. Pharm. Biotechnol., 2019, 20(13), 1108-1121.
[2]
18 - Cell line development.Strohl, W.R.; Strohl, L.M., Eds.; Therapeutic Antibody Engineering; Woodhead Publishing, 2012, pp. 421-595.
[http://dx.doi.org/10.1533/9781908818096.421]
[3]
Sheridan, C. New class PCSK9 blockers stride into cholesterol market. Curr. Pharm. Biotechnol., 2015, 33(8), 785-786.
[http://dx.doi.org/10.1038/nbt0815-785]
[4]
Hentrich, C. Monoclonal antibody generation by phage display: History, state-of-the-art, and future. Handbook of Immunoassay Technologies; Vashist, S.K.; Luong, J.H.T., Eds.; Academic Press, 2018, pp. 47-80.
[http://dx.doi.org/10.1016/B978-0-12-811762-0.00003-7]
[5]
Mazigi, O. Protein A superantigen: Structure, engineering and molecular basis of antibody recognition. Protein Eng. Des. Sel., 2019, 32(8), 359-366.
[http://dx.doi.org/10.1093/protein/gzz026]
[6]
Hober, S.; Nord, K.; Linhult, M. Protein A chromatography for antibody purification. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(1), 40-47.
[http://dx.doi.org/10.1016/j.jchromb.2006.09.030]
[7]
Nord, K. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat. Biotechnol., 1997, 15(8), 772-777.
[8]
Feldwisch, J. Design of an optimized scaffold for affibody molecules. J. Mol. Biol., 2010, 398(2), 232-247.
[http://dx.doi.org/10.1016/j.jmb.2010.03.002]
[9]
Malm, M. Inhibiting HER3-mediated tumor cell growth with affibody molecules engineered to low picomolar affinity by position-directed error-prone PCR-like diversification. PLoS One, 2013, 8(5), 62791.
[10]
Fleetwood, F. Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Sci. Rep., 2014, 4, 7518.
[11]
Bass, T.Z. In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin-binding therapeutic affibody construct. Sci. Rep., 2017, 7, 43118.
[http://dx.doi.org/10.1038/srep43118]
[12]
Orlova, A. Evaluation of the therapeutic potential of a HER3-binding affibody construct TAM-HER3 in Comparison with a monoclonal antibody, seribantumab. Mol. Pharm., 2018, 15(8), 3394-3403.
[13]
Malm, M. Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albumin-binding domain allows for affinity purification and in vivo half-life extension. Biotechnol. J., 2014, 9(9), 1215-1222.
[http://dx.doi.org/10.1002/biot.201400009]
[14]
Lindgren, J. N-terminal engineering of amyloid-β-binding Affibody molecules yields improved chemical synthesis and higher binding affinity. Protein Sci., 2010, 19(12), 2319-2329.
[15]
Lindberg, H. A truncated and dimeric format of an Affibody library on bacteria enables FACS-mediated isolation of amyloid-beta aggregation inhibitors with subnanomolar affinity. Biotechnol. J., 2015, 10(11), 1707-1718.
[http://dx.doi.org/10.1002/biot.201500131]
[16]
Kanje, S. Protein engineering allows for mild affinity-based elution of therapeutic antibodies. J. Mol. Biol., 2018, 430(18), 34277-3438.
[http://dx.doi.org/10.1016/j.jmb.2018.06.004]
[17]
Scheffel, J. Optimization of a calcium-dependent Protein A-derived domain for mild antibody purification. MAbs, 2019, 11(8), 1492-1501.
[http://dx.doi.org/10.1080/19420862.2019.1662690]
[18]
Tolmachev, V.; Orlova, A. Affibody molecules as targeting vectors for PET imaging. Cancers (Basel), 2020, 12(3), E651.
[http://dx.doi.org/10.3390/cancers12030651] [PMID: 32168760]
[19]
Summer, D. Cyclic versus noncyclic chelating scaffold for (89)Zr-labeled ZEGFR:2377 affibody bioconjugates targeting epidermal growth factor receptor overexpression. Mol. Pharm., 2018, 15(1), 175-185.
[20]
Samkoe, K.S. Toxicity and pharmacokinetic profile for single-dose injection of ABY-029: A fluorescent anti-EGFR synthetic affibody molecule for human use. Mol. Imaging Biol., 2017, 19(4), 512-521.
[http://dx.doi.org/10.1007/s11307-016-1033-y]
[21]
Simeon, R.; Chen, Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell, 2018, 9(1), 3-14.
[http://dx.doi.org/10.1007/s13238-017-0386-6]
[22]
Stahl, S. Affibody molecules in biotechnological and medical applications. Trends Biotechnol., 2017, 35(8), 691-712.
[http://dx.doi.org/10.1016/j.tibtech.2017.04.007]
[23]
Jing, L. Screening and production of an affibody inhibiting the interaction of the PD-1/PD-L1 immune checkpoint. Protein Expr. Purif., 2019, 166, 105520.
[24]
Egesten, A. Binding of albumin promotes bacterial survival at the epithelial surface. J. Biol. Chem., 2011, 286(4), 2469-2776.
[http://dx.doi.org/10.1074/jbc.M110.148171]
[25]
Jonsson, A. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng. Des. Sel., 2008, 21(8), 515-527.
[http://dx.doi.org/10.1093/protein/gzn028]
[26]
Ahmad, J.N. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins, 2012, 80(3), 774-789.
[http://dx.doi.org/10.1002/prot.23234]
[27]
Alm, T. A small bispecific protein selected for orthogonal affinity purification. Biotechnol. J., 2010, 5(6), 605-617.
[http://dx.doi.org/10.1002/biot.201000041]
[28]
Nilvebrant, J. Engineering bispecificity into a single albumin-binding domain. PLoS One, 2011, 6(10), 25791.
[http://dx.doi.org/10.1371/journal.pone.0025791]
[29]
Nilvebrant, J. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS One, 2014, 9(8), 10309.
[http://dx.doi.org/10.1371/journal.pone.0103094]
[30]
Garousi, J. Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m. Sci. Rep., 2017, 7(1), 14780.
[http://dx.doi.org/10.1038/s41598-017-15366-w]
[31]
Krizova, L. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity, 2017, 50(2), 102-113.
[32]
Koide, A. Probing protein conformational changes in living cells by using designer binding proteins: Application to the estrogen receptor. Proc. Natl. Acad. Sci. USA, 2002, 1253-1258.
[http://dx.doi.org/10.1073/pnas.032665299]
[33]
Lipovsek, D. Adnectins: Engineered target-binding protein therapeutics. Protein Eng. Des. Sel., 2011, 24(1-2), 3-9.
[http://dx.doi.org/10.1093/protein/gzq097]
[34]
Hantschel, O.; Biancalana, M.; Koide, S. Monobodies as enabling tools for structural and mechanistic biology. Curr. Opin. Struct. Biol., 2020, 60, 167-174.
[http://dx.doi.org/10.1016/j.sbi.2020.01.015]
[35]
Petrie, E.J. Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using monobodies. Proc. Natl. Acad. Sci. USA, 2020, 8468-8475.
[http://dx.doi.org/10.1073/pnas.1919960117]
[36]
Bloom, L.; Calabro, V. FN3: A new protein scaffold reaches the clinic. Drug Discov. Today, 2009, 14(19-20), 949-955.
[http://dx.doi.org/10.1016/j.drudis.2009.06.007]
[37]
Wensel, D. Discovery and characterization of a novel cd4-binding adnectin with potent anti-HIV activity. Antimicrob. Agents Chemother., 2017, 61(8), 00508-00517.
[http://dx.doi.org/10.1128/AAC.00508-17]
[38]
Xu, L. Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol., 2002, 9(8), 933-942.
[http://dx.doi.org/10.1016/S1074-5521(02)00187-4]
[39]
Getmanova, E.V. Antagonists to human and mouse vascular endothelial growth factor receptor 2 generated by directed protein evolution in vitro. Chem. Biol., 2006, 13(5), 549-556.
[http://dx.doi.org/10.1016/j.chembiol.2005.12.009]
[40]
Lewis, S.M.; Kuhlman, B.A. Anchored design of protein-protein interfaces. PLoS One, 2011, 6(6), 20872.
[http://dx.doi.org/10.1371/journal.pone.0020872]
[41]
Hussain, M.; Angus, S.P.; Kuhlman, B. Engineering a protein binder specific for p38alpha with interface expansion. Biochemistry, 2018, 57(30), 4526-4535.
[42]
Schiff, D. Phase 2 study of CT-322, a targeted biologic inhibitor of VEGFR-2 based on a domain of human fibronectin, in recurrent glioblastoma. Invest. New Drugs, 2015, 33(1), 247-253.
[http://dx.doi.org/10.1007/s10637-014-0186-2]
[43]
Mullard, A. Nine paths to PCSK9 inhibition. Nat. Rev. Drug Discov., 2017, 16(5), 299-301.
[http://dx.doi.org/10.1038/nrd.2017.83]
[44]
Jacobsen, L. BMS-986089: A novel adnectin protein that dose dependently lowers free myostatin and increases muscle volume and lean body mass. Neuromusc. Disorders, 2016, 26, 595.
[45]
Fiedler, E. Affilin™ molecules: Novel ligands for bioseparation. Food Bioproducts Process., 2006, 84(1), 3-8.
[46]
Ebersbach, H. Affilin-novel binding molecules based on human gamma-B-crystallin, an all beta-sheet protein. J. Mol. Biol., 2007, 372(1), 172-185.
[47]
Lorey, S. Novel ubiquitin-derived high affinity binding proteins with tumor targeting properties. J. Biol. Chem., 2014, 289(12), 8493-8507.
[http://dx.doi.org/10.1074/jbc.M113.519884]
[48]
Yan, J. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J. Transl. Med., 2014, 12, 343.
[http://dx.doi.org/10.1186/s12967-014-0343-6]
[49]
Kahl, M. Mabfilin and fabfilin - new antibody-scaffold fusion formats for multispecific targeting concepts. Protein Expr. Purif., 2018, 149, 51-65.
[50]
Mouratou, B. Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD. Proc. Natl. Acad. Sci. USA, 2007, 17983-17988.
[http://dx.doi.org/10.1073/pnas.0702963104]
[51]
Behar, G. Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: Characterization of anti-immunoglobulin G affitins. Protein Eng. Des. Sel., 2013, 26(4), 167-175.
[http://dx.doi.org/10.1093/protein/gzs106]
[52]
Correa, A. Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins). PLoS One, 2014, 9(5), 97438.
[53]
Behar, G. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins1. J. Chromatogr. A, 2016, 1441, 44-51.
[http://dx.doi.org/10.1016/j.chroma.2016.02.068]
[54]
Fernandes, C.S. Affitins for protein purification by affinity magnetic fishing. J. Chromatogr. A, 2016, 1457, 50-58.
[http://dx.doi.org/10.1016/j.chroma.2016.06.020]
[55]
Goux, M. Nanofitin as a new molecular-imaging agent for the diagnosis of epidermal growth factor receptor over-expressing tumors. Bioconjug. Chem., 2017, 28(9), 2361-2371.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00374]
[56]
Gocha, T.; Rao, B.M.; DasGupta, R. Identification and characterization of a novel Sso7d scaffold-based binder against Notch1. Sci. Rep., 2017, 7(1), 12021.
[http://dx.doi.org/10.1038/s41598-017-12246-1]
[57]
Huet, S. Use of the nanofitin alternative scaffold as a GFP-ready fusion tag. PLoS One, 2015, 10(11), 0142304.
[http://dx.doi.org/10.1371/journal.pone.0142304]
[58]
Kalichuk, V. A novel, smaller scaffold for affitins: Showcase with binders specific for EpCAM. Biotechnol. Bioeng., 2018, 115(2), 290-299.
[59]
Kalichuk, V. Affitins: Ribosome display for selection of Aho7c-based affinity proteins. Methods Mol. Biol., 2020, 2070, 19-41.
[60]
Johnson, M. Harnessing anti-idiotypic antibody alternatives to advance biotherapeutic pharmacokinetic assays. Bioanalysis, 2020, 12(2), 125-128.
[http://dx.doi.org/10.4155/bio-2019-0291]
[61]
Tiede, C. Adhiron: A stable and versatile peptide display scaffold for molecular recognition applications. Protein Engin. Design Select., 2014, 27(5), 145-155.
[http://dx.doi.org/10.1093/protein/gzu007]
[62]
Michel, M.A. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Mol. Cell, 2017, 68(1), 233-246.
[http://dx.doi.org/10.1016/j.molcel.2017.08.020]
[63]
Tiede, C.; Bedford, R.; Heseltine, S.J.; Smith, G.; Wijetunga, I.; Ross, R.; AlQallaf, D.; Roberts, A.P.; Balls, A.; Curd, A.; Hughes, R.E.; Martin, H.; Needham, S.R.; Zanetti-Domingues, L.C.; Sadigh, Y.; Peacock, T.P.; Tang, A.A.; Gibson, N.; Kyle, H.; Platt, G.W.; Ingram, N.; Taylor, T.; Coletta, L.P.; Manfield, I.; Knowles, M.; Bell, S.; Esteves, F.; Maqbool, A.; Prasad, R.K.; Drinkhill, M.; Bon, R.S.; Patel, V.; Goodchild, S.A.; Martin-Fernandez, M.; Owens, R.J.; Nettleship, J.E.; Webb, M.E.; Harrison, M.; Lippiat, J.D.; Ponnambalam, S.; Peckham, M.; Smith, A.; Ferrigno, P.K.; Johnson, M.; McPherson, M.J.; Tomlinson, D.C. Affimer proteins are versatile and renewable affinity reagents. eLife, 2017, 6, 6.
[http://dx.doi.org/10.7554/eLife.24903] [PMID: 28654419]
[64]
Lopata, A. Affimer proteins for F-actin: Novel affinity reagents that label F-actin in live and fixed cells. Sci. Rep., 2018, 8(1), 6572.
[http://dx.doi.org/10.1038/s41598-018-24953-4]
[65]
Schlichthaerle, T. Site-specific labeling of affimers for DNA-PAINT microscopy. Angew Chem. Int. Ed. Engl., 2018, 57(34), 11060-11063.
[http://dx.doi.org/10.1002/anie.201804020]
[66]
Cooper, D.L. FcgammaRIIIa expression on monocytes in rheumatoid arthritis: Role in immune-complex stimulated TNF production and non-response to methotrexate therapy. PLoS One, 2012, 7(1), 28918.
[67]
Xie, C. Development of an Affimer-antibody combined immunological diagnosis kit for glypican-3. Sci. Rep., 2017, 7(1), 9608.
[http://dx.doi.org/10.1038/s41598-017-10083-w]
[68]
Klont, F. Affimers as an alternative to antibodies in an affinity LC-MS assay for quantification of the Soluble Receptor of Advanced Glycation End-Products (sRAGE) in Human. Serum J. Proteome Res., 2018, 17(8), 2892-2899.
[69]
Skerra, A. Lipocalins as a scaffold. Biochim. et Biophysic. Acta - Protein Struct. Mol. Enzymol., 2000, 1482(1-2), 337-350.
[http://dx.doi.org/10.1016/S0167-4838(00)00145-X]
[70]
Beste, G. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad. Sci. USA, 1999, 1898-1903.
[http://dx.doi.org/10.1073/pnas.96.5.1898]
[71]
Eggenstein, E.; Richter, A.; Skerra, A.; Richter, A.; Skerra, A. FluoroCalins: Engineered lipocalins with novel binding functions fused to a fluorescent protein for applications in biomolecular imaging and detection. Protein Engin., Design #x00A0. PEDS, 2019, 32(6), 289-296.
[72]
Jensen, K. Muteins of tear lipocalin and methods for obtaining the same. U.S Patent 0,022,452A1, 2012.
[73]
Richter, A.; Skerra, A. Anticalins directed against Vascular Endothelial Growth Factor Receptor 3 (VEGFR-3) with picomolar affinities show potential for medical therapy and in vivo imaging. Biol. Chem., 2017, 398(1), 39-55.
[74]
Gebauer, M.; Skerra, A. Anticalins: Small engineered binding proteins based on the lipocalin scaffold Skerra, Anticalins: Small engineered binding proteins based on the lipocalin scaffold.in Methods in Enzymology In; Academic Press Inc., 2012, pp. 157-188.
[75]
Rothe, C.; Skerra, A. skerra;anticalin® proteins as therapeutic agents in human diseases. BioDrugs, 2018, 32(3), 233-243.
[76]
Edwardraja, S. Rational design of an anticalin-type sugar-binding protein using a genetically encoded boronate side chain. ACS Synth. Biol., 2017, 6(12), 2241-2247.
[http://dx.doi.org/10.1021/acssynbio.7b00199]
[77]
Dauner, M. Reprogramming human siderocalin to neutralize petrobactin, the essential iron scavenger of Anthrax bacillus. Angew. Chem. Int. Ed. Engl., 2018, 57(44), 14619-14623.
[http://dx.doi.org/10.1002/anie.201807442]
[78]
Gille, H. Functional characterization of a VEGF-A-targeting Anticalin, prototype of a novel therapeutic human protein class. Angiogenesis, 2016, 19(1), 79-94.
[http://dx.doi.org/10.1007/s10456-015-9490-5]
[79]
Mross, K.; Richly, H.; Fischer, R.; Scharr, D.; Chert, M.; Stern, A.; Gille, H.; Audoly, L.P.; Scheulen, M.E. First-in-human phase I study of PRS-050 (Angiocal), an Anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLoS One, 2013, 8(12), e83232.
[http://dx.doi.org/10.1371/journal.pone.0083232] [PMID: 24349470]
[80]
Meier, R.; Braren, R.; Kosanke, Y.; Bussemer, J.; Neff, F.; Wildgruber, M.; Schwarzenb, S.; Frank, A.; Haller, B.; Hohlbaum, A.M.; Schwaiger, M.; Gille, H.; Rummeny, E.J.; Beer, A.J. Multimodality multiparametric imaging of early tumor response to a novel antiangiogenic therapy based on anticalins. PLoS One, 2014, 9(5), e94972.
[http://dx.doi.org/10.1371/journal.pone.0094972] [PMID: 24801709]
[81]
Masuda, Y. Generation and characterization of a novel small biologic alternative to proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies, DS-9001A, albumin binding domain-fused anticalin protein. J. Pharmacol. Experiment. Therapeut., 2018, 365(2), 368-378.
[82]
Ray, K.K. Pharmacological lipid-modification therapies for prevention of ischaemic heart disease: Current and future options. Lancet, 2019, 394(10199), 697-708.
[http://dx.doi.org/10.1016/S0140-6736(19)31950-6]
[83]
Renders, L. First-in-human Phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis. Plos One, 2019, 14(3), 0212023.
[84]
Gebauer, M.; Skerra, A. Engineering of binding functions into proteins. Curr. Opin. Biotechnol., 2019, 60, 230-241.
[http://dx.doi.org/10.1016/j.copbio.2019.05.007]
[85]
Diem, M.D. Selection of high-affinity Centyrin FN3 domains from a simple library diversified at a combination of strand and loop positions. Protein Eng. Des. Sel., 2014, 27(10), 419-429.
[http://dx.doi.org/10.1093/protein/gzu016]
[86]
Goldberg, S.D. Engineering a targeted delivery platform using centyrins. Protein Eng. Des. Sel., 2016, 29(12), 563-572.
[http://dx.doi.org/10.1093/protein/gzw054]
[87]
Mahalingam, S.M. Evaluation of a centyrin-based near-infrared probe for fluorescence-guided surgery of epidermal growth factor receptor positive tumors. Bioconjug. Chem., 2017, 28(11), 2865-2863.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00566]
[88]
Zhang, D. Fcgamma RII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody. MAbs, 2018, 10(3), 463-475.
[89]
Schlatter, D. Generation, characterization and structural data of chymase binding proteins based on the human Fyn kinase SH3 domain. MAbs, 2012, 4(4), 497-508.
[http://dx.doi.org/10.4161/mabs.20452]
[90]
Iwaki, T.; Hara, K.; Umemura, K. Nanobody production can be simplified by direct secretion from Escherichia coli. Protein Expr. Purif., 2020, 170, 105607.
[http://dx.doi.org/10.1016/j.pep.2020.105607] [PMID: 32062022]
[91]
Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem., 2013, 82, 775-797.
[http://dx.doi.org/10.1146/annurev-biochem-063011-092449]
[92]
Mullard, A. 2018 FDA drug approvals. Nat. Rev. Drug Discov., 2019, 18(2), 85-89.
[93]
Silence, K.K. Nanobodies for the treatment of aggregationmediated disorders. U.S Patent 9,207,9306 A, 2010.
[94]
Pardon, E. A general protocol for the generation of nanobodies for structural biology. Nat. Protocols, 2014, 9(3), 674-693.
[http://dx.doi.org/10.1038/nprot.2014.039]
[95]
Conrath, K.E. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob. Agents Chemother., 2001, 45(10), 2807-2812.
[96]
McMahon, C. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol., 2018, 25(3), 289-296.
[http://dx.doi.org/10.1038/s41594-018-0028-6]
[97]
Zimmermann, I.; Egloff, P.; Hutter, C.A.; Arnold, F.M.; Stohler, P.; Bocquet, N.; Hug, M.N.; Huber, S.; Siegrist, M.; Hetemann, L.; Gera, J.; Gmur, S.; Spies, P.; Gygax, D.; Geertsma, E.R.; Dawson, R.J.; Seeger, M.A. Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.34317] [PMID: 29792401]
[98]
Zimmermann, I. Generation of synthetic nanobodies against delicate proteins. Nat. Protocols, 2020, 15(5), 1707-1741.
[http://dx.doi.org/10.1038/s41596-020-0304-x]
[99]
Tomlinson, I.M. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol., 1992, 227(3), 776-798.
[http://dx.doi.org/10.1016/0022-2836(92)90223-7]
[100]
Harmsen, M.M.; De Haard, H.J. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol., 2007, 77(1), 13-22.
[http://dx.doi.org/10.1007/s00253-007-1142-2]
[101]
Vincke, C. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem., 2009, 284(5), 3273-3284.
[http://dx.doi.org/10.1074/jbc.M806889200]
[102]
Ju, M-S. A synthetic library for rapid isolation of humanized single-domain antibodies. Biotechnol. Bioprocess Engin., 2017, 22(3), 239-247.
[http://dx.doi.org/10.1007/s12257-017-0082-7]
[103]
Moutel, S.; Bery, N.; Bernard, V.; Keller, L.; Lemesre, E.; de Marco, A.; Ligat, L.; Rain, J.C.; Favre, G.; Olichon, A.; Perez, F. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife, 2016, 5, 5.
[http://dx.doi.org/10.7554/eLife.16228] [PMID: 27434673]
[104]
Jespers, L. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat. Biotechnol., 2004, 22(9), 1161-1165.
[http://dx.doi.org/10.1038/nbt1000]
[105]
Rouet, R. Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J. Biol. Chem., 2015, 290(19), 11905-11917.
[106]
Cabanillas-Bernal, O. Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS One, 2019, 14(6), e0213394.
[http://dx.doi.org/10.1371/journal.pone.0213394]
[107]
Zhao, N.; Schmitt, M.A.; Fisk, J.D. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library. FEBS J., 2016, 283(7), 1351-1367.
[http://dx.doi.org/10.1111/febs.13674]
[108]
Ekerljung, L. Generation and evaluation of bispecific affibody molecules for simultaneous targeting of EGFR and HER2. Biocon. Chem., 2012, 23(9), 1802-1811.
[http://dx.doi.org/10.1021/bc3000645]
[109]
Ferrigno, K.P. Non-antibody protein-based biosensors. Essays Biochem., 2016, 60(1), 19-25.
[110]
Bedford, R. Alternative reagents to antibodies in imaging applications. Biophysic. Rev., 2017, 9(4), 299-308.
[http://dx.doi.org/10.1007/s12551-017-0278-2]
[111]
Zielinski, R. Affitoxin-a novel recombinant, HER2-specific, anticancer agent for targeted therapy of HER2-positive tumors. J. Immunother., 2009, 32(18), 817-825.
[112]
Yu, F. An affibody-adalimumab hybrid blocks combined IL-6 and TNF-triggered serum amyloid A secretion in vivo. MAbs, 2014, 6(6), 1598-1607.
[http://dx.doi.org/10.4161/mabs.36089]
[113]
Schlapschy, M. PASylation: A biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel., 2013, 26(8), 489-501.
[http://dx.doi.org/10.1093/protein/gzt023]
[114]
Frejd, F.Y.; Kim, K.-T. Affibody molecules as engineered protein drugs. Exp. Mol. Med., 2017, 49(3), e306-e306.
[http://dx.doi.org/10.1038/emm.2017.35]
[115]
Huo, J.; Le Bas, A.; Ruza, R.R.; Duyvesteyn, H.M.E.; Mikolajek, H.; Malinauskas, T.; Tan, T.K.; Rijal, P.; Dumoux, M.; Ward, P.N.; Ren, J.; Zhou, D.; Harrison, P.J.; Weckener, M.; Clare, D.K.; Vogirala, V.K.; Radecke, J.; Moyni, L.; Zhao, Y.; Gilbert-Jaramillo, J.; Knight, M.L.; Tree, J.A.; Buttigieg, K.R.; Coombes, N.; Elmore, M.J.; Carroll, M.W.; Carrique, L.; Shah, P.N.M.; James, W.; Townsend, A.R.; Stuart, D.I.; Owens, R.J.; Naismith, J.H. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct. Mol. Biol., 2020, 27, 846-854.
[http://dx.doi.org/10.1038/s41594-020-0469-6] [PMID: 32661423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy