Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis and Anticancer Properties of ‘Azole’ Based Chemotherapeutics as Emerging Chemical Moieties: A Comprehensive Review

Author(s): Parteek Prasher*, Mousmee Sharma, Flavia Zacconi, Gaurav Gupta, Alaa A.A. Aljabali, Vijay Mishra, Murtaza M. Tambuwala, Deepak N. Kapoor, Poonam Negi, Terezinha de Jesus Andreoli Pinto, Inderbir Singh, Dinesh K. Chellappan and Kamal Dua*

Volume 25, Issue 6, 2021

Published on: 20 August, 2020

Page: [654 - 668] Pages: 15

DOI: 10.2174/1385272824999200820152501

Price: $65

Abstract

Azole frameworks serve as privileged scaffolds in the contemporary drug design paradigm owing to their unique physicochemical profile that promotes the development of highly selective, physiological benevolent chemotherapeutics. Several azole nuclei function as bioisostere in medicinal chemistry and prompt the development of tailored therapeutics for targeting the desired biological entities. Besides, the azole scaffold forms an integral part in the advanced drug designing methodologies, such as target template insitu drug synthesis, that assists in rapid identification of the hit molecules form a diverse pool of leads; and direct biomolecule-drug conjugation, along with bioorthogonal strategies that ensure localization, and superior target specificity of the directed therapeutic. Lastly, the structural diversity of azole framework and high yielding click synthetic methods provide a comprehensive Structure-Activity Relationship analysis for design optimization of the potential drug molecules by fine-tuning the placement of different substituents critical for the activity. This review provides a comprehensive analysis of the synthesis and anticancer potential of azole based chemotherapeutics.

Keywords: Azole, anticancer drugs, chemotherapeutics, molecular inhibitors, anticancer pathways, MAPK, TNF-α, NF-κB.

Graphical Abstract
[1]
Prasher, P.; Sharma, M. Tailored therapeutics based on 1,2,3-1H-triazoles: a mini review. MedChemComm, 2019, 10(8), 1302-1328.
[http://dx.doi.org/10.1039/C9MD00218A] [PMID: 31534652]
[2]
Pawar, K.; Yadav, A.; Prasher, P.; Mishra, S.; Singh, B.; Singh, P.; Komath, S.S. Identification of an indole–triazole–amino acid conjugate as a highly effective antifungal agent. MedChemComm, 2015, 6, 1352-1359.
[http://dx.doi.org/10.1039/C5MD00156K]
[3]
Ragab, H.M.A.; Bekhit, A.A.; Rostom, S.A.F.; Bekhit, A.E.A. Compounds containing azole scaffolds as cyclooxygenase inhibitors: a review. Curr. Top. Med. Chem., 2016, 16(30), 3569-3581.
[http://dx.doi.org/10.2174/1568026616666160526125352] [PMID: 27226275]
[4]
Ahmad, K.; Khan, M.K.A.; Baig, M.H.; Imran, M.; Gupta, G.K. Role of azoles in cancer prevention and treatment: present and future perspectives. Anticancer. Agents Med. Chem., 2018, 18(1), 46-56.
[http://dx.doi.org/10.2174/1871520616666161221112042] [PMID: 28017128]
[5]
Prasher, P.; Sharma, M. Plants derived therapeutic strategies targeting chronic respiratory diseases: chemical and immunological perspective. Chemico-Biol. Interact, 2020, 325109145
[http://dx.doi.org/10.1016/j.cbi.2020.109125]
[6]
Jabir, N.R.; Firoz, C.K.; Bhushan, A.; Tabrez, S.; Kamal, M.A. The use of azoles containing natural products in cancer prevention and treatment: an overview. Anticancer. Agents Med. Chem., 2018, 18(1), 6-14.
[http://dx.doi.org/10.2174/1871520616666160520112839] [PMID: 27198985]
[7]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[8]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[9]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[10]
Bhardwaj, A.; Kaur, J.; Wuest, M.; Wuest, F. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat. Commun., 2017, 8(1), 1.
[http://dx.doi.org/10.1038/s41467-016-0009-6] [PMID: 28232747]
[11]
Mocharla, V.P.; Colasson, B.; Lee, L.V.; Röper, S.; Sharpless, K.B.; Wong, C-H.; Kolb, H.C. In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase II. Angew. Chem. Int. Ed. Engl., 2004, 44(1), 116-120.
[http://dx.doi.org/10.1002/anie.200461580] [PMID: 15599912]
[12]
Oueis, E.; Sabot, C.; Renard, P-Y. New insights into the kinetic target-guided synthesis of protein ligands. Chem. Commun. (Camb.), 2015, 51(61), 12158-12169.
[http://dx.doi.org/10.1039/C5CC04183J] [PMID: 26144842]
[13]
Hu, X.; Manetsch, R. Kinetic target-guided synthesis. Chem. Soc. Rev., 2010, 39(4), 1316-1324.
[http://dx.doi.org/10.1039/b904092g] [PMID: 20309488]
[14]
Sharpless, K.B.; Manetsch, R. In situ click chemistry: a powerful means for lead discovery. Expert Opin. Drug Discov., 2006, 1(6), 525-538.
[http://dx.doi.org/10.1517/17460441.1.6.525] [PMID: 23506064]
[15]
Mamidyala, S.K.; Finn, M.G. In situ click chemistry: probing the binding landscapes of biological molecules. Chem. Soc. Rev., 2010, 39(4), 1252-1261.
[http://dx.doi.org/10.1039/b901969n] [PMID: 20309485]
[16]
Manetsch, R.; Krasiński, A.; Radić, Z.; Raushel, J.; Taylor, P.; Sharpless, K.B.; Kolb, H.C. In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc., 2004, 126(40), 12809-12818.
[http://dx.doi.org/10.1021/ja046382g] [PMID: 15469276]
[17]
Bosc, D.; Jakhlal, J.; Deprez, B.; Deprez-Poulain, R. Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey. Future Med. Chem., 2016, 8(4), 381-404.
[http://dx.doi.org/10.4155/fmc-2015-0007] [PMID: 26877247]
[18]
Kaur, R.; Dwivedi, A.R.; Kumar, B.; Kumar, V. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: a review. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[19]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[20]
de Oliveira Viana, J.; Monteiro, A.F.M.; Filho, J.M.B.; Scotti, L.; Scotti, M.T. The azoles in pharmacochemistry: perspectives on the synthesis of new compounds and chemoinformatic contributions. Curr. Pharm. Des., 2019, 25(44), 4702-4716.
[http://dx.doi.org/10.2174/1381612825666191125090700] [PMID: 31763967]
[21]
Valverde, I.E.; Bauman, A.; Kluba, C.A.; Vomstein, S.; Walter, M.A.; Mindt, T.L. 1,2,3-Triazoles as amide bond mimics: triazole scan yields protease-resistant peptidomimetics for tumor targeting. Angew. Chem. Int. Ed. Engl., 2013, 52(34), 8957-8960.
[http://dx.doi.org/10.1002/anie.201303108] [PMID: 23832715]
[22]
Malik, M.S.; Ahmed, S.A.; Althagafi, I.I.; Ansari, M.Z.; Kamal, A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med. Chem., 2020, 11, 327-348.
[http://dx.doi.org/10.1039/C9MD00458K]
[23]
Bock, V.D.; Speijer, D.; Hiemstra, H.; van Maarseveen, J.H. 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org. Biomol. Chem., 2007, 5(6), 971-975.
[http://dx.doi.org/10.1039/b616751a] [PMID: 17340013]
[24]
Mohammed, I.; Kummetha, I.R.; Singh, G.; Sharova, N.; Lichinchi, G.; Dang, J.; Stevenson, M.; Rana, T.M. 1,2,3-triazoles as amide bioisosteres: discovery of a new class of potent HIV-1 Vif antagonists. J. Med. Chem., 2016, 59(16), 7677-7682.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00247] [PMID: 27509004]
[25]
Santarpia, L.; Lippmann, S.L.; El-Naggar, A.K. Targeting the mitogen-activated protein kinase RAS-RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16, 103-119.
[http://dx.doi.org/10.1517/14728222.2011.645805] [PMID: 22239440]
[26]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[27]
Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; Ionescu, C.; Neagoe, I.B. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel), 2019, 11(10), 1618.
[http://dx.doi.org/10.3390/cancers11101618] [PMID: 31652660]
[28]
Reddy, K.B.; Nabha, S.M.; Atanaskova, N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev., 2003, 22(4), 395-403.
[http://dx.doi.org/10.1023/A:1023781114568] [PMID: 12884914]
[29]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198.
[http://dx.doi.org/10.3390/cells9010198] [PMID: 31941155]
[30]
Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta, 2007, 1773(8), 1358-1375.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.010] [PMID: 17481747]
[31]
Bachstetter, A.D.; Van Eldik, L.J. The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging Dis., 2010, 1(3), 199-211.
[PMID: 22720195]
[32]
Miller, A.H.; Raison, C.L. Cytokines, p38 MAP kinase and the pathophysiology of depression. Neuropsychopharmacology, 2006, 31(10), 2089-2090.
[http://dx.doi.org/10.1038/sj.npp.1301032] [PMID: 16980982]
[33]
Li, M.; Georgakopoulos, D.; Lu, G.; Hester, L.; Kass, D.A.; Hasday, J.; Wang, Y. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation, 2005, 111(19), 2494-2502.
[http://dx.doi.org/10.1161/01.CIR.0000165117.71483.0C] [PMID: 15867183]
[34]
Chang, S.W.; Lewis, A.R.; Prosser, K.E.; Thompson, J.R.; Gladkikh, M.; Bally, M.B.; Warren, J.J.; Walsby, C.J. CF3 derivatives of the anticancer Ru(III) complexes KP1019, NKP-1339, and their imidazole and pyridine analogues show enhanced lipophilicity, albumin interactions, and cytotoxicity. Inorg. Chem., 2016, 55(10), 4850-4863.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00359] [PMID: 27143338]
[35]
Seerden, J-P.G.; Leusink-Ionescu, G.; Leguijt, R.; Saccavini, C.; Gelens, E.; Dros, B.; Woudenberg-Vrenken, T.; Molema, G.; Kamps, J.A.; Kellogg, R.M. Syntheses and structure-activity relationships for some triazolyl p38α MAPK inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(5), 1352-1357.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.034] [PMID: 24508134]
[36]
Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310.
[http://dx.doi.org/10.1038/sj.onc.1210422] [PMID: 17496923]
[37]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[38]
Flaherty, P.T.; Chopra, I.; Jain, P.; Yi, S.; Allen, E.; Cavanaugh, J. Identification of benzimidazole-based inhibitors of the mitogen activated kinase-5 signaling pathway. Bioorg. Med. Chem. Lett., 2010, 20(9), 2892-2896.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.033] [PMID: 20382528]
[39]
Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis. Genes Cancer, 2011, 2(12), 1097-1105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[40]
Meta, E.; Brullo, C.; Sidibe, A.; Imhof, B.A.; Bruno, O. Design, synthesis and biological evaluation of new pyrazolyl-ureas and imidazopyrazolecarboxamides able to interfere with MAPK and PI3K upstream signaling involved in the angiogenesis. Eur. J. Med. Chem., 2017, 133, 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.066] [PMID: 28371678]
[41]
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[42]
Josephs, S.F.; Ichim, T.E.; Prince, S.M.; Kesari, S.; Marincola, F.M.; Escobedo, A.R.; Jafri, A. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J. Transl. Med., 2018, 16(1), 242.
[http://dx.doi.org/10.1186/s12967-018-1611-7] [PMID: 30170620]
[43]
Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ., 2003, 10(1), 45-65.
[http://dx.doi.org/10.1038/sj.cdd.4401189] [PMID: 12655295]
[44]
Chau, B.N.; Chen, T.T.; Wan, Y.Y.; DeGregori, J.; Wang, J.Y.J. Tumor necrosis factor alpha-induced apoptosis requires p73 and c-ABL activation downstream of RB degradation. Mol. Cell. Biol., 2004, 24(10), 4438-4447.
[http://dx.doi.org/10.1128/MCB.24.10.4438-4447.2004] [PMID: 15121862]
[45]
Li, M.; Beg, A.A. Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: novel mechanism for killing virus-infected cells. J. Virol., 2000, 74(16), 7470-7477.
[http://dx.doi.org/10.1128/JVI.74.16.7470-7477.2000] [PMID: 10906200]
[46]
Sedger, L.M.; McDermott, M.F. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev., 2014, 25(4), 453-472.
[http://dx.doi.org/10.1016/j.cytogfr.2014.07.016] [PMID: 25169849]
[47]
Alvarez, S.; Blanco, A.; Fresno, M.; Fernández, M.A.M. TNF-α contributes to caspase-3 independent apoptosis in neuroblastoma cells: role of NFAT. PLoS One, 2011, 6(1)e16100
[http://dx.doi.org/10.1371/journal.pone.0016100] [PMID: 21298033]
[48]
Cai, W.; Kerner, Z.J.; Hong, H.; Sun, J. Targeted cancer therapy with tumor necrosis factor-alpha. Biochem. Insights, 2008, 2008, 15-21.
[http://dx.doi.org/10.4137/BCI.S901] [PMID: 24115841]
[49]
Srihari, P.; Dutta, P.; Rao, R.S.; Yadav, J.S.; Chandrasekhar, S.; Thombare, P.; Mohapatra, J.; Chatterjee, A.; Jain, M.R. Solvent free synthesis of 1,5-disubstituted tetrazoles derived from Baylis Hillman acetates as potential TNF-alpha inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(19), 5569-5572.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.047] [PMID: 19726183]
[50]
Bhat, N.R.; Zhang, P.; Lee, J.C.; Hogan, E.L. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci., 1998, 18(5), 1633-1641.
[http://dx.doi.org/10.1523/JNEUROSCI.18-05-01633.1998] [PMID: 9464988]
[51]
Yang, M.; Moon, C. Neurotoxicity of cancer chemotherapy. Neural Regen. Res., 2013, 8(17), 1606-1614.
[PMID: 25206457]
[52]
Nam, K.D.; Han, M.; Yoon, J.; Kim, E-A.; Cho, S-W.; Hahn, H-G. 2-amino-1,3-thiazoles suppressed lipopolysaccharide-induced IL-β and TNF-α. Bull. Korean Chem. Soc., 2013, 34, 271-274.
[http://dx.doi.org/10.5012/bkcs.2013.34.1.271]
[53]
Pandit, S.S.; Kulkarni, M.R.; Pandit, Y.B.; Lad, N.P.; Khedkar, V.M. Synthesis and in vitro evaluations of 6-(hetero)-aryl-imidazo[1,2-b]pyridazine-3-sulfonamide’s as an inhibitor of TNF-α production. Bioorg. Med. Chem. Lett., 2018, 28(1), 24-30.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.026] [PMID: 29173945]
[54]
Somakala, K.; Tariq, S.; Amir, M. Synthesis, evaluation and docking of novel pyrazolo pyrimidines as potent p38α MAP kinase inhibitors with improved anti-inflammatory, ulcerogenic and TNF-α inhibitory properties. Bioorg. Chem., 2019, 87, 550-559.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.037] [PMID: 30928877]
[55]
Chaturvedi, M.M.; Sung, B.; Yadav, V.R.; Kannappan, R.; Aggarwal, B.B. NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene, 2011, 30(14), 1615-1630.
[http://dx.doi.org/10.1038/onc.2010.566] [PMID: 21170083]
[56]
Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res., 2014, 2(9), 823-830.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[57]
Yan, M.; Xu, Q.; Zhang, P.; Zhou, X-J.; Zhang, Z-Y.; Chen, W-T. Correlation of NF-kappaB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer, 2010, 10, 437.
[http://dx.doi.org/10.1186/1471-2407-10-437] [PMID: 20716363]
[58]
Remels, A.H.V.; Derks, W.J.A.; Cillero-Pastor, B.; Verhees, K.J.P.; Kelders, M.C.; Heggermont, W.; Carai, P.; Summer, G.; Ellis, S.R.; de Theije, C.C.; Heeren, R.M.A.; Heymans, S.; Papageorgiou, A.P.; van Bilsen, M. NF-κB-mediated metabolic remodelling in the inflamed heart in acute viral myocarditis. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(8), 2579-2589.
[http://dx.doi.org/10.1016/j.bbadis.2018.04.022] [PMID: 29730342]
[59]
Li, F.; Zhang, J.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Kumar, A.P.; Ahn, K.S.; Sethi, G. NF-κB in cancer therapy. Arch. Toxicol., 2015, 89(5), 711-731.
[http://dx.doi.org/10.1007/s00204-015-1470-4] [PMID: 25690730]
[60]
Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M.V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis., 2020, 11(3), 210.
[http://dx.doi.org/10.1038/s41419-020-2399-y] [PMID: 32231206]
[61]
Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12, 86.
[http://dx.doi.org/10.1186/1476-4598-12-86] [PMID: 23915189]
[62]
Gu, L.; Wang, Z.; Zuo, J.; Li, H.; Zha, L. Prognostic significance of NF-κB expression in non-small cell lung cancer: a meta-analysis. PLoS One, 2018, 13198223
[http://dx.doi.org/10.1371/journal.pone.0198223]
[63]
Courtois, G.; Gilmore, T.D. Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene, 2006, 25(51), 6831-6843.
[http://dx.doi.org/10.1038/sj.onc.1209939] [PMID: 17072331]
[64]
Giuliani, C.; Bucci, I.; Napolitano, G. The role of the transcription factor nuclear factor-kappa B in thyroid autoimmunity and cancer. Front. Endocrinol. (Lausanne), 2018, 9, 471.
[http://dx.doi.org/10.3389/fendo.2018.00471] [PMID: 30186235]
[65]
Godwin, P.; Baird, A.M.; Heavey, S.; Barr, M.P.; O’Byrne, K.J.; Gately, K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol., 2013, 3, 120.
[http://dx.doi.org/10.3389/fonc.2013.00120] [PMID: 23720710]
[66]
Dolcet, X.; Llobet, D.; Pallares, J.; Guiu, X.M. NF-κB in development and progression of human cancer. Virchows Arch., 2005, 446(5), 475-482.
[http://dx.doi.org/10.1007/s00428-005-1264-9] [PMID: 15856292]
[67]
Park, M.H.; Hong, J.T. Roles of NF-kB in cancer and inflammatory diseases and their therapeutic approaches. Cells, 2016, 5(2), 15.
[http://dx.doi.org/10.3390/cells5020015] [PMID: 27043634]
[68]
Boggu, P.; Venkateswararao, E.; Manickam, M.; Kwak, D.; Kim, Y.; Jung, S-H. Exploration of 2-benzylbenzimidazole scaffold as novel inhibitor of NF-κB. Bioorg. Med. Chem., 2016, 24(8), 1872-1878.
[http://dx.doi.org/10.1016/j.bmc.2016.03.012] [PMID: 26976506]
[69]
Boggu, P.; Venkateswararao, E.; Manickam, M.; Kim, Y.; Jung, S-H. Exploration of SAR for novel 2-benzylbenzimidazole analogs as inhibitor of transcription factor NF-κB. Arch. Pharm. Res., 2017, 40(4), 469-479.
[http://dx.doi.org/10.1007/s12272-017-0886-1] [PMID: 28108939]
[70]
Rama Krishna, B.; Thummuri, D.; Naidu, V.G.M.; Ramakrishna, S.; Venkata Mallavadhani, U. Synthesis of some novel orcinol based coumarin triazole hybrids with capabilities to inhibit RANKL-induced osteoclastogenesis through NF-κB signaling pathway. Bioorg. Chem., 2018, 78, 94-102.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.005] [PMID: 29550534]
[71]
Ohshiba, T.; Miyaura, C.; Inada, M.; Ito, A. Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br. J. Cancer, 2003, 88(8), 1318-1326.
[http://dx.doi.org/10.1038/sj.bjc.6600858] [PMID: 12698202]
[72]
Azim, H.A.; Kamal, N.S.; Azim, H.A. Bone metastasis in breast cancer: the story of RANK-ligand. J. Egypt. Natl. Canc. Inst., 2012, 24(3), 107-114.
[http://dx.doi.org/10.1016/j.jnci.2012.06.002] [PMID: 22929916]
[73]
Le Pape, F.; Vargas, G.; Clézardin, P. The role of osteoclasts in breast cancer bone metastasis. J. Bone Oncol., 2016, 5(3), 93-95.
[http://dx.doi.org/10.1016/j.jbo.2016.02.008] [PMID: 27761364]
[74]
Galmarini, C.M.; Mackey, J.R.; Dumontet, C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol., 2002, 3(7), 415-424.
[http://dx.doi.org/10.1016/S1470-2045(02)00788-X] [PMID: 12142171]
[75]
Guinan, M.; Benckendorff, C.; Smith, M.; Miller, G.J. Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules, 2020, 25(9), 2050.
[http://dx.doi.org/10.3390/molecules25092050] [PMID: 32354007]
[76]
Mirza, A.Z. Advancement in the development of heterocyclic nucleosides for the treatment of cancer - a review. Nucleosides Nucleotides Nucleic Acids, 2019, 38(11), 836-857.
[http://dx.doi.org/10.1080/15257770.2019.1615623] [PMID: 31135268]
[77]
Jordheim, L.P.; Galmarini, C.M.; Dumontet, C. Recent developments to improve the efficacy of cytotoxic nucleoside analogues. Recent Patents Anticancer Drug Discov., 2006, 1(2), 163-170.
[http://dx.doi.org/10.2174/157489206777442205] [PMID: 18221034]
[78]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogues. Chem. Rev., 2016, 116(23), 14379-14455.
[http://dx.doi.org/10.1021/acs.chemrev.6b00209] [PMID: 27960273]
[79]
Zeng, X.; Hernandez-Sanchez, W.; Xu, M.; Whited, T.L.; Baus, D.; Zhang, J.; Berdis, A.J.; Taylor, D.J. Administration of a nucleoside analogue promotes cancer cell death in a telomerase-dependent manner. Cell Rep., 2018, 23(10), 3031-3041.
[http://dx.doi.org/10.1016/j.celrep.2018.05.020] [PMID: 29874588]
[80]
Damaraju, V.L.; Damaraju, S.; Young, J.D.; Baldwin, S.A.; Mackey, J.; Sawyer, M.B.; Cass, C.E. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene, 2003, 22(47), 7524-7536.
[http://dx.doi.org/10.1038/sj.onc.1206952] [PMID: 14576856]
[81]
Li, F.; Maag, H.; Alfredson, T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J. Pharm. Sci., 2008, 97(3), 1109-1134.
[http://dx.doi.org/10.1002/jps.21047] [PMID: 17696166]
[82]
Diab, R.; Degobert, G.; Hamoudeh, M.; Dumontet, C.; Fessi, H. Nucleoside analogue delivery systems in cancer therapy. Expert Opin. Drug Deliv., 2007, 4(5), 513-531.
[http://dx.doi.org/10.1517/17425247.4.5.513] [PMID: 17880274]
[83]
Yu, J-L.; Wu, Q-P.; Zhang, Q-S.; Liu, Y-H.; Li, Y-Z.; Zhou, Z-M. Synthesis and antitumor activity of novel 2′,3′-dideoxy-2′,3′-diethanethionucleosides bearing 1,2,3-triazole residues. Bioorg. Med. Chem. Lett., 2010, 20(1), 240-243.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.127] [PMID: 19917528]
[84]
Tsesmetzis, N.; Paulin, C.B.J.; Rudd, S.G.; Herold, N. Nucleobase and nucleoside analogues: resistance and re-sensitisation at the level of pharmacokinetics, pharmacodynamics and metabolism. Cancers (Basel), 2018, 10(7), 240.
[http://dx.doi.org/10.3390/cancers10070240] [PMID: 30041457]
[85]
Galmarini, C.M.; Mackey, J.R.; Dumontet, C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia, 2001, 15(6), 875-890.
[http://dx.doi.org/10.1038/sj.leu.2402114] [PMID: 11417472]
[86]
Sontakke, V.A.; Lawande, P.P.; Kate, A.N.; Khan, A.; Joshi, R.; Kumbhar, A.A.; Shinde, V.S. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis. Org. Biomol. Chem., 2016, 14(17), 4136-4145.
[http://dx.doi.org/10.1039/C6OB00527F] [PMID: 27074628]
[87]
Peyressatre, M.; Prével, C.; Pellerano, M.; Morris, M.C. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel), 2015, 7(1), 179-237.
[http://dx.doi.org/10.3390/cancers7010179] [PMID: 25625291]
[88]
Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-dependent kinase 2 inhibitor in cancer therapy: an update. J. Med. Chem., 2019, 62(9), 4233-4251.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01469] [PMID: 30543440]
[89]
Deshpande, A.; Sicinski, P.; Hinds, P.W. Cyclins and CDKs in development and cancer: a perspective. Oncogene, 2005, 24(17), 2909-2915.
[http://dx.doi.org/10.1038/sj.onc.1208618] [PMID: 15838524]
[90]
Ali, G.M.E.; Ibrahim, D.A.; Elmetwali, A.M.; Ismail, N.S.M. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo[1,5-a] pyrimidine scaffold with apoptotic activity. Bioorg. Chem., 2019, 86, 1-14.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.008] [PMID: 30682722]
[91]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[92]
Gilbert, D.C.; Chalmers, A.J.; El-Khamisy, S.F. Topoisomerase I inhibition in colorectal cancer: biomarkers and therapeutic targets. Br. J. Cancer, 2012, 106(1), 18-24.
[http://dx.doi.org/10.1038/bjc.2011.498] [PMID: 22108516]
[93]
Hevener, K.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B, 2018, 8(6), 844-861.
[http://dx.doi.org/10.1016/j.apsb.2018.07.008] [PMID: 30505655]
[94]
Macieja, A.; Kopa, P.; Galita, G.; Pastwa, E.; Majsterek, I.; Poplawski, T. Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol. Biol. Rep., 2019, 46(4), 3625-3636.
[http://dx.doi.org/10.1007/s11033-019-04605-0] [PMID: 31020489]
[95]
Xu, Y.; Her, C. Her, C. Inhibition of topoisomerase (DNA) I (TOP1): DNA damage repair and anticancer therapy. Biomolecules, 2015, 5(3), 1652-1670.
[http://dx.doi.org/10.3390/biom5031652] [PMID: 26287259]
[96]
Nerella, S.; Kankala, S.; Gavaji, B. Synthesis of podophyllotoxin-glycosyl triazoles via click protocol mediated by silver (I)-N-heterocyclic carbenes and their anticancer evaluation as topoisomerase-II inhibitors. Nat. Prod. Res., 2021, 35(1), 9-16.
[http://dx.doi.org/10.1080/14786419.2019.1610958] [PMID: 31210060]
[97]
Nagaraju, B.; Kovvuri, J.; Kumar, C.G.; Routhu, S.R.; Shareef, M.A.; Kadagathur, M.; Adiyala, P.R.; Alavala, S.; Nagesh, N.; Kamal, A. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg. Med. Chem., 2019, 27(5), 708-720.
[http://dx.doi.org/10.1016/j.bmc.2019.01.011] [PMID: 30679134]
[98]
Bueren-Calabuig, J.A.; Giraudon, C.; Galmarini, C.M.; Egly, J.M.; Gago, F. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations. Nucleic Acids Res., 2011, 39(18), 8248-8257.
[http://dx.doi.org/10.1093/nar/gkr512] [PMID: 21727089]
[99]
Belozerova, I.; Levicky, R. Melting thermodynamics of reversible DNA/ligand complexes at interfaces. J. Am. Chem. Soc., 2012, 134(45), 18667-18676.
[http://dx.doi.org/10.1021/ja3066368] [PMID: 23046441]
[100]
Singh, I.; Luxami, V.; Paul, K. Synthesis of naphthalimide-phenanthro[9,10- d]imidazole derivatives: in vitro evaluation, binding interaction with DNA and topoisomerase inhibition Bioorg. Chem, 2020, 96(103631)
[http://dx.doi.org/10.1016/j.bioorg.2020.103631] [PMID: 32036164]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy