Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD

Author(s): Francesco Nucera, Federica Lo Bello, Sj S. Shen, Paolo Ruggeri, Irene Coppolino, Antonino Di Stefano, Cristiana Stellato, Vincenzo Casolaro, Phil M. Hansbro, Ian M. Adcock and Gaetano Caramori*

Volume 28, Issue 13, 2021

Published on: 19 August, 2020

Page: [2577 - 2653] Pages: 77

DOI: 10.2174/0929867327999200819145327

Price: $65

Open Access Journals Promotions 2
Abstract

Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.

Keywords: Airway inflammation, alveolar macrophages, atypical chemokines, atypical chemokine receptors, chronic obstructive pulmonary disease, lymphocytes, small airways.

« Previous
[1]
Jones, B.; Donovan, C.; Liu, G.; Gomez, H.M.; Chimankar, V.; Harrison, C.L.; Wiegman, C.H.; Adcock, I.M.; Knight, D.A.; Hirota, J.A.; Hansbro, P.M. Animal models of COPD: what do they tell us? Respirology, 2017, 22(1), 21-32.
[http://dx.doi.org/10.1111/resp.12908] [PMID: 27731525]
[2]
Caramori, G.; Casolari, P.; Barczyk, A.; Durham, A.L.; Di Stefano, A.; Adcock, I. COPD immunopathology. Semin. Immunopathol., 2016, 38(4), 497-515.
[http://dx.doi.org/10.1007/s00281-016-0561-5] [PMID: 27178410]
[3]
Fricker, M.; Deane, A.; Hansbro, P.M. Animal models of chronic obstructive pulmonary disease. Expert Opin. Drug Discov., 2014, 9(6), 629-645.
[http://dx.doi.org/10.1517/17460441.2014.909805] [PMID: 24754714]
[4]
Dua, K.; Malyla, V.; Singhvi, G.; Wadhwa, R.; Krishna, R.V.; Shukla, S.D.; Shastri, M.D.; Chellappan, D.K.; Maurya, P.K.; Satija, S.; Mehta, M.; Gulati, M.; Hansbro, N.; Collet, T.; Awasthi, R.; Gupta, G.; Hsu, A.; Hansbro, P.M. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chem. Biol. Interact., 2019, 299, 168-178.
[http://dx.doi.org/10.1016/j.cbi.2018.12.009] [PMID: 30553721]
[5]
Eapen, M.S.; Hansbro, P.M.; McAlinden, K.; Kim, R.Y.; Ward, C.; Hackett, T-L.; Walters, E.H.; Sohal, S.S. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci. Rep., 2017, 7(1), 13392.
[http://dx.doi.org/10.1038/s41598-017-13888-x] [PMID: 29042607]
[6]
Starkey, M.R.; Plank, M.W.; Casolari, P.; Papi, A.; Pavlidis, S.; Guo, Y.; Cameron, G.J.M.; Haw, T.J.; Tam, A.; Obiedat, M.; Donovan, C.; Hansbro, N.G.; Nguyen, D.H.; Nair, P.M.; Kim, R.Y.; Horvat, J.C.; Kaiko, G.E.; Durum, S.K.; Wark, P.A.; Sin, D.D.; Caramori, G.; Adcock, I.M.; Foster, P.S.; Hansbro, P.M. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. Eur. Respir. J., 2019, 54(1), 1800174.
[http://dx.doi.org/10.1183/13993003.00174-2018] [PMID: 31196943]
[7]
Leung, J.M.; Tiew, P.Y.; Mac Aogáin, M.; Budden, K.F.; Yong, V.F.L.; Thomas, S.S.; Pethe, K.; Hansbro, P.M.; Chotirmall, S.H. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology, 2017, 22(4), 634-650.
[http://dx.doi.org/10.1111/resp.13032] [PMID: 28342288]
[8]
Wadhwa, R.; Aggarwal, T.; Malyla, V.; Kumar, N.; Gupta, G.; Chellappan, D.K.; Dureja, H.; Mehta, M.; Satija, S.; Gulati, M.; Maurya, P.K.; Collet, T.; Hansbro, P.M.; Dua, K. Identification of biomarkers and genetic approaches toward chronic obstructive pulmonary disease. J. Cell. Physiol., 2019, 234(10), 16703-16723.
[http://dx.doi.org/10.1002/jcp.28482] [PMID: 30912142]
[9]
Yoshie, O.; Imai, T.; Nomiyama, H. Chemokines in immunity. Adv. Immunol., 2001, 78, 57-110.
[http://dx.doi.org/10.1016/S0065-2776(01)78002-9] [PMID: 11432208]
[10]
Borroni, E.M.; Mantovani, A.; Locati, M.; Bonecchi, R. Chemokine receptors intracellular trafficking. Pharmacol. Ther., 2010, 127(1), 1-8.
[http://dx.doi.org/10.1016/j.pharmthera.2010.04.006] [PMID: 20451553]
[11]
Legler, D.F.; Thelen, M. New insights in chemokine signaling. F1000 Res., 2018, 7, 95.
[http://dx.doi.org/10.12688/f1000research.13130.1] [PMID: 29416853]
[12]
Nibbs, R.J.B.; Graham, G.J. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol., 2013, 13(11), 815-829.
[http://dx.doi.org/10.1038/nri3544] [PMID: 24319779]
[13]
Bonecchi, R.; Graham, G.J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol., 2016, 7, 224.
[http://dx.doi.org/10.3389/fimmu.2016.00224] [PMID: 27375622]
[14]
Bachelerie, F.; Graham, G.J.; Locati, M.; Mantovani, A.; Murphy, P.M.; Nibbs, R.; Rot, A.; Sozzani, S.; Thelen, M. An atypical addition to the chemokine receptor nomenclature: IUPHAR review 15. Br. J. Pharmacol., 2015, 172(16), 3945-3949.
[http://dx.doi.org/10.1111/bph.13182] [PMID: 25958743]
[15]
Bachelerie, F.; Ben-Baruch, A.; Burkhardt, A.M.; Combadiere, C.; Farber, J.M.; Graham, G.J.; Horuk, R.; Sparre-Ulrich, A.H.; Locati, M.; Luster, A.D.; Mantovani, A.; Matsushima, K.; Murphy, P.M.; Nibbs, R.; Nomiyama, H.; Power, C.A.; Proudfoot, A.E.I.; Rosenkilde, M.M.; Rot, A.; Sozzani, S.; Thelen, M.; Yoshie, O.; Zlotnik, A. International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev., 2013, 66(1), 1-79.
[http://dx.doi.org/10.1124/pr.113.007724] [PMID: 24218476]
[16]
Vacchini, A.; Locati, M.; Borroni, E.M. Overview and potential unifying themes of the atypical chemokine receptor family. J. Leukoc. Biol., 2016, 99(6), 883-892.
[http://dx.doi.org/10.1189/jlb.2MR1015-477R] [PMID: 26740381]
[17]
Thelen, M. Dancing to the tune of chemokines. Nat. Immunol., 2001, 2(2), 129-134.
[http://dx.doi.org/10.1038/84224] [PMID: 11175805]
[18]
Henrot, P.; Prevel, R.; Berger, P.; Dupin, I. Chemokines in COPD: From implication to therapeutic use. Int. J. Mol. Sci., 2019, 20(11), E2785.
[http://dx.doi.org/10.3390/ijms20112785] [PMID: 31174392]
[19]
Stone, M.J.; Hayward, J.A.; Huang, C.; Huma, Z.E.; Sanchez, J. Mechanisms of regulation of the chemokine-receptor network. Int. J. Mol. Sci., 2017, 18(2), 342.
[http://dx.doi.org/10.3390/ijms18020342] [PMID: 28178200]
[20]
López-Cotarelo, P.; Gómez-Moreira, C.; Criado-García, O.; Sánchez, L.; Rodríguez-Fernández, J.L. Beyond chemoattraction: multifunctionality of chemokine receptors in leukocytes. Trends Immunol., 2017, 38(12), 927-941.
[http://dx.doi.org/10.1016/j.it.2017.08.004] [PMID: 28935522]
[21]
Lefkowitz, R.J.; Shenoy, S.K. Transduction of receptor signals by beta-arrestins. Science, 2005, 308(5721), 512-517.
[http://dx.doi.org/10.1126/science.1109237] [PMID: 15845844]
[22]
Shenoy, S.K.; Drake, M.T.; Nelson, C.D.; Houtz, D.A.; Xiao, K.; Madabushi, S.; Reiter, E.; Premont, R.T.; Lichtarge, O.; Lefkowitz, R.J. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J. Biol. Chem., 2006, 281(2), 1261-1273.
[http://dx.doi.org/10.1074/jbc.M506576200] [PMID: 16280323]
[23]
Savino, B.; Borroni, E.M.; Torres, N.M.; Proost, P.; Struyf, S.; Mortier, A.; Mantovani, A.; Locati, M.; Bonecchi, R. Recognition versus adaptive up-regulation and degradation of CC chemokines by the chemokine decoy receptor D6 are determined by their N-terminal sequence. J. Biol. Chem., 2009, 284(38), 26207-26215.
[http://dx.doi.org/10.1074/jbc.M109.029249] [PMID: 19632987]
[24]
Lee, K.M.; Nibbs, R.J.B.; Graham, G.J. D6: the ‘crowd controller’ at the immune gateway. Trends Immunol., 2013, 34(1), 7-12.
[http://dx.doi.org/10.1016/j.it.2012.08.001] [PMID: 22921835]
[25]
Zhao, Y.; Mangalmurti, N.S.; Xiong, Z.; Prakash, B.; Guo, F.; Stolz, D.B.; Lee, J.S. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells. PLoS One, 2011, 6(12), e29624.
[http://dx.doi.org/10.1371/journal.pone.0029624] [PMID: 22216333]
[26]
Fra, A.M.; Locati, M.; Otero, K.; Sironi, M.; Signorelli, P.; Massardi, M.L.; Gobbi, M.; Vecchi, A.; Sozzani, S.; Mantovani, A. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J. Immunol., 2003, 170(5), 2279-2282.
[http://dx.doi.org/10.4049/jimmunol.170.5.2279] [PMID: 12594248]
[27]
Naumann, U.; Cameroni, E.; Pruenster, M.; Mahabaleshwar, H.; Raz, E.; Zerwes, H-G.; Rot, A.; Thelen, M. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One, 2010, 5(2), e9175.
[http://dx.doi.org/10.1371/journal.pone.0009175] [PMID: 20161793]
[28]
McCulloch, C.V.; Morrow, V.; Milasta, S.; Comerford, I.; Milligan, G.; Graham, G.J.; Isaacs, N.W.; Nibbs, R.J.B. Multiple roles for the C-terminal tail of the chemokine scavenger D6. J. Biol. Chem., 2008, 283(12), 7972-7982.
[http://dx.doi.org/10.1074/jbc.M710128200] [PMID: 18201974]
[29]
Weber, W.; Fussenegger, M. Approaches for trigger-inducible viral transgene regulation in gene-based tissue engineering. Curr. Opin. Biotechnol., 2004, 15(5), 383-391.
[http://dx.doi.org/10.1016/j.copbio.2004.07.003] [PMID: 15464366]
[30]
Galliera, E.; Jala, V.R.; Trent, J.O.; Bonecchi, R.; Signorelli, P.; Lefkowitz, R.J.; Mantovani, A.; Locati, M.; Haribabu, B. Beta-arrestin-dependent constitutive internalization of the human chemokine decoy receptor D6. J. Biol. Chem., 2004, 279(24), 25590-25597.
[http://dx.doi.org/10.1074/jbc.M400363200] [PMID: 15084596]
[31]
Kalatskaya, I.; Berchiche, Y.A.; Gravel, S.; Limberg, B.J.; Rosenbaum, J.S.; Heveker, N. AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol. Pharmacol., 2009, 75(5), 1240-1247.
[http://dx.doi.org/10.1124/mol.108.053389] [PMID: 19255243]
[32]
Bondue, B.; Wittamer, V.; Parmentier, M. Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev., 2011, 22(5-6), 331-338.
[http://dx.doi.org/10.1016/j.cytogfr.2011.11.004] [PMID: 22119008]
[33]
Hoffmann, F.; Müller, W.; Schütz, D.; Penfold, M.E.; Wong, Y.H.; Schulz, S.; Stumm, R. Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues. J. Biol. Chem., 2012, 287(34), 28362-28377.
[http://dx.doi.org/10.1074/jbc.M111.335679] [PMID: 22736769]
[34]
Sánchez-Alcañiz, J.A.; Haege, S.; Mueller, W.; Pla, R.; Mackay, F.; Schulz, S.; López-Bendito, G.; Stumm, R.; Marín, O. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron, 2011, 69(1), 77-90.
[http://dx.doi.org/10.1016/j.neuron.2010.12.006] [PMID: 21220100]
[35]
Canals, M.; Scholten, D.J.; de Munnik, S.; Han, M.K.; Smit, M.J.; Leurs, R. Ubiquitination of CXCR7 controls receptor trafficking. PLoS One, 2012, 7(3), e34192.
[http://dx.doi.org/10.1371/journal.pone.0034192] [PMID: 22457824]
[36]
Ray, P.; Mihalko, L.A.; Coggins, N.L.; Moudgil, P.; Ehrlich, A.; Luker, K.E.; Luker, G.D. Carboxy-terminus of CXCR7 regulates receptor localization and function. Int. J. Biochem. Cell Biol., 2012, 44(4), 669-678.
[http://dx.doi.org/10.1016/j.biocel.2012.01.007] [PMID: 22300987]
[37]
Rajagopal, S.; Kim, J.; Ahn, S.; Craig, S.; Lam, C.M.; Gerard, N.P.; Gerard, C.; Lefkowitz, R.J. Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc. Natl. Acad. Sci. USA, 2010, 107(2), 628-632.
[http://dx.doi.org/10.1073/pnas.0912852107] [PMID: 20018651]
[38]
Zabel, B.A.; Wang, Y.; Lewén, S.; Berahovich, R.D.; Penfold, M.E.; Zhang, P.; Powers, J.; Summers, B.C.; Miao, Z.; Zhao, B.; Jalili, A.; Janowska-Wieczorek, A.; Jaen, J.C.; Schall, T.J. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J. Immunol., 2009, 183(5), 3204-3211.
[http://dx.doi.org/10.4049/jimmunol.0900269] [PMID: 19641136]
[39]
Luker, K.E.; Gupta, M.; Steele, J.M.; Foerster, B.R.; Luker, G.D. Imaging ligand-dependent activation of CXCR7. Neoplasia, 2009, 11(10), 1022-1035.
[http://dx.doi.org/10.1593/neo.09724] [PMID: 19794961]
[40]
Chakera, A.; Seeber, R.M.; John, A.E.; Eidne, K.A.; Greaves, D.R. The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol. Pharmacol., 2008, 73(5), 1362-1370.
[http://dx.doi.org/10.1124/mol.107.040915] [PMID: 18230715]
[41]
Hartmann, T.N.; Grabovsky, V.; Pasvolsky, R.; Shulman, Z.; Buss, E.C.; Spiegel, A.; Nagler, A.; Lapidot, T.; Thelen, M.; Alon, R. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J. Leukoc. Biol., 2008, 84(4), 1130-1140.
[http://dx.doi.org/10.1189/jlb.0208088] [PMID: 18653785]
[42]
Bonecchi, R.; Locati, M.; Galliera, E.; Vulcano, M.; Sironi, M.; Fra, A.M.; Gobbi, M.; Vecchi, A.; Sozzani, S.; Haribabu, B.; Van Damme, J.; Mantovani, A. Differential recognition and scavenging of native and truncated macrophage-derived chemokine (macrophage-derived chemokine/CC chemokine ligand 22) by the D6 decoy receptor. J. Immunol., 2004, 172(8), 4972-4976.
[http://dx.doi.org/10.4049/jimmunol.172.8.4972] [PMID: 15067078]
[43]
Caramori, G.; Di Stefano, A.; Casolari, P.; Kirkham, P.A.; Padovani, A.; Chung, K.F.; Papi, A.; Adcock, I.M. Chemokines and chemokine receptors blockers as new drugs for the treatment of chronic obstructive pulmonary disease. Curr. Med. Chem., 2013, 20(35), 4317-4349.
[http://dx.doi.org/10.2174/09298673113206660261] [PMID: 24059236]
[44]
Di Stefano, D.A.; Artese, L.; Iezzi, G.; Piattelli, A.; Pagnutti, S.; Piccirilli, M.; Perrotti, V. Alveolar ridge regeneration with equine spongy bone: a clinical, histological and immunohistochemical case series. Clin. Implant Dent. Relat. Res., 2009, 11(2), 90-100.
[http://dx.doi.org/10.1111/j.1708-8208.2008.00104.x] [PMID: 18783426]
[45]
Jeffery, P.; Holgate, S.; Wenzel, S.; Endobronchial Biopsy, W. Endobronchial Biopsy Workshop. Methods for the assessment of endobronchial biopsies in clinical research: application to studies of pathogenesis and the effects of treatment. Am. J. Respir. Crit. Care Med., 2003, 168(6 Pt 2), S1-S17.
[http://dx.doi.org/10.1164/rccm.200202-150WS] [PMID: 14555461]
[46]
Gamble, E.; Qiu, Y.; Wang, D.; Zhu, J.; Vignola, A.M.; Kroegel, C.; Morell, F.; Hansel, T.T.; Pavord, I.D.; Rabe, K.F.; Barnes, N.C.; Jeffery, P.K. Variability of bronchial inflammation in chronic obstructive pulmonary disease: implications for study design. Eur. Respir. J., 2006, 27(2), 293-299.
[http://dx.doi.org/10.1183/09031936.06.00027705] [PMID: 16452583]
[47]
Andersson, U.; Yang, H.; Harris, H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin. Ther. Targets, 2018, 22(3), 263-277.
[http://dx.doi.org/10.1080/14728222.2018.1439924] [PMID: 29447008]
[48]
Ding, J.; Cui, X.; Liu, Q. Emerging role of HMGB1 in lung diseases: friend or foe. J. Cell. Mol. Med., 2017, 21(6), 1046-1057.
[http://dx.doi.org/10.1111/jcmm.13048] [PMID: 28039939]
[49]
Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Balasubramaniam, V.R.M.T.; Othman, I.; Shaikh, M.F. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: updates on receptor signalling. Eur. J. Pharmacol., 2019, 858, 172487.
[http://dx.doi.org/10.1016/j.ejphar.2019.172487] [PMID: 31229535]
[50]
Venereau, E.; De Leo, F.; Mezzapelle, R.; Careccia, G.; Musco, G.; Bianchi, M.E. HMGB1 as biomarker and drug target. Pharmacol. Res., 2016, 111, 534-544.
[http://dx.doi.org/10.1016/j.phrs.2016.06.031] [PMID: 27378565]
[51]
Berthelot, F.; Fattoum, L.; Casulli, S.; Gozlan, J.; Maréchal, V.; Elbim, C. The effect of HMGB1, a damage-associated molecular pattern molecule, on polymorphonuclear neutrophil migration depends on its concentration. J. Innate Immun., 2012, 4(1), 41-58.
[http://dx.doi.org/10.1159/000328798] [PMID: 21860212]
[52]
Magna, M.; Pisetsky, D.S. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med., 2014, 20, 138-146.
[http://dx.doi.org/10.2119/molmed.2013.00164] [PMID: 24531836]
[53]
Ding, J.; Liu, Q.; Pharm, P.L.A.J. Research progress of HMGB1 gene protein characteristics and inhibitors. Med. & Pharm. J. Chin. PLA, 2015, 27, 110-113.
[54]
Kim, J.; Song, J.; Lee, M. Combinational delivery of HMGB1 A box and heparin for acute lung injury. J. Control. Release, 2015, 213, e57.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.094] [PMID: 27005193]
[55]
Lange, S.S.; Vasquez, K.M. HMGB1: the jack-of-all-trades protein is a master DNA repair mechanic. Mol. Carcinog., 2009, 48(7), 571-580.
[http://dx.doi.org/10.1002/mc.20544] [PMID: 19360789]
[56]
Celona, B.; Weiner, A.; Di Felice, F.; Mancuso, F.M.; Cesarini, E.; Rossi, R.L.; Gregory, L.; Baban, D.; Rossetti, G.; Grianti, P.; Pagani, M.; Bonaldi, T.; Ragoussis, J.; Friedman, N.; Camilloni, G.; Bianchi, M.E.; Agresti, A. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol., 2011, 9(6), e1001086.
[http://dx.doi.org/10.1371/journal.pbio.1001086] [PMID: 21738444]
[57]
Kang, R.; Livesey, K.M.; Zeh, H.J., III; Lotze, M.T.; Tang, D. Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy, 2011, 7(10), 1256-1258.
[http://dx.doi.org/10.4161/auto.7.10.16753] [PMID: 21691146]
[58]
Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev., 2012, 249(1), 158-175.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01146.x] [PMID: 22889221]
[59]
Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892.
[http://dx.doi.org/10.1083/jcb.200911078] [PMID: 20819940]
[60]
Kang, R.; Zhang, Q.; Zeh, H.J., III; Lotze, M.T.; Tang, D. HMGB1 in cancer: good, bad, or both? Clin. Cancer Res., 2013, 19(15), 4046-4057.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0495] [PMID: 23723299]
[61]
Kang, R.; Tang, D.; Schapiro, N.E.; Loux, T.; Livesey, K.M.; Billiar, T.R.; Wang, H.; Van Houten, B.; Lotze, M.T.; Zeh, H.J. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene, 2014, 33(5), 567-577.
[http://dx.doi.org/10.1038/onc.2012.631] [PMID: 23318458]
[62]
Wild, C.A.; Brandau, S.; Lotfi, R.; Mattheis, S.; Gu, X.; Lang, S.; Bergmann, C. HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer. Oral Oncol., 2012, 48(5), 409-416.
[http://dx.doi.org/10.1016/j.oraloncology.2011.12.009] [PMID: 22265157]
[63]
Luo, C.; Liu, H.; Wang, H.; Wang, J. Toll-Like receptor 4 signaling in high mobility group box-1 protein 1 mediated the suppression of regulatory T-cells. Med. Sci. Monit., 2017, 23, 300-308.
[http://dx.doi.org/10.12659/MSM.902081] [PMID: 28096525]
[64]
Palmblad, K.; Schierbeck, H.; Sundberg, E.; Horne, A.C.; Harris, H.E.; Henter, J.I.; Antoine, D.J.; Andersson, U. High systemic levels of the cytokine-inducing HMGB1 isoform secreted in severe macrophage activation syndrome. Mol. Med., 2015, 20, 538-547.
[http://dx.doi.org/10.2119/molmed.2014.00183] [PMID: 25247290]
[65]
Yang, H.; Wang, H.; Ju, Z.; Ragab, A.A.; Lundbäck, P.; Long, W.; Valdes-Ferrer, S.I.; He, M.; Pribis, J.P.; Li, J.; Lu, B.; Gero, D.; Szabo, C.; Antoine, D.J.; Harris, H.E.; Golenbock, D.T.; Meng, J.; Roth, J.; Chavan, S.S.; Andersson, U.; Billiar, T.R.; Tracey, K.J.; Al-Abed, Y. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J. Exp. Med., 2015, 212(1), 5-14.
[http://dx.doi.org/10.1084/jem.20141318] [PMID: 25559892]
[66]
Andersson, U.; Tracey, K.J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol., 2011, 29, 139-162.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101323] [PMID: 21219181]
[67]
van Beijnum, J.R.; Nowak-Sliwinska, P.; van den Boezem, E.; Hautvast, P.; Buurman, W.A.; Griffioen, A.W. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene, 2013, 32(3), 363-374.
[http://dx.doi.org/10.1038/onc.2012.49] [PMID: 22391561]
[68]
Huttunen, H.J.; Fages, C.; Kuja-Panula, J.; Ridley, A.J.; Rauvala, H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res., 2002, 62(16), 4805-4811.
[PMID: 12183440]
[69]
Kusume, A.; Sasahira, T.; Luo, Y.; Isobe, M.; Nakagawa, N.; Tatsumoto, N.; Fujii, K.; Ohmori, H.; Kuniyasu, H. Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology, 2009, 76(4), 155-162.
[http://dx.doi.org/10.1159/000218331] [PMID: 19571604]
[70]
Pisetsky, D.S. The expression of HMGB1 on microparticles released during cell activation and cell death in vitro and in vivo. Mol. Med., 2014, 20, 158-163.
[http://dx.doi.org/10.2119/molmed.2014.00014] [PMID: 24618884]
[71]
Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; Manogue, K.R.; Faist, E.; Abraham, E.; Andersson, J.; Andersson, U.; Molina, P.E.; Abumrad, N.N.; Sama, A.; Tracey, K.J. HMG-1 as a late mediator of endotoxin lethality in mice. Science, 1999, 285(5425), 248-251.
[http://dx.doi.org/10.1126/science.285.5425.248] [PMID: 10398600]
[72]
Wang, H.; Ward, M.F.; Sama, A.E. Targeting HMGB1 in the treatment of sepsis. Expert Opin. Ther. Targets, 2014, 18(3), 257-268.
[http://dx.doi.org/10.1517/14728222.2014.863876] [PMID: 24392842]
[73]
Zhou, W.F.; Chen, Q.; Jin, M.F.; Ji, Z.H.; Zhang, M.Z.; Li, H.M.; Liu, F.J.; Ji, W. The diagnostic accuracy of high-mobility group box 1 protein and twelve other markers in discriminating bacterial, viral and co-infected bronchial pneumonia in Han children. Microbiol. Immunol., 2011, 55(4), 279-288.
[http://dx.doi.org/10.1111/j.1348-0421.2011.00306.x] [PMID: 21223368]
[74]
Grover, A.; Troudt, J.; Foster, C.; Basaraba, R.; Izzo, A. High mobility group box 1 acts as an adjuvant for tuberculosis subunit vaccines. Immunology, 2014, 142(1), 111-123.
[http://dx.doi.org/10.1111/imm.12236] [PMID: 24350616]
[75]
Zeng, J.C.; Xiang, W.Y.; Lin, D.Z.; Zhang, J.A.; Liu, G.B.; Kong, B.; Gao, Y.C.; Lu, Y.B.; Wu, X.J.; Yi, L.L.; Zhong, J.X.; Xu, J.F. Elevated HMGB1-related interleukin-6 is associated with dynamic responses of monocytes in patients with active pulmonary tuberculosis. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1341-1353.
[PMID: 25973018]
[76]
Chirico, V.; Lacquaniti, A.; Leonardi, S.; Grasso, L.; Rotolo, N.; Romano, C.; Di Dio, G.; Lionetti, E.; David, A.; Arrigo, T.; Salpietro, C.; La Rosa, M. Acute pulmonary exacerbation and lung function decline in patients with cystic fibrosis: high-mobility group box 1 (HMGB1) between inflammation and infection. Clin. Microbiol. Infect., 2015, 21(4), 368.e1-368.e9.
[http://dx.doi.org/10.1016/j.cmi.2014.11.004] [PMID: 25658530]
[77]
Smit, P.J.; Guo, W.A.; Davidson, B.A.; Mullan, B.A.; Helinski, J.D.; Knight, P.R. III Dietary advanced glycation end-products, its pulmonary receptor, and high mobility group box 1 in aspiration lung injury. J. Surg. Res., 2014, 191(1), 214-223.
[http://dx.doi.org/10.1016/j.jss.2014.04.001] [PMID: 24814199]
[78]
Hou, C.; Zhao, H.; Liu, L.; Li, W.; Zhou, X.; Lv, Y.; Shen, X.; Liang, Z.; Cai, S.; Zou, F. High mobility group protein B1 (HMGB1) in asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls. Mol. Med., 2011, 17(7-8), 807-815.
[http://dx.doi.org/10.2119/molmed.2010.00173] [PMID: 21380479]
[79]
Ko, H.K.; Hsu, W.H.; Hsieh, C.C.; Lien, T.C.; Lee, T.S.; Kou, Y.R. High expression of high-mobility group box 1 in the blood and lungs is associated with the development of chronic obstructive pulmonary disease in smokers. Respirology, 2014, 19(2), 253-261.
[http://dx.doi.org/10.1111/resp.12209] [PMID: 24372740]
[80]
Iwamoto, H.; Gao, J.; Pulkkinen, V.; Toljamo, T.; Nieminen, P.; Mazur, W. Soluble receptor for advanced glycation end-products and progression of airway disease. BMC Pulm. Med., 2014, 14(1), 68.
[http://dx.doi.org/10.1186/1471-2466-14-68] [PMID: 24758342]
[81]
Yamaguchi, K.; Iwamoto, H.; Sakamoto, S.; Horimasu, Y.; Masuda, T.; Miyamoto, S.; Nakashima, T.; Ohshimo, S.; Fujitaka, K.; Hamada, H.; Hattori, N. Serum high-mobility group box 1 is associated with the onset and severity of acute exacerbation of idiopathic pulmonary fibrosis. Respirology, 2020, 25(3), 275-280.
[http://dx.doi.org/10.1111/resp.13634] [PMID: 31270920]
[82]
Pouwels, S.D.; Nawijn, M.C.; Bathoorn, E.; Riezebos-Brilman, A.; van Oosterhout, A.J.M.; Kerstjens, H.A.M.; Heijink, I.H. Increased serum levels of LL37, HMGB1 and S100A9 during exacerbation in COPD patients. Eur. Respir. J., 2015, 45(5), 1482-1485.
[http://dx.doi.org/10.1183/09031936.00158414] [PMID: 25931489]
[83]
Zhang, Y.; Li, S.; Wang, G.; Han, D.; Xie, X.; Wu, Y.; Xu, J.; Lu, J.; Li, F.; Li, M. Changes of HMGB1 and sRAGE during the recovery of COPD exacerbation. J. Thorac. Dis., 2014, 6(6), 734-741.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2014.04.31]] [PMID: 24976997]
[84]
Huang, J.; Zeng, T.; Tian, Y.; Wu, Y.; Yu, J.; Pei, Z.; Tan, L. Clinical significance of high-mobility group box-1 (HMGB1) in subjects with type 2 diabetes mellitus (T2DM) combined with chronic obstructive pulmonary disease (COPD). J. Clin. Lab. Anal., 2019, 33(6), e22910.
[http://dx.doi.org/10.1002/jcla.22910] [PMID: 31129918]
[85]
Zabini, D.; Crnkovic, S.; Xu, H.; Tscherner, M.; Ghanim, B.; Klepetko, W.; Olschewski, A.; Kwapiszewska, G.; Marsh, L.M. High-mobility group box-1 induces vascular remodelling processes via c-Jun activation. J. Cell. Mol. Med., 2015, 19(5), 1151-1161.
[http://dx.doi.org/10.1111/jcmm.12519] [PMID: 25726846]
[86]
Sukkar, M.B.; Ullah, M.A.; Gan, W.J.; Wark, P.A.B.; Chung, K.F.; Hughes, J.M.; Armour, C.L.; Phipps, S. RAGE: a new frontier in chronic airways disease. Br. J. Pharmacol., 2012, 167(6), 1161-1176.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01984.x] [PMID: 22506507]
[87]
Ferhani, N.; Letuve, S.; Kozhich, A.; Thibaudeau, O.; Grandsaigne, M.; Maret, M.; Dombret, M.C.; Sims, G.P.; Kolbeck, R.; Coyle, A.J.; Aubier, M.; Pretolani, M. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2010, 181(9), 917-927.
[http://dx.doi.org/10.1164/rccm.200903-0340OC] [PMID: 20133931]
[88]
Di Stefano, A.; Caramori, G.; Barczyk, A.; Vicari, C.; Brun, P.; Zanini, A.; Cappello, F.; Garofano, E.; Padovani, A.; Contoli, M.; Casolari, P.; Durham, A.L.; Chung, K.F.; Barnes, P.J.; Papi, A.; Adcock, I.; Balbi, B. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax, 2014, 69(6), 516-524.
[http://dx.doi.org/10.1136/thoraxjnl-2012-203062] [PMID: 24430176]
[89]
Wang, C.M.; Jiang, M.; Wang, H.J. Effect of NF κB inhibitor on high mobility group protein B1 expression in a COPD rat model. Mol. Med. Rep., 2013, 7(2), 499-502.
[http://dx.doi.org/10.3892/mmr.2012.1181] [PMID: 23151670]
[90]
Liu, W.; Liu, Z.; Zhang, W.; Cai, S. Ulinastatin protects the lungs of COPD rats through the HMGB1/TLR4 signaling pathway. Oncol. Lett., 2018, 16(3), 4057-4063.
[http://dx.doi.org/10.3892/ol.2018.9123] [PMID: 30128028]
[91]
Fishman, S.L.; Sonmez, H.; Basman, C.; Singh, V.; Poretsky, L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol. Med., 2018, 24(1), 59.
[http://dx.doi.org/10.1186/s10020-018-0060-3] [PMID: 30470170]
[92]
Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. (Berl.), 2005, 83(11), 876-886.
[http://dx.doi.org/10.1007/s00109-005-0688-7] [PMID: 16133426]
[93]
Oczypok, E.A.; Perkins, T.N.; Oury, T.D. All the “RAGE” in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr. Respir. Rev., 2017, 23, 40-49.
[http://dx.doi.org/10.1016/j.prrv.2017.03.012]] [PMID: 28416135]
[94]
Fehrenbach, H.; Kasper, M.; Tschernig, T.; Shearman, M.S.; Schuh, D.; Müller, M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell. Mol. Biol., 1998, 44(7), 1147-1157.
[PMID: 9846897]
[95]
Uchida, T.; Shirasawa, M.; Ware, L.B.; Kojima, K.; Hata, Y.; Makita, K.; Mednick, G.; Matthay, Z.A.; Matthay, M.A. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am. J. Respir. Crit. Care Med., 2006, 173(9), 1008-1015.
[http://dx.doi.org/10.1164/rccm.200509-1477OC] [PMID: 16456142]
[96]
Katsuoka, F.; Kawakami, Y.; Arai, T.; Imuta, H.; Fujiwara, M.; Kanma, H.; Yamashita, K. Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene. Biochem. Biophys. Res. Commun., 1997, 238(2), 512-516.
[http://dx.doi.org/10.1006/bbrc.1997.7263] [PMID: 9299542]
[97]
Xie, J.; Méndez, J.D.; Méndez-Valenzuela, V.; Aguilar-Hernández, M.M. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell. Signal., 2013, 25(11), 2185-2197.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.013] [PMID: 23838007]
[98]
Schmidt, A.M.; Yan, S.D.; Yan, S.F.; Stern, D.M. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest., 2001, 108(7), 949-955.
[http://dx.doi.org/10.1172/JCI200114002] [PMID: 11581294]
[99]
Bartling, B.; Hofmann, H.S.; Weigle, B.; Silber, R.E.; Simm, A. Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis, 2005, 26(2), 293-301.
[http://dx.doi.org/10.1093/carcin/bgh333] [PMID: 15539404]
[100]
Chen, Y.J.; Chan, D.C.; Chiang, C.K.; Wang, C.C.; Yang, T.H.; Lan, K.C.; Chao, S.C.; Tsai, K.S.; Yang, R.S.; Liu, S.H. Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation. J. Orthop. Res., 2016, 34(5), 791-800.
[http://dx.doi.org/10.1002/jor.23083] [PMID: 26497299]
[101]
Olejarz, W.; Łacheta, D.; Głuszko, A.; Migacz, E.; Kukwa, W.; Szczepański, M.J.; Tomaszewski, P.; Nowicka, G. RAGE and TLRs as key targets for anti-atherosclerotic therapy. PloS. Res. Int., 2018, 2018, 7675286.
[http://dx.doi.org/10.1155/2018/7675286] [PMID: 30225265]
[102]
Kang, J.H.; Hwang, S.M.; Chung, I.Y. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology, 2015, 144(1), 79-90.
[http://dx.doi.org/10.1111/imm.12352] [PMID: 24975020]
[103]
Yang, Z.; Yan, W.X.; Cai, H.; Tedla, N.; Armishaw, C.; Di Girolamo, N.; Wang, H.W.; Hampartzoumian, T.; Simpson, J.L.; Gibson, P.G.; Hunt, J.; Hart, P.; Hughes, J.M.; Perry, M.A.; Alewood, P.F.; Geczy, C.L. S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J. Allergy Clin. Immunol., 2007, 119(1), 106-114.
[http://dx.doi.org/10.1016/j.jaci.2006.08.021] [PMID: 17208591]
[104]
Halayko, A.J.; Ghavami, S. S100A8/A9: a mediator of severe asthma pathogenesis and morbidity? Can. J. Physiol. Pharmacol., 2009, 87(10), 743-755.
[http://dx.doi.org/10.1139/Y09-054] [PMID: 19898558]
[105]
Ghavami, S.; Rashedi, I.; Dattilo, B.M.; Eshraghi, M.; Chazin, W.J.; Hashemi, M.; Wesselborg, S.; Kerkhoff, C.; Los, M. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J. Leukoc. Biol., 2008, 83(6), 1484-1492.
[http://dx.doi.org/10.1189/jlb.0607397] [PMID: 18339893]
[106]
Kirkham, P.A.; Barnes, P.J. Oxidative stress in COPD. Chest, 2013, 144(1), 266-273.
[http://dx.doi.org/10.1378/chest.12-2664] [PMID: 23880677]
[107]
Yao, H.; Rahman, I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol. Appl. Pharmacol., 2011, 254(2), 72-85.
[http://dx.doi.org/10.1016/j.taap.2009.10.022] [PMID: 21296096]
[108]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[109]
Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules, 2014, 19(11), 18828-18849.
[http://dx.doi.org/10.3390/molecules191118828] [PMID: 25407721]
[110]
Michaeloudes, C.; Kuo, C.H.; Haji, G.; Finch, D.K.; Halayko, A.J.; Kirkham, P.; Chung, K.F.; Adcock, I.M. COPDMAP. Metabolic re-patterning in COPD airway smooth muscle cells. Eur. Respir. J., 2017, 50(5), 1700202.
[http://dx.doi.org/10.1183/13993003.00202-2017] [PMID: 29191950]
[111]
Delpierre, G.; Collard, F.; Fortpied, J.; Van Schaftingen, E. Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes. Biochem. J., 2002, 365(Pt 3), 801-808.
[http://dx.doi.org/10.1042/bj20020325] [PMID: 11975663]
[112]
Scavello, F.; Zeni, F.; Tedesco, C.C.; Mensà, E.; Veglia, F.; Procopio, A.D.; Bonfigli, A.R.; Olivieri, F.; Raucci, A. Modulation of soluble receptor for advanced glycation end-products (RAGE) isoforms and their ligands in healthy aging. Aging (Albany NY), 2019, 11(6), 1648-1663.
[http://dx.doi.org/10.18632/aging.101860] [PMID: 30903794]
[113]
Bierhaus, A.; Schiekofer, S.; Schwaninger, M.; Andrassy, M.; Humpert, P.M.; Chen, J.; Hong, M.; Luther, T.; Henle, T.; Klöting, I.; Morcos, M.; Hofmann, M.; Tritschler, H.; Weigle, B.; Kasper, M.; Smith, M.; Perry, G.; Schmidt, A.M.; Stern, D.M.; Häring, H.U.; Schleicher, E.; Nawroth, P.P. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes, 2001, 50(12), 2792-2808.
[http://dx.doi.org/10.2337/diabetes.50.12.2792] [PMID: 11723063]
[114]
Hancock, D.B.; Eijgelsheim, M.; Wilk, J.B.; Gharib, S.A.; Loehr, L.R.; Marciante, K.D.; Franceschini, N.; van Durme, Y.M.T.A.; Chen, T-H.; Barr, R.G.; Schabath, M.B.; Couper, D.J.; Brusselle, G.G.; Psaty, B.M.; van Duijn, C.M.; Rotter, J.I.; Uitterlinden, A.G.; Hofman, A.; Punjabi, N.M.; Rivadeneira, F.; Morrison, A.C.; Enright, P.L.; North, K.E.; Heckbert, S.R.; Lumley, T.; Stricker, B.H.C.; O’Connor, G.T.; London, S.J. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet., 2010, 42(1), 45-52.
[http://dx.doi.org/10.1038/ng.500] [PMID: 20010835]
[115]
Repapi, E.; Sayers, I.; Wain, L.V.; Burton, P.R.; Johnson, T.; Obeidat, M.; Zhao, J.H.; Ramasamy, A.; Zhai, G.; Vitart, V.; Huffman, J.E.; Igl, W.; Albrecht, E.; Deloukas, P.; Henderson, J.; Granell, R.; McArdle, W.L.; Rudnicka, A.R.; Barroso, I.; Loos, R.J.; Wareham, N.J.; Mustelin, L.; Rantanen, T.; Surakka, I.; Imboden, M.; Wichmann, H.E.; Grkovic, I.; Jankovic, S.; Zgaga, L.; Hartikainen, A.L.; Peltonen, L.; Gyllensten, U.; Johansson, A.; Zaboli, G.; Campbell, H.; Wild, S.H.; Wilson, J.F.; Gläser, S.; Homuth, G.; Völzke, H.; Mangino, M.; Soranzo, N.; Spector, T.D.; Polasek, O.; Rudan, I.; Wright, A.F.; Heliövaara, M.; Ripatti, S.; Pouta, A.; Naluai, A.T.; Olin, A.C.; Torén, K.; Cooper, M.N.; James, A.L.; Palmer, L.J.; Hingorani, A.D.; Wannamethee, S.G.; Whincup, P.H.; Smith, G.D.; Ebrahim, S.; McKeever, T.M.; Pavord, I.D.; MacLeod, A.K.; Morris, A.D.; Porteous, D.J.; Cooper, C.; Dennison, E.; Shaheen, S.; Karrasch, S.; Schnabel, E.; Schulz, H.; Grallert, H.; Bouatia-Naji, N.; Delplanque, J.; Froguel, P.; Blakey, J.D.; Britton, J.R.; Morris, R.W.; Holloway, J.W.; Lawlor, D.A.; Hui, J.; Nyberg, F.; Jarvelin, M.R.; Jackson, C.; Kähönen, M.; Kaprio, J.; Probst-Hensch, N.M.; Koch, B.; Hayward, C.; Evans, D.M.; Elliott, P.; Strachan, D.P.; Hall, I.P.; Tobin, M.D. Welcome Trust Case Control Consortium. NSHD Respiratory Study Team. Genome-wide association study identifies five loci associated with lung function. Nat. Genet., 2010, 42(1), 36-44.
[http://dx.doi.org/10.1038/ng.501] [PMID: 20010834]
[116]
Milutinovic, P.S.; Alcorn, J.F.; Englert, J.M.; Crum, L.T.; Oury, T.D. The receptor for advanced glycation end products is a central mediator of asthma pathogenesis. Am. J. Pathol., 2012, 181(4), 1215-1225.
[http://dx.doi.org/10.1016/j.ajpath.2012.06.031] [PMID: 22889845]
[117]
Reynolds, P.R.; Schmitt, R.E.; Kasteler, S.D.; Sturrock, A.; Sanders, K.; Bierhaus, A.; Nawroth, P.P.; Paine, R., III; Hoidal, J.R. Receptors for advanced glycation end-products targeting protect against hyperoxia-induced lung injury in mice. Am. J. Respir. Cell Mol. Biol., 2010, 42(5), 545-551.
[http://dx.doi.org/10.1165/rcmb.2008-0265OC] [PMID: 19541845]
[118]
Ramsgaard, L.; Englert, J.M.; Manni, M.L.; Milutinovic, P.S.; Gefter, J.; Tobolewski, J.; Crum, L.; Coudriet, G.M.; Piganelli, J.; Zamora, R.; Vodovotz, Y.; Enghild, J.J.; Oury, T.D. Lack of the receptor for advanced glycation end-products attenuates E. coli pneumonia in mice. PLoS One, 2011, 6(5), e20132.
[http://dx.doi.org/10.1371/journal.pone.0020132] [PMID: 21629785]
[119]
van Zoelen, M.A.D.; Schouten, M.; de Vos, A.F.; Florquin, S.; Meijers, J.C.M.; Nawroth, P.P.; Bierhaus, A.; van der Poll, T. The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia. J. Immunol., 2009, 182(7), 4349-4356.
[http://dx.doi.org/10.4049/jimmunol.0801199] [PMID: 19299735]
[120]
Beer, D.G.; Kardia, S.L.R.; Huang, C.C.; Giordano, T.J.; Levin, A.M.; Misek, D.E.; Lin, L.; Chen, G.; Gharib, T.G.; Thomas, D.G.; Lizyness, M.L.; Kuick, R.; Hayasaka, S.; Taylor, J.M.G.; Iannettoni, M.D.; Orringer, M.B.; Hanash, S. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med., 2002, 8(8), 816-824.
[http://dx.doi.org/10.1038/nm733] [PMID: 12118244]
[121]
Diederichs, S.; Bulk, E.; Steffen, B.; Ji, P.; Tickenbrock, L.; Lang, K.; Zänker, K.S.; Metzger, R.; Schneider, P.M.; Gerke, V.; Thomas, M.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res., 2004, 64(16), 5564-5569.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2004] [PMID: 15313892]
[122]
Hsieh, H.L.; Schäfer, B.W.; Sasaki, N.; Heizmann, C.W. Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem. Biophys. Res. Commun., 2003, 307(2), 375-381.
[http://dx.doi.org/10.1016/S0006-291X(03)01190-2] [PMID: 12859967]
[123]
Wang, H.; Li, Y.; Yu, W.; Ma, L.; Ji, X.; Xiao, W. Expression of the receptor for advanced glycation end-products and frequency of polymorphism in lung cancer. Oncol. Lett., 2015, 10(1), 51-60.
[http://dx.doi.org/10.3892/ol.2015.3200] [PMID: 26170976]
[124]
Miyazaki, N.; Abe, Y.; Oida, Y.; Suemizu, H.; Nishi, M.; Yamazaki, H.; Iwasaki, M.; Inoue, H.; Ueyama, Y.; Nakamura, M. Poor outcome of patients with pulmonary adenocarcinoma showing decreased E-cadherin combined with increased S100A4 expression. Int. J. Oncol., 2006, 28(6), 1369-1374.
[http://dx.doi.org/10.3892/ijo.28.6.1369] [PMID: 16685438]
[125]
Kalea, A.Z.; See, F.; Harja, E.; Arriero, M.; Schmidt, A.M.; Hudson, B.I. Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res., 2010, 70(13), 5628-5638.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0595] [PMID: 20570900]
[126]
Cheng, D.T.; Kim, D.K.; Cockayne, D.A.; Belousov, A.; Bitter, H.; Cho, M.H.; Duvoix, A.; Edwards, L.D.; Lomas, D.A.; Miller, B.E.; Reynaert, N.; Tal-Singer, R.; Wouters, E.F.; Agustí, A.; Fabbri, L.M.; Rames, A.; Visvanathan, S.; Rennard, S.I.; Jones, P.; Parmar, H.; MacNee, W.; Wolff, G.; Silverman, E.K.; Mayer, R.J.; Pillai, S.G. TESRA and ECLIPSE Investigators. Systemic soluble receptor for advanced glycation endproducts is a biomarker of emphysema and associated with AGER genetic variants in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2013, 188(8), 948-957.
[http://dx.doi.org/10.1164/rccm.201302-0247OC] [PMID: 23947473]
[127]
Gopal, P.; Reynaert, N.L.; Scheijen, J.L.J.M.; Schalkwijk, C.G.; Franssen, F.M.E.; Wouters, E.F.M.; Rutten, E.P.A. Association of plasma sRAGE, but not esRAGE with lung function impairment in COPD. Respir. Res., 2014, 15, 24.
[http://dx.doi.org/10.1186/1465-9921-15-24] [PMID: 24564838]
[128]
Gopal, P.; Rutten, E.P.A.; Dentener, M.A.; Wouters, E.F.M.; Reynaert, N.L. Decreased plasma sRAGE levels in COPD: influence of oxygen therapy. Eur. J. Clin. Invest., 2012, 42(8), 807-814.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02646.x] [PMID: 22288943]
[129]
Haider, S.H.; Oskuei, A.; Crowley, G.; Kwon, S.; Lam, R.; Riggs, J.; Mikhail, M.; Talusan, A.; Veerappan, A.; Kim, J.S.; Caraher, E.J.; Nolan, A. Receptor for advanced glycation end-products and environmental exposure related obstructive airways disease: a systematic review. Eur. Respir. Rev., 2019, 28(151), 180096.
[http://dx.doi.org/10.1183/16000617.0096-2018] [PMID: 30918021]
[130]
Smith, D.J.; Yerkovich, S.T.; Towers, M.A.; Carroll, M.L.; Thomas, R.; Upham, J.W. Reduced soluble receptor for advanced glycation end-products in COPD. Eur. Respir. J., 2011, 37(3), 516-522.
[http://dx.doi.org/10.1183/09031936.00029310] [PMID: 20595148]
[131]
Morbini, P.; Villa, C.; Campo, I.; Zorzetto, M.; Inghilleri, S.; Luisetti, M. The receptor for advanced glycation end products and its ligands: a new inflammatory pathway in lung disease? Mod. Pathol., 2006, 19(11), 1437-1445.
[http://dx.doi.org/10.1038/modpathol.3800661] [PMID: 16941014]
[132]
Reimann, S.; Fink, L.; Wilhelm, J.; Hoffmann, J.; Bednorz, M.; Seimetz, M.; Dessureault, I.; Troesser, R.; Ghanim, B.; Klepetko, W.; Seeger, W.; Weissmann, N.; Kwapiszewska, G. Increased S100A4 expression in the vasculature of human COPD lungs and murine model of smoke-induced emphysema. Respir. Res., 2015, 16, 127.
[http://dx.doi.org/10.1186/s12931-015-0284-5] [PMID: 26483185]
[133]
Sambamurthy, N.; Leme, A.S.; Oury, T.D.; Shapiro, S.D. The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One, 2015, 10(3), 0118979.
[http://dx.doi.org/10.1371/journal.pone.0118979] [PMID: 25781626]
[134]
Waseda, K.; Miyahara, N.; Taniguchi, A.; Kurimoto, E.; Ikeda, G.; Koga, H.; Fujii, U.; Yamamoto, Y.; Gelfand, E.W.; Yamamoto, H.; Tanimoto, M.; Kanehiro, A. Emphysema requires the receptor for advanced glycation end-products triggering on structural cells. Am. J. Respir. Cell Mol. Biol., 2015, 52(4), 482-491.
[http://dx.doi.org/10.1165/rcmb.2014-0027OC] [PMID: 25188021]
[135]
Wu, L.; Ma, L.; Nicholson, L.F.B.; Black, P.N. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir. Med., 2011, 105(3), 329-336.
[http://dx.doi.org/10.1016/j.rmed.2010.11.001] [PMID: 21112201]
[136]
Brusselle, G.G.; Joos, G.F.; Bracke, K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet, 2011, 378(9795), 1015-1026.
[http://dx.doi.org/10.1016/S0140-6736(11)60988-4] [PMID: 21907865]
[137]
Miniati, M.; Monti, S.; Basta, G.; Cocci, F.; Fornai, E.; Bottai, M. Soluble receptor for advanced glycation end products in COPD: relationship with emphysema and chronic cor pulmonale: a case-control study. Respir. Res., 2011, 12, 37.
[http://dx.doi.org/10.1186/1465-9921-12-37] [PMID: 21450080]
[138]
Faiz, A.; van den Berge, M.; Vermeulen, C.J.; Ten Hacken, N.H.T.; Guryev, V.; Pouwels, S.D. AGER expression and alternative splicing in bronchial biopsies of smokers and never smokers. Respir. Res., 2019, 20(1), 70.
[http://dx.doi.org/10.1186/s12931-019-1038-6] [PMID: 30971245]
[139]
Lee, H.; Park, J.R.; Kim, W.J.; Sundar, I.K.; Rahman, I.; Park, S.M.; Yang, S.R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J., 2017, 31(5), 2076-2089.
[http://dx.doi.org/10.1096/fj.201601155R] [PMID: 28148566]
[140]
Chen, M.; Wang, T.; Shen, Y.; Xu, D.; Li, X.; An, J.; Dong, J.; Li, D.; Wen, F.; Chen, L. Knockout of RAGE ameliorates mainstream cigarette smoke-induced airway inflammation in mice. Int. Immunopharmacol., 2017, 50, 230-235.
[http://dx.doi.org/10.1016/j.intimp.2017.06.018] [PMID: 28704797]
[141]
Ahmed, A.; Siman-Tov, G.; Hall, G.; Bhalla, N.; Narayanan, A. Human antimicrobial peptides as therapeutics for viral infections. Viruses, 2019, 11(8), 11.
[http://dx.doi.org/10.3390/v11080704] [PMID: 31374901]
[142]
Kosikowska, P.; Lesner, A. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin. Ther. Pat., 2016, 26(6), 689-702.
[http://dx.doi.org/10.1080/13543776.2016.1176149] [PMID: 27063450]
[143]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[144]
Silva, J.P.; Appelberg, R.; Gama, F.M. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol. Adv., 2016, 34(5), 924-940.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.007] [PMID: 27235189]
[145]
Wang, Z.; Wang, G. APD: the antimicrobial peptide database. Nucleic Acids Res., 2004, 32(Database issue), D590-D592.
[http://dx.doi.org/10.1093/nar/gkh025] [PMID: 14681488]
[146]
Epand, R.M.; Vogel, H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta, 1999, 1462(1-2), 11-28.
[http://dx.doi.org/10.1016/S0005-2736(99)00198-4] [PMID: 10590300]
[147]
Lai, Y.; Gallo, R.L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 2009, 30(3), 131-141.
[http://dx.doi.org/10.1016/j.it.2008.12.003] [PMID: 19217824]
[148]
Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171.
[http://dx.doi.org/10.3109/07388551.2011.594423] [PMID: 22074402]
[149]
Anunthawan, T.; de la Fuente-Núñez, C.; Hancock, R.E.W.; Klaynongsruang, S. Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim. Biophys. Acta, 2015, 1848(6), 1352-1358.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.021] [PMID: 25767037]
[150]
Haney, E.F.; Mansour, S.C.; Hancock, R.E.W. Antimicrobial peptides: an introduction. Methods Mol. Biol., 2017, 1548, 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1] [PMID: 28013493]
[151]
Hancock, R.E.W.; Sahl, H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[152]
Golec, M.; Reichel, C.; Mackiewicz, B.; Skorska, C.; Curzytek, K.; Lemieszek, M.; Dutkiewicz, J.; Gora, A.; Ziesche, R.; Boltuc, J.; Sodolska, K.; Milanowski, J.; Spiewak, R. Cathelicidin LL-37, granzymes, TGF-beta1 and cytokines levels in induced sputum from farmers with and without COPD. Ann. Agric. Environ. Med., 2009, 16(2), 289-297.
[PMID: 20047264]
[153]
Kilsgård, O.; Andersson, P.; Malmsten, M.; Nordin, S.L.; Linge, H.M.; Eliasson, M.; Sörenson, E.; Erjefält, J.S.; Bylund, J.; Olin, A.I.; Sørensen, O.E.; Egesten, A. Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities. Am. J. Respir. Cell Mol. Biol., 2012, 46(2), 240-248.
[http://dx.doi.org/10.1165/rcmb.2010-0500OC] [PMID: 21960546]
[154]
De Yang, ;. Chen, Q.; Schmidt, A.P.; Anderson, G.M.; Wang, J.M.; Wooters, J.; Oppenheim, J.J.; Chertov, O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med., 2000, 192(7), 1069-1074.
[http://dx.doi.org/10.1084/jem.192.7.1069] [PMID: 11015447]
[155]
Tjabringa, G.S.; Ninaber, D.K.; Drijfhout, J.W.; Rabe, K.F.; Hiemstra, P.S. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int. Arch. Allergy Immunol., 2006, 140(2), 103-112.
[http://dx.doi.org/10.1159/000092305] [PMID: 16557028]
[156]
Choi, K.Y.; Chow, L.N.Y.; Mookherjee, N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J. Innate Immun., 2012, 4(4), 361-370.
[http://dx.doi.org/10.1159/000336630] [PMID: 22739631]
[157]
Zhang, Z.; Cherryholmes, G.; Chang, F.; Rose, D.M.; Schraufstatter, I.; Shively, J.E. Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur. J. Immunol., 2009, 39(11), 3181-3194.
[http://dx.doi.org/10.1002/eji.200939496] [PMID: 19750480]
[158]
Tripathi, S.; Wang, G.; White, M.; Rynkiewicz, M.; Seaton, B.; Hartshorn, K. Identifying the critical domain of ll-37 involved in mediating neutrophil activation in the presence of influenza virus: functional and structural analysis. PLoS One, 2015, 10(8), e0133454.
[http://dx.doi.org/10.1371/journal.pone.0133454] [PMID: 26308522]
[159]
Kahlenberg, J.M.; Kaplan, M.J. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J. Immunol., 2013, 191(10), 4895-4901.
[http://dx.doi.org/10.4049/jimmunol.1302005] [PMID: 24185823]
[160]
Pinheiro da Silva, F.; Gallo, R.L.; Nizet, V. Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunol. Cell Biol., 2009, 87(6), 496-500.
[http://dx.doi.org/10.1038/icb.2009.19] [PMID: 19350049]
[161]
Ren, S.X.; Cheng, A.S.L.; To, K.F.; Tong, J.H.M.; Li, M.S.; Shen, J.; Wong, C.C.; Zhang, L.; Chan, R.L.; Wang, X.J.; Ng, S.S.; Chiu, L.C.; Marquez, V.E.; Gallo, R.L.; Chan, F.K.; Yu, J.; Sung, J.J.; Wu, W.K.; Cho, C.H.; Cho, C.H. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res., 2012, 72(24), 6512-6523.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2359] [PMID: 23100468]
[162]
Salzer, S.; Kresse, S.; Hirai, Y.; Koglin, S.; Reinholz, M.; Ruzicka, T.; Schauber, J. Cathelicidin peptide LL-37 increases UVB-triggered inflammasome activation: possible implications for rosacea. J. Dermatol. Sci., 2014, 76(3), 173-179.
[http://dx.doi.org/10.1016/j.jdermsci.2014.09.002] [PMID: 25306296]
[163]
Wan, M.; van der Does, A.M.; Tang, X.; Lindbom, L.; Agerberth, B.; Haeggström, J.Z. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J. Leukoc. Biol., 2014, 95(6), 971-981.
[http://dx.doi.org/10.1189/jlb.0513304] [PMID: 24550523]
[164]
Mattsby-Baltzer, I.; Roseanu, A.; Motas, C.; Elverfors, J.; Engberg, I.; Hanson, L.A. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr. Res., 1996, 40(2), 257-262.
[http://dx.doi.org/10.1203/00006450-199608000-00011] [PMID: 8827774]
[165]
Mookherjee, N.; Brown, K.L.; Bowdish, D.M.E.; Doria, S.; Falsafi, R.; Hokamp, K.; Roche, F.M.; Mu, R.; Doho, G.H.; Pistolic, J.; Powers, J-P.; Bryan, J.; Brinkman, F.S.L.; Hancock, R.E.W. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol., 2006, 176(4), 2455-2464.
[http://dx.doi.org/10.4049/jimmunol.176.4.2455] [PMID: 16456005]
[166]
Zhang, X.; Oglęcka, K.; Sandgren, S.; Belting, M.; Esbjörner, E.K.; Nordén, B.; Gräslund, A. Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. Biochim. Biophys. Acta, 2010, 1798(12), 2201-2208.
[http://dx.doi.org/10.1016/j.bbamem.2009.12.011] [PMID: 20036634]
[167]
Lande, R.; Ganguly, D.; Facchinetti, V.; Frasca, L.; Conrad, C.; Gregorio, J.; Meller, S.; Chamilos, G.; Sebasigari, R.; Riccieri, V.; Bassett, R.; Amuro, H.; Fukuhara, S.; Ito, T.; Liu, Y.J.; Gilliet, M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med., 2011, 3(73), 73ra19.
[http://dx.doi.org/10.1126/scitranslmed.3001180] [PMID: 21389263]
[168]
Lefrançais, E.; Mallavia, B.; Zhuo, H.; Calfee, C.S.; Looney, M.R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight, 2018, 3(3), 98178.
[http://dx.doi.org/10.1172/jci.insight.98178] [PMID: 29415887]
[169]
Barbeiro, D.F.; Barbeiro, H.V.; Zampieri, F.G.; César Machado, M.C.; Torggler Filho, F.; Cunha, D.M.G.; Goulart, A.C.; Velasco, I.T.; Neto, L.M.C.; de Souza, H.P.; da Silva, F.P. Cathelicidin LL-37 bloodstream surveillance is down regulated during septic shock. Microbes Infect., 2013, 15(5), 342-346.
[http://dx.doi.org/10.1016/j.micinf.2013.01.001] [PMID: 23328115]
[170]
Tripathi, S.; Verma, A.; Kim, E-J.; White, M.R.; Hartshorn, K.L. LL-37 modulates human neutrophil responses to influenza A virus. J. Leukoc. Biol., 2014, 96(5), 931-938.
[http://dx.doi.org/10.1189/jlb.4A1113-604RR] [PMID: 25082153]
[171]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10), e25333.
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[172]
Currie, S.; Hoggard, N.; Clark, M.J.R.; Sanders, D.S.; Wilkinson, I.D.; Griffiths, P.D.; Hadjivassiliou, M. Alcohol induces sensitization to gluten in genetically susceptible individuals: a case control study. PLoS One, 2013, 8(10), e77638.
[http://dx.doi.org/10.1371/journal.pone.0077638] [PMID: 24204900]
[173]
Mansbach, J.M.; Piedra, P.A.; Borregaard, N.; Martineau, A.R.; Neuman, M.I.; Espinola, J.A.; Camargo, C.A. Jr. Serum cathelicidin level is associated with viral etiology and severity of bronchiolitis. J. Allergy Clin. Immunol., 2012, 130(4), 1007.e1-1008.e1.
[http://dx.doi.org/10.1016/j.jaci.2012.07.044] [PMID: 22944482]
[174]
Afsal, K.; Harishankar, M.; Banurekha, V.V.; Meenakshi, N.; Parthasarathy, R.T.; Selvaraj, P. Effect of 1,25-dihydroxy vitamin D3 on cathelicidin expression in patients with and without cavitary tuberculosis. Tuberculosis (Edinb.), 2014, 94(6), 599-605.
[http://dx.doi.org/10.1016/j.tube.2014.09.007] [PMID: 25459161]
[175]
Luo, X.L.; Li, J.X.; Huang, H.R.; Duan, J.L.; Dai, R.X.; Tao, R.J.; Yang, L.; Hou, J.Y.; Jia, X-M.; Xu, J-F. LL37 inhibits Aspergillus fumigatus infection via directly binding to the fungus and preventing excessive inflammation. Front. Immunol., 2019, 10, 283.
[http://dx.doi.org/10.3389/fimmu.2019.00283] [PMID: 30842778]
[176]
Ordonez, S.R.; Amarullah, I.H.; Wubbolts, R.W.; Veldhuizen, E.J.A.; Haagsman, H.P. Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging. Antimicrob. Agents Chemother., 2014, 58(4), 2240-2248.
[http://dx.doi.org/10.1128/AAC.01670-13] [PMID: 24492359]
[177]
Tsai, P.W.; Cheng, Y.L.; Hsieh, W.P.; Lan, C.Y. Responses of Candida albicans to the human antimicrobial peptide LL-37. J. Microbiol., 2014, 52(7), 581-589.
[http://dx.doi.org/10.1007/s12275-014-3630-2] [PMID: 24879350]
[178]
Jiang, Y.Y.; Xiao, W.; Zhu, M.X.; Yang, Z.H.; Pan, X.J.; Zhang, Y.; Sun, C.C.; Xing, Y. The effect of human antibacterial peptide LL-37 in the pathogenesis of chronic obstructive pulmonary disease. Respir. Med., 2012, 106(12), 1680-1689.
[http://dx.doi.org/10.1016/j.rmed.2012.08.018] [PMID: 22981321]
[179]
Golec, M.; Reichel, C.; Lemieszek, M.; Mackiewicz, B.; Buczkowski, J.; Sitkowska, J.; Skòrska, C.; Dutkiewicz, J.; Milanowski, J.; Ziesche, R. Cathelicidin LL-37 in bronchoalveolar lavage and epithelial lining fluids from COPD patients and healthy individuals. J. Biol. Regul. Homeost. Agents, 2012, 26(4), 617-625.
[PMID: 23241112]
[180]
Mallia, P.; Footitt, J.; Sotero, R.; Jepson, A.; Contoli, M.; Trujillo-Torralbo, M.B.; Kebadze, T.; Aniscenko, J.; Oleszkiewicz, G.; Gray, K.; Message, S.D.; Ito, K.; Barnes, P.J.; Adcock, I.M.; Papi, A.; Stanciu, L.A.; Elkin, S.L.; Kon, O.M.; Johnson, M.; Johnston, S.L. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2012, 186(11), 1117-1124.
[http://dx.doi.org/10.1164/rccm.201205-0806OC] [PMID: 23024024]
[181]
Persson, L.J.P.; Aanerud, M.; Hardie, J.A.; Miodini Nilsen, R.; Bakke, P.S.; Eagan, T.M.; Hiemstra, P.S. Antimicrobial peptide levels are linked to airway inflammation, bacterial colonisation and exacerbations in chronic obstructive pulmonary disease. Eur. Respir. J., 2017, 49(3), 1601328.
[http://dx.doi.org/10.1183/13993003.01328-2016] [PMID: 28298400]
[182]
Parameswaran, G.I.; Sethi, S.; Murphy, T.F. Effects of bacterial infection on airway antimicrobial peptides and proteins in COPD. Chest, 2011, 140(3), 611-617.
[http://dx.doi.org/10.1378/chest.10-2760] [PMID: 21349930]
[183]
Uysal, P.; Simsek, G.; Durmus, S.; Sozer, V.; Aksan, H.; Yurt, S.; Cuhadaroglu, C.; Kosar, F.; Gelisgen, R.; Uzun, H. Evaluation of plasma antimicrobial peptide LL-37 and nuclear factor-kappaB levels in stable chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 321-330.
[http://dx.doi.org/10.2147/COPD.S185602] [PMID: 30774329]
[184]
Burkes, R.M.; Astemborski, J.; Lambert, A.A.; Brown, T.T.; Wise, R.A.; Kirk, G.D.; Drummond, M.B. Plasma cathelicidin and longitudinal lung function in current and former smokers. PLoS One, 2019, 14(2), e0212628.
[http://dx.doi.org/10.1371/journal.pone.0212628] [PMID: 30811465]
[185]
Zhang, Y.; Jiang, Y.; Sun, C.; Wang, Q.; Yang, Z.; Pan, X.; Zhu, M.; Xiao, W. The human cathelicidin LL-37 enhances airway mucus production in chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun., 2014, 443(1), 103-109.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.074] [PMID: 24291709]
[186]
Torres, P.; Castro, M.; Reyes, M.; Torres, V.A. Histatins, wound healing, and cell migration. Oral Dis., 2018, 24(7), 1150-1160.
[http://dx.doi.org/10.1111/odi.12816] [PMID: 29230909]
[187]
Vitorino, R.; Lobo, M.J.; Duarte, J.R.; Ferrer-Correia, A.J.; Domingues, P.M.; Amado, F.M. The role of salivary peptides in dental caries. Biomed. Chromatogr., 2005, 19(3), 214-222.
[http://dx.doi.org/10.1002/bmc.438] [PMID: 15484227]
[188]
Rothstein, D.M.; Helmerhorst, E.J.; Spacciapoli, P.; Oppenheim, F.G.; Friden, P. Histatin-derived peptides: potential agents to treat localised infections. Expert Opin. Emerg. Drugs, 2002, 7(1), 47-59.
[http://dx.doi.org/10.1517/14728214.7.1.47] [PMID: 15989535]
[189]
Krzyściak, W.; Jurczak, A.; Piątkowski, J.; Kościelniak, D.; Gregorczyk-Maga, I.; Kołodziej, I.; Papież, M.A.; Olczak-Kowalczyk, D. Effect of histatin-5 and lysozyme on the ability of Streptococcus mutans to form biofilms in in vitro conditions. Postepy Hig. Med. Dosw., 2015, 69, 1056-1066.
[PMID: 26400891]
[190]
Żelechowska, P.; Agier, J.; Brzezińska-Błaszczyk, E. Endogenous antimicrobial factors in the treatment of infectious diseases. Cent. Eur. J. Immunol., 2016, 41(4), 419-425.
[http://dx.doi.org/10.5114/ceji.2016.65141] [PMID: 28450805]
[191]
Oppenheim, F.G.; Xu, T.; McMillian, F.M.; Levitz, S.M.; Diamond, R.D.; Offner, G.D.; Troxler, R.F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem., 1988, 263(16), 7472-7477.
[PMID: 3286634]
[192]
Helmerhorst, E.J.; Reijnders, I.M.; van’t Hof, W.; Simoons-Smit, I.; Veerman, E.C.; Amerongen, A.V. Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob. Agents Chemother., 1999, 43(3), 702-704.
[http://dx.doi.org/10.1128/AAC.43.3.702] [PMID: 10049295]
[193]
Welling, M.M.; Brouwer, C.P.J.M.; van’t Hof, W.; Veerman, E.C.I.; Amerongen, A.V.N. Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicrob. Agents Chemother., 2007, 51(9), 3416-3419.
[http://dx.doi.org/10.1128/AAC.00196-07] [PMID: 17620386]
[194]
Puri, S.; Edgerton, M. How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot. Cell, 2014, 13(8), 958-964.
[http://dx.doi.org/10.1128/EC.00095-14] [PMID: 24951439]
[195]
Gusman, H.; Grogan, J.; Kagan, H.M.; Troxler, R.F.; Oppenheim, F.G. Salivary histatin 5 is a potent competitive inhibitor of the cysteine proteinase clostripain. FEBS Lett., 2001, 489(1), 97-100.
[http://dx.doi.org/10.1016/S0014-5793(01)02077-4] [PMID: 11231021]
[196]
Khan, S.A.; Fidel, P.L. Jr.; Thunayyan, A.A.; Varlotta, S.; Meiller, T.F.; Jabra-Rizk, M.A. Impaired histatin-5 levels and salivary antimicrobial activity against C. albicans in HIV infected individuals. J. AIDS Clin. Res., 2013, 4(193), 1000193.
[http://dx.doi.org/10.4172/2155-6113.1000193]] [PMID: 23730535]
[197]
Hao, Y.; Yang, N.; Teng, D.; Wang, X.; Mao, R.; Wang, J. A review of the design and modification of lactoferricins and their derivatives. Biometals, 2018, 31(3), 331-341.
[http://dx.doi.org/10.1007/s10534-018-0086-6] [PMID: 29455278]
[198]
Groves, M.L. The isolation of a red protein from milk. J. Am. Chem. Soc., 1960, 82(13), 3345-3350.
[http://dx.doi.org/10.1021/ja01498a029]
[199]
Anderson, B.F.; Baker, H.M.; Norris, G.E.; Rumball, S.V.; Baker, E.N. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature, 1990, 344(6268), 784-787.
[http://dx.doi.org/10.1038/344784a0] [PMID: 2330032]
[200]
Anderson, B.F.; Baker, H.M.; Dodson, E.J.; Norris, G.E.; Rumball, S.V.; Waters, J.M.; Baker, E.N. Structure of human lactoferrin at 3.2-A resolution. Proc. Natl. Acad. Sci. USA, 1987, 84(7), 1769-1773.
[http://dx.doi.org/10.1073/pnas.84.7.1769] [PMID: 3470756]
[201]
Bruns, C.M.; Nowalk, A.J.; Arvai, A.S.; McTigue, M.A.; Vaughan, K.G.; Mietzner, T.A.; McRee, D.E. Structure of Haemophilus influenzae Fe(+3)-binding protein reveals convergent evolution within a superfamily. Nat. Struct. Biol., 1997, 4(11), 919-924.
[http://dx.doi.org/10.1038/nsb1197-919] [PMID: 9360608]
[202]
Lepanto, M.S.; Rosa, L.; Paesano, R.; Valenti, P.; Cutone, A. Lactoferrin in aseptic and septic inflammation. Molecules, 2019, 24(7), E1323.
[http://dx.doi.org/10.3390/molecules24071323] [PMID: 30987256]
[203]
Castillo, E.; Pérez, M.D.; Franco, I.; Calvo, M.; Sánchez, L. Kinetic and thermodynamic parameters for heat denaturation of human recombinant lactoferrin from rice. Biochem. Cell Biol., 2012, 90(3), 389-396.
[http://dx.doi.org/10.1139/o11-073] [PMID: 22332867]
[204]
Cutone, A.; Frioni, A.; Berlutti, F.; Valenti, P.; Musci, G.; di Patti, M.C.B. Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages. Biometals, 2014, 27(5), 807-813.
[http://dx.doi.org/10.1007/s10534-014-9742-7] [PMID: 24793588]
[205]
Guo, C.; Yang, Z-H.; Zhang, S.; Chai, R.; Xue, H.; Zhang, Y.H.; Li, J.Y.; Wang, Z.Y. Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s disease mouse model. Neuropsychopharmacology, 2017, 42(13), 2504-2515.
[http://dx.doi.org/10.1038/npp.2017.8] [PMID: 28079060]
[206]
Mohamed, W.A.; Salama, R.M.; Schaalan, M.F. A pilot study on the effect of lactoferrin on Alzheimer’s disease pathological sequelae: impact of the p-Akt/PTEN pathway. Biomed. Pharmacother., 2019, 111, 714-723.
[http://dx.doi.org/10.1016/j.biopha.2018.12.118] [PMID: 30611996]
[207]
Mohamed, W.A.; Schaalan, M.F. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway. Diabetol. Metab. Syndr., 2018, 10, 89.
[http://dx.doi.org/10.1186/s13098-018-0390-x] [PMID: 30534206]
[208]
Lepanto, M.S.; Rosa, L.; Cutone, A.; Scotti, M.J.; Conte, A.L.; Marazzato, M.; Zagaglia, C.; Longhi, C.; Berlutti, F.; Musci, G.; Valenti, P.; Conte, M.P. Bovine lactoferrin pre-treatment induces intracellular killing of AIEC LF82 and reduces bacteria-induced DNA damage in differentiated human enterocytes. Int. J. Mol. Sci., 2019, 20(22), E5666.
[http://dx.doi.org/10.3390/ijms20225666] [PMID: 31726759]
[209]
Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci., 2017, 18(9), E1985.
[http://dx.doi.org/10.3390/ijms18091985] [PMID: 28914813]
[210]
Weinberg, E.D. The development of awareness of iron-withholding defense. Perspect. Biol. Med., 1993, 36(2), 215-221.
[http://dx.doi.org/10.1353/pbm.1993.0063] [PMID: 8446492]
[211]
Brandenburg, K.; Jürgens, G.; Müller, M.; Fukuoka, S.; Koch, M.H. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. Biol. Chem., 2001, 382(8), 1215-1225.
[http://dx.doi.org/10.1515/BC.2001.152] [PMID: 11592403]
[212]
Bellamy, W.; Takase, M.; Wakabayashi, H.; Kawase, K.; Tomita, M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol., 1992, 73(6), 472-479.
[http://dx.doi.org/10.1111/j.1365-2672.1992.tb05007.x] [PMID: 1490908]
[213]
Valenti, P.; Antonini, G. Lactoferrin: an important host defence against microbial and viral attack. Cell. Mol. Life Sci., 2005, 62(22), 2576-2587.
[http://dx.doi.org/10.1007/s00018-005-5372-0] [PMID: 16261253]
[214]
Ganz, T. Antimicrobial polypeptides in host defense of the respiratory tract. J. Clin. Invest., 2002, 109(6), 693-697.
[http://dx.doi.org/10.1172/JCI0215218] [PMID: 11901174]
[215]
Drago-Serrano, M.E.; Campos-Rodríguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin: balancing ups and downs of inflammation due to microbial infections. Int. J. Mol. Sci., 2017, 18(3), E501.
[http://dx.doi.org/10.3390/ijms18030501] [PMID: 28257033]
[216]
Sánchez, L.; Calvo, M.; Brock, J.H. Biological role of lactoferrin. Arch. Dis. Child., 1992, 67(5), 657-661.
[http://dx.doi.org/10.1136/adc.67.5.657] [PMID: 1599309]
[217]
Hoenderdos, K.; Lodge, K.M.; Hirst, R.A.; Chen, C.; Palazzo, S.G.C.; Emerenciana, A.; Summers, C.; Angyal, A.; Porter, L.; Juss, J.K.; O’Callaghan, C.; Chilvers, E.R.; Condliffe, A.M. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax, 2016, 71(11), 1030-1038.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207604] [PMID: 27581620]
[218]
Frioni, A.; Conte, M.P.; Cutone, A.; Longhi, C.; Musci, G.; di Patti, M.C.; Natalizi, T.; Marazzato, M.; Lepanto, M.S.; Puddu, P.; Paesano, R.; Valenti, P.; Berlutti, F. Lactoferrin differently modulates the inflammatory response in epithelial models mimicking human inflammatory and infectious diseases. Biometals, 2014, 27(5), 843-856.
[http://dx.doi.org/10.1007/s10534-014-9740-9] [PMID: 24770943]
[219]
Bresser, P.; Out, T.A.; van Alphen, L.; Jansen, H.M.; Lutter, R. Airway inflammation in nonobstructive and obstructive chronic bronchitis with chronic Haemophilus influenzae airway infection. Comparison with noninfected patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2000, 162(3 Pt 1), 947-952.
[http://dx.doi.org/10.1164/ajrccm.162.3.9908103] [PMID: 10988111]
[220]
Gela, A.; Bhongir, R.K.V.; Mori, M.; Keenan, P.; Mörgelin, M.; Erjefält, J.S.; Herwald, H.; Egesten, A.; Kasetty, G. Osteopontin that is elevated in the airways during COPD impairs the antibacterial activity of common innate antibiotics. PLoS One, 2016, 11(1), e0146192.
[http://dx.doi.org/10.1371/journal.pone.0146192] [PMID: 26731746]
[221]
Roca-Ferrer, J.; Mullol, J.; Pérez, M.; Xaubet, A.; Molins, L.; de Haro, J.; Shelhamer, J.; Picado, C. Effects of topical glucocorticoids on in vitro lactoferrin glandular secretion: comparison between human upper and lower airways. J. Allergy Clin. Immunol., 2000, 106(6), 1053-1062.
[http://dx.doi.org/10.1067/mai.2000.110476] [PMID: 11112886]
[222]
Grover, M.; Giouzeppos, O.; Schnagl, R.D.; May, J.T. Effect of human milk prostaglandins and lactoferrin on respiratory syncytial virus and rotavirus. Acta Paediatr., 1997, 86(3), 315-316.
[http://dx.doi.org/10.1111/j.1651-2227.1997.tb08896.x] [PMID: 9099323]
[223]
Portelli, J.; Gordon, A.; May, J.T. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro. J. Med. Microbiol., 1998, 47(11), 1015-1018.
[http://dx.doi.org/10.1099/00222615-47-11-1015] [PMID: 9822301]
[224]
Sano, H.; Nagai, K.; Tsutsumi, H.; Kuroki, Y. Lactoferrin and surfactant protein A exhibit distinct binding specificity to F protein and differently modulate respiratory syncytial virus infection. Eur. J. Immunol., 2003, 33(10), 2894-2902.
[http://dx.doi.org/10.1002/eji.200324218] [PMID: 14515273]
[225]
Ammendolia, M.G.; Agamennone, M.; Pietrantoni, A.; Lannutti, F.; Siciliano, R.A.; De Giulio, B.; Amici, C.; Superti, F. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathog. Glob. Health, 2012, 106(1), 12-19.
[http://dx.doi.org/10.1179/2047773212Y.0000000004] [PMID: 22595270]
[226]
Pietrantoni, A.; Dofrelli, E.; Tinari, A.; Ammendolia, M.G.; Puzelli, S.; Fabiani, C.; Donatelli, I.; Superti, F. Bovine lactoferrin inhibits influenza A virus induced programmed cell death in vitro. Biometals, 2010, 23(3), 465-475.
[http://dx.doi.org/10.1007/s10534-010-9323-3] [PMID: 20232110]
[227]
Pietrantoni, A.; Ammendolia, M.G.; Superti, F. Bovine lactoferrin: involvement of metal saturation and carbohydrates in the inhibition of influenza virus infection. Biochem. Cell Biol., 2012, 90(3), 442-448.
[http://dx.doi.org/10.1139/o11-072] [PMID: 22332831]
[228]
Scala, M.C.; Sala, M.; Pietrantoni, A.; Spensiero, A.; Di Micco, S.; Agamennone, M.; Bertamino, A.; Novellino, E.; Bifulco, G.; Gomez-Monterrey, I.M.; Superti, F.; Campiglia, P. lactoferrin-derived peptides active towards influenza: identification of three potent tetrapeptide inhibitors. Sci. Rep., 2017, 7(1), 10593.
[http://dx.doi.org/10.1038/s41598-017-10492-x] [PMID: 28878220]
[229]
Andersen, J.H.; Osbakk, S.A.; Vorland, L.H.; Traavik, T.; Gutteberg, T.J. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res., 2001, 51(2), 141-149.
[http://dx.doi.org/10.1016/S0166-3542(01)00146-2] [PMID: 11431038]
[230]
Andersen, J.H.; Jenssen, H.; Gutteberg, T.J. Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir. Antiviral Res., 2003, 58(3), 209-215.
[http://dx.doi.org/10.1016/S0166-3542(02)00214-0] [PMID: 12767468]
[231]
Mistry, N.; Drobni, P.; Näslund, J.; Sunkari, V.G.; Jenssen, H.; Evander, M. The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Res., 2007, 75(3), 258-265.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.012] [PMID: 17481742]
[232]
Berkhout, B.; van Wamel, J.L.B.; Beljaars, L.; Meijer, D.K.F.; Visser, S.; Floris, R. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides. Antiviral Res., 2002, 55(2), 341-355.
[http://dx.doi.org/10.1016/S0166-3542(02)00069-4] [PMID: 12103434]
[233]
Shestakov, A.; Jenssen, H.; Nordström, I.; Eriksson, K. Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infection in mice. Antiviral Res., 2012, 93(3), 340-345.
[http://dx.doi.org/10.1016/j.antiviral.2012.01.003] [PMID: 22269645]
[234]
Yoo, Y.C.; Watanabe, R.; Koike, Y.; Mitobe, M.; Shimazaki, K.; Watanabe, S.; Azuma, I. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun., 1997, 237(3), 624-628.
[http://dx.doi.org/10.1006/bbrc.1997.7199] [PMID: 9299415]
[235]
Khan, A.R.; Taneja, P. Cationic peptide lactoferricin B inhibits glutathione s-transferase P1 from human placenta and breast cancer cell line MDA-MB-231 preventing anticancer drug metabolism. Int. J. Pharm. Pharm. Sci., 2015, 7(8), 238-241.
[236]
Pan, W.R.; Chen, P.W.; Chen, Y.L.S.; Hsu, H.C.; Lin, C.C.; Chen, W.J. Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J. Dairy Sci., 2013, 96(12), 7511-7520.
[http://dx.doi.org/10.3168/jds.2013-7285] [PMID: 24140317]
[237]
Riedl, S.; Rinner, B.; Tumer, S.; Schaider, H.; Lohner, K.; Zweytick, D. Targeting the cancer cell membrane specifically with human lactoferricin derivatives. Ann. Oncol., 2011, 22, 33.
[238]
Chen, R.; Cole, N.; Dutta, D.; Kumar, N.; Willcox, M.D.P. Antimicrobial activity of immobilized lactoferrin and lactoferricin. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(8), 2612-2617.
[http://dx.doi.org/10.1002/jbm.b.33804] [PMID: 27758034]
[239]
Omata, Y.; Satake, M.; Maeda, R.; Saito, A.; Shimazaki, K.; Yamauchi, K.; Uzuka, Y.; Tanabe, S.; Sarashina, T.; Mikami, T. Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin. J. Vet. Med. Sci., 2001, 63(2), 187-190.
[http://dx.doi.org/10.1292/jvms.63.187] [PMID: 11258458]
[240]
Wakabayashi, H.; Uchida, K.; Yamauchi, K.; Teraguchi, S.; Hayasawa, H.; Yamaguchi, H. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J. Antimicrob. Chemother., 2000, 46(4), 595-602.
[http://dx.doi.org/10.1093/jac/46.4.595] [PMID: 11020258]
[241]
Jarczak, J.; Kościuczuk, E.M.; Lisowski, P.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Defensins: natural component of human innate immunity. Hum. Immunol., 2013, 74(9), 1069-1079.
[http://dx.doi.org/10.1016/j.humimm.2013.05.008] [PMID: 23756165]
[242]
Kallsen, K.; Andresen, E.; Heine, H. Histone deacetylase (HDAC) 1 controls the expression of beta defensin 1 in human lung epithelial cells. PLoS One, 2012, 7(11), e50000.
[http://dx.doi.org/10.1371/journal.pone.0050000] [PMID: 23185513]
[243]
Pace, B.T.; Lackner, A.A.; Porter, E.; Pahar, B. The role of defensins in HIV pathogenesis. Mediators Inflamm., 2017, 2017, 5186904.
[http://dx.doi.org/10.1155/2017/5186904] [PMID: 28839349]
[244]
Holly, M.K.; Diaz, K.; Smith, J.G. Defensins in viral infection and pathogenesis. Annu. Rev. Virol., 2017, 4(1), 369-391.
[http://dx.doi.org/10.1146/annurev-virology-101416-041734] [PMID: 28715972]
[245]
Ding, J.; Chou, Y.Y.; Chang, T.L. Defensins in viral infections. J. Innate Immun., 2009, 1(5), 413-420.
[http://dx.doi.org/10.1159/000226256] [PMID: 20375599]
[246]
Findlay, F.; Proudfoot, L.; Stevens, C.; Barlow, P.G. Cationic host defense peptides; novel antimicrobial therapeutics against category A pathogens and emerging infections. Pathog. Glob. Health, 2016, 110(4-5), 137-147.
[http://dx.doi.org/10.1080/20477724.2016.1195036] [PMID: 27315342]
[247]
Klotman, M.E.; Chang, T.L. Defensins in innate antiviral immunity. Nat. Rev. Immunol., 2006, 6(6), 447-456.
[http://dx.doi.org/10.1038/nri1860] [PMID: 16724099]
[248]
Harcourt, J.L.; McDonald, M.; Svoboda, P.; Pohl, J.; Tatti, K.; Haynes, L.M. Human cathelicidin, LL-37, inhibits respiratory syncytial virus infection in polarized airway epithelial cells. BMC Res. Notes, 2016, 9, 11.
[http://dx.doi.org/10.1186/s13104-015-1836-y] [PMID: 26732674]
[249]
Röhrl, J.; Yang, D.; Oppenheim, J.J.; Hehlgans, T. Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J. Immunol., 2010, 184(12), 6688-6694.
[http://dx.doi.org/10.4049/jimmunol.0903984] [PMID: 20483750]
[250]
Park, M.S.; Kim, J.I.; Lee, I.; Park, S.; Bae, J.Y.; Park, M.S. Towards the application of human defensins as antivirals. Biomol. Ther. (Seoul), 2018, 26(3), 242-254.
[http://dx.doi.org/10.4062/biomolther.2017.172] [PMID: 29310427]
[251]
Castañeda-Sánchez, J.I.; Domínguez-Martínez, D.A.; Olivar-Espinosa, N.; García-Pérez, B.E.; Loroño-Pino, M.A.; Luna-Herrera, J.; Salazar, M.I.; Caverly, L.J.; Huang, Y.J.; Sze, M.A. Expression of antimicrobial peptides in human monocytic cells and neutrophils in response to dengue virus type 2. Intervirology, 2016, 59(1), 8-19.
[http://dx.doi.org/10.1159/000446282] [PMID: 27318958]
[252]
Hsieh, I.N.; Hartshorn, K.L. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals (Basel), 2016, 9(3), E53.
[http://dx.doi.org/10.3390/ph9030053] [PMID: 27608030]
[253]
Ryan, L.K.; Dai, J.; Yin, Z.; Megjugorac, N.; Uhlhorn, V.; Yim, S.; Schwartz, K.D.; Abrahams, J.M.; Diamond, G.; Fitzgerald-Bocarsly, P. Modulation of human beta-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J. Leukoc. Biol., 2011, 90(2), 343-356.
[http://dx.doi.org/10.1189/jlb.0209079] [PMID: 21551252]
[254]
Semple, F.; Webb, S.; Li, H.N.; Patel, H.B.; Perretti, M.; Jackson, I.J.; Gray, M.; Davidson, D.J.; Dorin, J.R. Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur. J. Immunol., 2010, 40(4), 1073-1078.
[http://dx.doi.org/10.1002/eji.200940041] [PMID: 20104491]
[255]
Chang, T.L.; Vargas, J., Jr; DelPortillo, A.; Klotman, M.E. Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest., 2005, 115(3), 765-773.
[http://dx.doi.org/10.1172/JCI21948] [PMID: 15719067]
[256]
Furci, L.; Tolazzi, M.; Sironi, F.; Vassena, L.; Lusso, P. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One, 2012, 7(9), e45208.
[http://dx.doi.org/10.1371/journal.pone.0045208] [PMID: 23028850]
[257]
Wu, Z.; Cocchi, F.; Gentles, D.; Ericksen, B.; Lubkowski, J.; Devico, A.; Lehrer, R.I.; Lu, W. Human neutrophil alpha-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett., 2005, 579(1), 162-166.
[http://dx.doi.org/10.1016/j.febslet.2004.11.062] [PMID: 15620707]
[258]
Zapata, W.; Rodriguez, B.; Weber, J.; Estrada, H.; Quiñones-Mateu, M.E.; Zimermman, P.A.; Lederman, M.M.; Rugeles, M.T. Increased levels of human beta-defensins mRNA in sexually HIV-1 exposed but uninfected individuals. Curr. HIV Res., 2008, 6(6), 531-538.
[http://dx.doi.org/10.2174/157016208786501463] [PMID: 18991618]
[259]
Doering, T.L.; Nosanchuk, J.D.; Roberts, W.K.; Casadevall, A. Melanin as a potential cryptococcal defence against microbicidal proteins. Med. Mycol., 1999, 37(3), 175-181.
[http://dx.doi.org/10.1080/j.1365-280X.1999.00218.x] [PMID: 10421849]
[260]
Newman, S.L.; Gootee, L.; Gabay, J.E.; Selsted, M.E. Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against Histoplasma capsulatum. Infect. Immun., 2000, 68(10), 5668-5672.
[http://dx.doi.org/10.1128/IAI.68.10.5668-5672.2000] [PMID: 10992469]
[261]
Moyes, D.L.; Richardson, J.P.; Naglik, J.R.; Sullivan, D.J.; Moran, G.P. From: human pathogenic fungi: molecular biology and pathogenic mechanisms. Caister Academic Press U.K; Sullivan, D.J.; Moran, G.P., Eds.;. , 2014.
[262]
Janssens, W.; Nuytten, H.; Dupont, L.J.; Van Eldere, J.; Vermeire, S.; Lambrechts, D.; Nackaerts, K.; Decramer, M.; Cassiman, J.J.; Cuppens, H. Genomic copy number determines functional expression of β-defensin 2 in airway epithelial cells and associates with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2010, 182(2), 163-169.
[http://dx.doi.org/10.1164/rccm.200905-0767OC] [PMID: 20378733]
[263]
Wallace, A.M.; He, J.Q.; Burkett, K.M.; Ruan, J.; Connett, J.E.; Anthonisen, N.R.; Paré, P.D.; Sandford, A.J. Contribution of alpha- and beta-defensins to lung function decline and infection in smokers: an association study. Respir. Res., 2006, 7, 76.
[http://dx.doi.org/10.1186/1465-9921-7-76] [PMID: 16700921]
[264]
Herr, C.; Beisswenger, C.; Hess, C.; Kandler, K.; Suttorp, N.; Welte, T.; Schroeder, J.M.; Vogelmeier, C. R Bals for the CAPNETZ Study Group. Suppression of pulmonary innate host defence in smokers. Thorax, 2009, 64(2), 144-149.
[http://dx.doi.org/10.1136/thx.2008.102681] [PMID: 18852155]
[265]
Matsushita, I.; Hasegawa, K.; Nakata, K.; Yasuda, K.; Tokunaga, K.; Keicho, N. Genetic variants of human beta-defensin-1 and chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun., 2002, 291(1), 17-22.
[http://dx.doi.org/10.1006/bbrc.2002.6395] [PMID: 11829455]
[266]
Chen, L.; Sun, B.B.; Wang, T.; Wang, X.; Li, J.Q.; Wang, H.X.; Zhang, S.F.; Liu, D.S.; Liu, L.; Xu, D.; Ou, X.M.; Chen, Y.J.; Yang, T.; Zhou, H.; Wen, F.Q. Cigarette smoke enhances β-defensin 2 expression in rat airways via nuclear factor-κB activation. Eur. Respir. J., 2010, 36(3), 638-645.
[http://dx.doi.org/10.1183/09031936.00029409] [PMID: 20150208]
[267]
Shibata, Y.; Abe, S.; Inoue, S.; Takabatake, N.; Igarashi, A.; Takeishi, Y.; Sata, M.; Kubota, I. Altered expression of antimicrobial molecules in cigarette smoke-exposed emphysematous mice lungs. Respirology, 2008, 13(7), 1061-1065.
[http://dx.doi.org/10.1111/j.1440-1843.2008.01362.x] [PMID: 18699806]
[268]
Pace, E.; Ferraro, M.; Minervini, M.I.; Vitulo, P.; Pipitone, L.; Chiappara, G.; Siena, L.; Montalbano, A.M.; Johnson, M.; Gjomarkaj, M. Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS One, 2012, 7(3), e33601.
[http://dx.doi.org/10.1371/journal.pone.0033601] [PMID: 22438960]
[269]
Liao, Z.; Dong, J.; Hu, X.; Wang, T.; Wan, C.; Li, X.; Li, L.; Guo, L.; Xu, D.; Wen, F. Enhanced expression of human β-defensin 2 in peripheral lungs of patients with chronic obstructive pulmonary disease. Peptides, 2012, 38(2), 350-356.
[http://dx.doi.org/10.1016/j.peptides.2012.09.013] [PMID: 23000304]
[270]
Andresen, E.; Günther, G.; Bullwinkel, J.; Lange, C.; Heine, H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One, 2011, 6(7), e21898.
[http://dx.doi.org/10.1371/journal.pone.0021898] [PMID: 21818276]
[271]
Aarbiou, J.; van Schadewijk, A.; Stolk, J.; Sont, J.K.; de Boer, W.I.; Rabe, K.F.; van Krieken, J.H.J.M.; Mauad, T.; Hiemstra, P.S. Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways. Inflamm. Res., 2004, 53(6), 230-238.
[http://dx.doi.org/10.1007/s00011-003-1240-x] [PMID: 15167969]
[272]
Arnason, J.W.; Murphy, J.C.; Kooi, C.; Wiehler, S.; Traves, S.L.; Shelfoon, C.; Maciejewski, B.; Dumonceaux, C.J.; Lewenza, W.S.; Proud, D.; Leigh, R. Human β-defensin-2 production upon viral and bacterial co-infection is attenuated in COPD. PLoS One, 2017, 12(5), e0175963.
[http://dx.doi.org/10.1371/journal.pone.0175963] [PMID: 28489911]
[273]
Tsoumakidou, M.; Bouloukaki, I.; Thimaki, K.; Tzanakis, N.; Siafakas, N.M. Innate immunity proteins in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Exp. Lung Res., 2010, 36(6), 373-380.
[http://dx.doi.org/10.3109/01902141003690389] [PMID: 20653472]
[274]
Merkel, D.; Rist, W.; Seither, P.; Weith, A.; Lenter, M.C. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics, 2005, 5(11), 2972-2980.
[http://dx.doi.org/10.1002/pmic.200401180] [PMID: 16075419]
[275]
Wiehler, S.; Proud, D. Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(2), L505-L515.
[http://dx.doi.org/10.1152/ajplung.00066.2007] [PMID: 17545490]
[276]
Wang, Z.; Yao, W.Z.; Xia, G.G.; Sun, D.J. The expression and implications of human alpha-defensin 1-3 in serum and induced sputum in patients with chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi, 2008, 31(6), 410-413.
[PMID: 19031798]
[277]
Pace, E.; Giarratano, A.; Ferraro, M.; Bruno, A.; Siena, L.; Mangione, S.; Johnson, M.; Gjomarkaj, M. TLR4 upregulation underpins airway neutrophilia in smokers with chronic obstructive pulmonary disease and acute respiratory failure. Hum. Immunol., 2011, 72(1), 54-62.
[http://dx.doi.org/10.1016/j.humimm.2010.09.009] [PMID: 20888880]
[278]
Aul, R.; Armstrong, J.; Duvoix, A.; Lomas, D.; Hayes, B.; Miller, B.E.; Jagger, C.; Singh, D. Inhaled LPS challenges in smokers: a study of pulmonary and systemic effects. Br. J. Clin. Pharmacol., 2012, 74(6), 1023-1032.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04287.x] [PMID: 22469312]
[279]
Almansa, R.; Socias, L.; Sanchez-Garcia, M.; Martín-Loeches, I.; del Olmo, M.; Andaluz-Ojeda, D.; Bobillo, F.; Rico, L.; Herrero, A.; Roig, V.; San-Jose, C.A.; Rosich, S.; Barbado, J.; Disdier, C.; de Lejarazu, R.O.; Gallegos, M.C.; Fernandez, V.; Bermejo-Martin, J.F. Critical COPD respiratory illness is linked to increased transcriptomic activity of neutrophil proteases genes. BMC Res. Notes, 2012, 5, 401.
[http://dx.doi.org/10.1186/1756-0500-5-401] [PMID: 22852767]
[280]
Gally, F.; Chu, H.W.; Bowler, R.P. Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection. PLoS One, 2013, 8(1), e51784.
[http://dx.doi.org/10.1371/journal.pone.0051784] [PMID: 23349676]
[281]
Green, R.M.; Gally, F.; Keeney, J.G.; Alper, S.; Gao, B.; Han, M.; Martin, R.J.; Weinberger, A.R.; Case, S.R.; Minor, M.N.; Chu, H.W. Impact of cigarette smoke exposure on innate immunity: a Caenorhabditis elegans model. PLoS One, 2009, 4(8), e6860.
[http://dx.doi.org/10.1371/journal.pone.0006860] [PMID: 19718433]
[282]
Zhang, W.; Case, S.; Bowler, R.P.; Martin, R.J.; Jiang, D.; Chu, H.W. Cigarette smoke modulates PGE(2) and host defence against Moraxella catarrhalis infection in human airway epithelial cells. Respirology, 2011, 16(3), 508-516.
[http://dx.doi.org/10.1111/j.1440-1843.2010.01920.x] [PMID: 21199162]
[283]
Walker, A.P.; Partridge, J.; Srai, S.K.; Dooley, J.S. Hepcidin: what every gastroenterologist should know. Gut, 2004, 53(5), 624-627.
[http://dx.doi.org/10.1136/gut.2003.030304] [PMID: 15082576]
[284]
Armitage, A.E.; Eddowes, L.A.; Gileadi, U.; Cole, S.; Spottiswoode, N.; Selvakumar, T.A.; Ho, L.P.; Townsend, A.R.M.; Drakesmith, H. Hepcidin regulation by innate immune and infectious stimuli. Blood, 2011, 118(15), 4129-4139.
[http://dx.doi.org/10.1182/blood-2011-04-351957] [PMID: 21873546]
[285]
Michels, K.; Nemeth, E.; Ganz, T.; Mehrad, B. Hepcidin and host defense against infectious diseases. PLoS Pathog., 2015, 11(8), e1004998.
[http://dx.doi.org/10.1371/journal.ppat.1004998] [PMID: 26291319]
[286]
Wang, X.H.; Cheng, P.P.; Jiang, F.; Jiao, X.Y. The effect of hepatitis B virus infection on hepcidin expression in hepatitis B patients. Ann. Clin. Lab. Sci., 2013, 43(2), 126-134.
[PMID: 23694786]
[287]
Armitage, A.E.; Stacey, A.R.; Giannoulatou, E.; Marshall, E.; Sturges, P.; Chatha, K.; Smith, N.M.G.; Huang, X.; Xu, X.; Pasricha, S-R.; Li, N.; Wu, H.; Webster, C.; Prentice, A.M.; Pellegrino, P.; Williams, I.; Norris, P.J.; Drakesmith, H.; Borrow, P. Distinct patterns of hepcidin and iron regulation during HIV-1, HBV and HCV infections. Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12187-12192.
[http://dx.doi.org/10.1073/pnas.1402351111] [PMID: 25092293]
[288]
Duru, S.; Bilgin, E.; Ardiç, S. Hepcidin: a useful marker in chronic obstructive pulmonary disease. Ann. Thorac. Med., 2012, 7(1), 31-35.
[http://dx.doi.org/10.4103/1817-1737.91562] [PMID: 22347348]
[289]
Callewaert, L.; Michiels, C.W. Lysozymes in the animal kingdom. J. Biosci., 2010, 35(1), 127-160.
[http://dx.doi.org/10.1007/s12038-010-0015-5] [PMID: 20413917]
[290]
Ragland, S.A.; Criss, A.K. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathog., 2017, 13(9), e1006512.
[http://dx.doi.org/10.1371/journal.ppat.1006512] [PMID: 28934357]
[291]
Zhang, R.; Wu, L.; Eckert, T.; Burg-Roderfeld, M.; Rojas-Macias, M.A.; Lütteke, T.; Krylov, V.B.; Argunov, D.A.; Datta, A.; Markart, P.; Guenther, A.; Norden, B.; Schauer, R.; Bhunia, A.; Enani, M.A.; Billeter, M.; Scheidig, A.J.; Nifantiev, N.E.; Siebert, H.C. Lysozyme’s lectin-like characteristics facilitates its immune defense function. Q. Rev. Biophys., 2017, 50, e9.
[http://dx.doi.org/10.1017/S0033583517000075] [PMID: 29233221]
[292]
Ercan, D.; Demirci, A. Recent advances for the production and recovery methods of lysozyme. Crit. Rev. Biotechnol., 2016, 36(6), 1078-1088.
[http://dx.doi.org/10.3109/07388551.2015.1084263] [PMID: 26383819]
[293]
Nash, J.A.; Ballard, T.N.S.; Weaver, T.E.; Akinbi, H.T. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. J. Immunol., 2006, 177(1), 519-526.
[http://dx.doi.org/10.4049/jimmunol.177.1.519] [PMID: 16785549]
[294]
Markart, P.; Faust, N.; Graf, T.; Na, C-L.; Weaver, T.E.; Akinbi, H.T. Comparison of the microbicidal and muramidase activities of mouse lysozyme M and P. Biochem. J., 2004, 380(Pt 2), 385-392.
[http://dx.doi.org/10.1042/bj20031810] [PMID: 14977423]
[295]
Davis, K.M.; Nakamura, S.; Weiser, J.N. Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J. Clin. Invest., 2011, 121(9), 3666-3676.
[http://dx.doi.org/10.1172/JCI57761] [PMID: 21841315]
[296]
Ragland, S.A.; Schaub, R.E.; Hackett, K.T.; Dillard, J.P.; Criss, A.K. Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cell. Microbiol., 2017, 19(3,) 10.1111/cmi.12662
[http://dx.doi.org/10.1111/cmi.12662] [PMID: 27597434]
[297]
Rae, C.S.; Geissler, A.; Adamson, P.C.; Portnoy, D.A. Mutations of the Listeria monocytogenes peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. Infect. Immun., 2011, 79(9), 3596-3606.
[http://dx.doi.org/10.1128/IAI.00077-11] [PMID: 21768286]
[298]
Ganz, T.; Gabayan, V.; Liao, H-I.; Liu, L.; Oren, A.; Graf, T.; Cole, A.M. Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood, 2003, 101(6), 2388-2392.
[http://dx.doi.org/10.1182/blood-2002-07-2319] [PMID: 12411294]
[299]
Shimada, J.; Moon, S.K.; Lee, H.Y.; Takeshita, T.; Pan, H.; Woo, J.I.; Gellibolian, R.; Yamanaka, N.; Lim, D.J. Lysozyme M deficiency leads to an increased susceptibility to Streptococcus pneumoniae-induced otitis media. BMC Infect. Dis., 2008, 8, 134.
[http://dx.doi.org/10.1186/1471-2334-8-134] [PMID: 18842154]
[300]
Gordon, L.I.; Douglas, S.D.; Kay, N.E.; Yamada, O.; Osserman, E.F.; Jacob, H.S. Modulation of neutrophil function by lysozyme. Potential negative feedback system of inflammation. J. Clin. Invest., 1979, 64(1), 226-232.
[http://dx.doi.org/10.1172/JCI109443] [PMID: 221543]
[301]
Ogundele, M.O. A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation. Mediators Inflamm., 1998, 7(5), 363-365.
[http://dx.doi.org/10.1080/09629359890893] [PMID: 9883972]
[302]
Li, Y.M.; Tan, A.X.; Vlassara, H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Nat. Med., 1995, 1(10), 1057-1061.
[http://dx.doi.org/10.1038/nm1095-1057] [PMID: 7489363]
[303]
Ohbayashi, H.; Setoguchi, Y.; Fukuchi, Y.; Shibata, K.; Sakata, Y.; Arai, T. Pharmacological effects of lysozyme on COPD and bronchial asthma with sputum: a randomized, placebo-controlled, small cohort, cross-over study. Pulm. Pharmacol. Ther., 2016, 37, 73-80.
[http://dx.doi.org/10.1016/j.pupt.2016.03.001] [PMID: 26952317]
[304]
Fukuchi, Y.; Tatsumi, K.; Inoue, H.; Sakata, Y.; Shibata, K.; Miyagishi, H.; Marukawa, Y.; Ichinose, M. Prevention of COPD exacerbation by lysozyme: a double-blind, randomized, placebo-controlled study. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 831-838.
[http://dx.doi.org/10.2147/COPD.S103105] [PMID: 27143873]
[305]
Shin, W.J.; Zabel, B.A.; Pachynski, R.K. Mechanisms and functions of chemerin in cancer: potential roles in therapeutic intervention. Front. Immunol., 2018, 9, 2772.
[http://dx.doi.org/10.3389/fimmu.2018.02772] [PMID: 30555465]
[306]
Treeck, O.; Buechler, C.; Ortmann, O. Chemerin and cancer. Int. J. Mol. Sci., 2019, 20(15), E3750.
[http://dx.doi.org/10.3390/ijms20153750] [PMID: 31370263]
[307]
Buechler, C.; Feder, S.; Haberl, E.M.; Aslanidis, C. Chemerin isoforms and activity in obesity. Int. J. Mol. Sci., 2019, 20(5), E1128.
[http://dx.doi.org/10.3390/ijms20051128] [PMID: 30841637]
[308]
Mariani, F.; Roncucci, L. Chemerin/chemR23 axis in inflammation onset and resolution. Inflamm. Res., 2015, 64(2), 85-95.
[http://dx.doi.org/10.1007/s00011-014-0792-7] [PMID: 25548799]
[309]
Dimitriadis, G.K.; Kaur, J.; Adya, R.; Miras, A.D.; Mattu, H.S.; Hattersley, J.G.; Kaltsas, G.; Tan, B.K.; Randeva, H.S. Chemerin induces endothelial cell inflammation: activation of nuclear factor-kappa beta and monocyte-endothelial adhesion. Oncotarget, 2018, 9(24), 16678-16690.
[http://dx.doi.org/10.18632/oncotarget.24659] [PMID: 29682177]
[310]
Shang, J.; Wang, L.; Zhang, Y.; Zhang, S.; Ning, L.; Zhao, J.; Cheng, G.; Liu, D.; Xiao, J.; Zhao, Z. Chemerin/ChemR23 axis promotes inflammation of glomerular endothelial cells in diabetic nephropathy. J. Cell. Mol. Med., 2019, 23(5), 3417-3428.
[http://dx.doi.org/10.1111/jcmm.14237] [PMID: 30784180]
[311]
Galon, J.; Angell, H.K.; Bedognetti, D.; Marincola, F.M. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity, 2013, 39(1), 11-26.
[http://dx.doi.org/10.1016/j.immuni.2013.07.008] [PMID: 23890060]
[312]
Yoshimura, T.; Oppenheim, J.J. Chemokine-like receptor 1 (CMKLR1) and chemokine (C-C motif) receptor-like 2 (CCRL2); two multifunctional receptors with unusual properties. Exp. Cell Res., 2011, 317(5), 674-684.
[http://dx.doi.org/10.1016/j.yexcr.2010.10.023] [PMID: 21056554]
[313]
Wittamer, V.; Franssen, J.D.; Vulcano, M.; Mirjolet, J.F.; Le Poul, E.; Migeotte, I.; Brézillon, S.; Tyldesley, R.; Blanpain, C.; Detheux, M.; Mantovani, A.; Sozzani, S.; Vassart, G.; Parmentier, M.; Communi, D. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med., 2003, 198(7), 977-985.
[http://dx.doi.org/10.1084/jem.20030382] [PMID: 14530373]
[314]
Kaur, J.; Adya, R.; Tan, B.K.; Chen, J.; Randeva, H.S. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem. Biophys. Res. Commun., 2010, 391(4), 1762-1768.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.150] [PMID: 20044979]
[315]
Nakamura, N.; Naruse, K.; Kobayashi, Y.; Miyabe, M.; Saiki, T.; Enomoto, A.; Takahashi, M.; Matsubara, T. Chemerin promotes angiogenesis in vivo. Physiol. Rep., 2018, 6(24), e13962.
[http://dx.doi.org/10.14814/phy2.13962] [PMID: 30588761]
[316]
Sotiropoulos, G.P.; Dalamaga, M.; Antonakos, G.; Marinou, I.; Vogiatzakis, E.; Kotopouli, M.; Karampela, I.; Christodoulatos, G.S.; Lekka, A.; Papavassiliou, A.G. Chemerin as a biomarker at the intersection of inflammation, chemotaxis, coagulation, fibrinolysis and metabolism in resectable non-small cell lung cancer. Lung Cancer, 2018, 125, 291-299.
[http://dx.doi.org/10.1016/j.lungcan.2018.10.010] [PMID: 30429035]
[317]
Xu, C.H.; Yang, Y.; Wang, Y-C.; Yan, J.; Qian, L.H. Prognostic significance of serum chemerin levels in patients with non-small cell lung cancer. Oncotarget, 2017, 8(14), 22483-22489.
[http://dx.doi.org/10.18632/oncotarget.14956] [PMID: 28160556]
[318]
Qu, X.; Han, L.; Wang, S.; Zhang, Q.; Yang, C.; Xu, S.; Zhang, L. Detection of chemerin and it’s clinical significance in peripheral blood of patients with lung cancer. Zhongguo Fei Ai Za Zhi, 2009, 12(11), 1174-1177.
[http://dx.doi.org/10.3779/j.issn.1009-3419.2009.11.09]] [PMID: 20723366]
[319]
Sochal, M.; Mosińska, P.; Fichna, J. Diagnostic value of chemerin in lower gastrointestinal diseases-a review. Peptides, 2018, 108, 19-24.
[http://dx.doi.org/10.1016/j.peptides.2018.08.012] [PMID: 30165089]
[320]
Boyuk, B.; Guzel, E.C.; Atalay, H.; Guzel, S.; Mutlu, L.C.; Kucukyalçin, V. Relationship between plasma chemerin levels and disease severity in COPD patients. Clin. Respir. J., 2015, 9(4), 468-474.
[http://dx.doi.org/10.1111/crj.12164] [PMID: 24865134]
[321]
Li, C.; Yan, L.; Song, J. Plasma level of chemerin in COPD patients and the relationship between chemerin and lipid metabolism. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016, 41(7), 676-683.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2016.07.003]] [PMID: 27592570]
[322]
Demoor, T.; Bracke, K.R.; Dupont, L.L.; Plantinga, M.; Bondue, B.; Roy, M.O.; Lannoy, V.; Lambrecht, B.N.; Brusselle, G.G.; Joos, G.F. The role of ChemR23 in the induction and resolution of cigarette smoke-induced inflammation. J. Immunol., 2011, 186(9), 5457-5467.
[http://dx.doi.org/10.4049/jimmunol.1003862] [PMID: 21430224]
[323]
Lu, L.; Li, J.; Moussaoui, M.; Boix, E. Immune modulation by human secreted RNases at the extracellular space. Front. Immunol., 2018, 9, 1012.
[http://dx.doi.org/10.3389/fimmu.2018.01012] [PMID: 29867984]
[324]
Cuchillo, C.M.; Nogués, M.V.; Raines, R.T. Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry, 2011, 50(37), 7835-7841.
[http://dx.doi.org/10.1021/bi201075b] [PMID: 21838247]
[325]
Futami, J.; Tsushima, Y.; Murato, Y.; Tada, H.; Sasaki, J.; Seno, M.; Yamada, H. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol., 1997, 16(4), 413-419.
[http://dx.doi.org/10.1089/dna.1997.16.413] [PMID: 9150428]
[326]
Fischer, S.; Nishio, M.; Dadkhahi, S.; Gansler, J.; Saffarzadeh, M.; Shibamiyama, A.; Kral, N.; Baal, N.; Koyama, T.; Deindl, E.; Preissner, K.T. Expression and localisation of vascular ribonucleases in endothelial cells. Thromb. Haemost., 2011, 105(2), 345-355.
[http://dx.doi.org/10.1160/TH10-06-0345] [PMID: 21103661]
[327]
Landré, J.B.P.; Hewett, P.W.; Olivot, J.M.; Friedl, P.; Ko, Y.; Sachinidis, A.; Moenner, M. Human endothelial cells selectively express large amounts of pancreatic-type ribonuclease (RNase 1). J. Cell. Biochem., 2002, 86(3), 540-552.
[http://dx.doi.org/10.1002/jcb.10234] [PMID: 12210760]
[328]
Hyjek, M.; Figiel, M.; Nowotny, M. RNases H: structure and mechanism. DNA Repair (Amst.), 2019, 84, 102672.
[http://dx.doi.org/10.1016/j.dnarep.2019.102672] [PMID: 31371183]
[329]
Cerritelli, S.M.; Frolova, E.G.; Feng, C.; Grinberg, A.; Love, P.E.; Crouch, R.J. Failure to produce mitochondrial DNA results in embryonic lethality in RNAse h1 null mice. Mol. Cell, 2003, 11(3), 807-815.
[http://dx.doi.org/10.1016/S1097-2765(03)00088-1] [PMID: 12667461]
[330]
Cerritelli, S.M.; Crouch, R.J. Ribonuclease H: the enzymes in eukaryotes. FEBS J., 2009, 276(6), 1494-1505.
[http://dx.doi.org/10.1111/j.1742-4658.2009.06908.x] [PMID: 19228196]
[331]
Nowotny, M.; Gaidamakov, S.A.; Crouch, R.J.; Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell, 2005, 121(7), 1005-1016.
[http://dx.doi.org/10.1016/j.cell.2005.04.024] [PMID: 15989951]
[332]
Lomax, J.E.; Eller, C.H.; Raines, R.T. Comparative functional analysis of ribonuclease 1 homologs: molecular insights into evolving vertebrate physiology. Biochem. J., 2017, 474(13), 2219-2233.
[http://dx.doi.org/10.1042/BCJ20170173] [PMID: 28495858]
[333]
Zernecke, A.; Preissner, K.T. Extracellular ribonucleic acids (RNA) enter the stage in cardiovascular disease. Circ. Res., 2016, 118(3), 469-479.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307961] [PMID: 26846641]
[334]
Cabrera-Fuentes, H.A.; Ruiz-Meana, M.; Simsekyilmaz, S.; Kostin, S.; Inserte, J.; Saffarzadeh, M.; Galuska, S.P.; Vijayan, V.; Barba, I.; Barreto, G.; Fischer, S.; Lochnit, G.; Ilinskaya, O.N.; Baumgart-Vogt, E.; Böning, A.; Lecour, S.; Hausenloy, D.J.; Liehn, E.A.; Garcia-Dorado, D.; Schlüter, K.D.; Preissner, K.T. RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-α in cardiac ischaemia/reperfusion injury. Thromb. Haemost., 2014, 112(6), 1110-1119.
[http://dx.doi.org/10.1160/th14-08-0703] [PMID: 25354936]
[335]
Ma, G.; Chen, C.; Jiang, H.; Qiu, Y.; Li, Y.; Li, X.; Zhang, X.; Liu, J.; Zhu, T. Ribonuclease attenuates hepatic ischemia reperfusion induced cognitive impairment through the inhibition of inflammatory cytokines in aged mice. Biomed. Pharmacother., 2017, 90, 62-68.
[http://dx.doi.org/10.1016/j.biopha.2017.02.094] [PMID: 28343072]
[336]
Acharya, K.R.; Ackerman, S.J. Eosinophil granule proteins: form and function. J. Biol. Chem., 2014, 289(25), 17406-17415.
[http://dx.doi.org/10.1074/jbc.R113.546218] [PMID: 24802755]
[337]
Rosenberg, H.F. Eosinophil-derived neurotoxin (EDN/RNase 2) and the mouse eosinophil-associated RNases (mEars): expanding roles in promoting host defense. Int. J. Mol. Sci., 2015, 16(7), 15442-15455.
[http://dx.doi.org/10.3390/ijms160715442] [PMID: 26184157]
[338]
Bystrom, J.; Amin, K.; Bishop-Bailey, D. Analysing the eosinophil cationic protein--a clue to the function of the eosinophil granulocyte. Respir. Res., 2011, 12, 10.
[http://dx.doi.org/10.1186/1465-9921-12-10] [PMID: 21235798]
[339]
Gullberg, U.; Widegren, B.; Arnason, U.; Egesten, A.; Olsson, I. The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity. Biochem. Biophys. Res. Commun., 1986, 139(3), 1239-1242.
[http://dx.doi.org/10.1016/S0006-291X(86)80310-2] [PMID: 3768000]
[340]
Venge, P.; Byström, J.; Carlson, M.; Hâkansson, L.; Karawacjzyk, M.; Peterson, C.; Sevéus, L.; Trulson, A. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin. Exp. Allergy, 1999, 29(9), 1172-1186.
[http://dx.doi.org/10.1046/j.1365-2222.1999.00542.x] [PMID: 10469025]
[341]
Gleich, G.J.; Adolphson, C.R. The eosinophilic leukocyte: structure and function. Adv. Immunol., 1986, 39, 177-253.
[http://dx.doi.org/10.1016/S0065-2776(08)60351-X] [PMID: 3538819]
[342]
Jeong, H.S.; Backlund, P.S.; Chen, H.C.; Karavanov, A.A.; Crouch, R.J. RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res., 2004, 32(2), 407-414.
[http://dx.doi.org/10.1093/nar/gkh209] [PMID: 14734815]
[343]
Shamri, R.; Young, K.M.; Weller, P.F. PI3K, ERK, p38 MAPK and integrins regulate CCR3-mediated secretion of mouse and human eosinophil-associated RNases. Allergy, 2013, 68(7), 880-889.
[http://dx.doi.org/10.1111/all.12163] [PMID: 23742707]
[344]
Yang, D.; Chen, Q.; Rosenberg, H.F.; Rybak, S.M.; Newton, D.L.; Wang, Z.Y.; Fu, Q.; Tchernev, V.T.; Wang, M.; Schweitzer, B.; Kingsmore, S.F.; Patel, D.D.; Oppenheim, J.J.; Howard, O.M.Z. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J. Immunol., 2004, 173(10), 6134-6142.
[http://dx.doi.org/10.4049/jimmunol.173.10.6134] [PMID: 15528350]
[345]
Yang, D.; Rosenberg, H.F.; Chen, Q.; Dyer, K.D.; Kurosaka, K.; Oppenheim, J.J. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood, 2003, 102(9), 3396-3403.
[http://dx.doi.org/10.1182/blood-2003-01-0151] [PMID: 12855582]
[346]
Yang, D.; Chen, Q.; Su, S.B.; Zhang, P.; Kurosaka, K.; Caspi, R.R.; Michalek, S.M.; Rosenberg, H.F.; Zhang, N.; Oppenheim, J.J. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med., 2008, 205(1), 79-90.
[http://dx.doi.org/10.1084/jem.20062027] [PMID: 18195069]
[347]
Ackerman, S.J.; Gleich, G.J.; Loegering, D.A.; Richardson, B.A.; Butterworth, A.E. Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am. J. Trop. Med. Hyg., 1985, 34(4), 735-745.
[http://dx.doi.org/10.4269/ajtmh.1985.34.735] [PMID: 4025686]
[348]
Lehrer, R.I.; Szklarek, D.; Barton, A.; Ganz, T.; Hamann, K.J.; Gleich, G.J. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol., 1989, 142(12), 4428-4434.
[PMID: 2656865]
[349]
Hosoki, K.; Nakamura, A.; Nagao, M.; Hiraguchi, Y.; Tokuda, R.; Wada, H.; Nobori, T.; Fujisawa, T. Differential activation of eosinophils by ‘probiotic’ Bifidobacterium bifidum and ‘pathogenic’ Clostridium difficile. Int. Arch. Allergy Immunol., 2010, 152(Suppl. 1), 83-89.
[http://dx.doi.org/10.1159/000312131] [PMID: 20523069]
[350]
Hosoki, K.; Nakamura, A.; Kainuma, K.; Sugimoto, M.; Nagao, M.; Hiraguchi, Y.; Tanida, H.; Tokuda, R.; Wada, H.; Nobori, T.; Suga, S.; Fujisawa, T. Differential activation of eosinophils by bacteria associated with asthma. Int. Arch. Allergy Immunol., 2013, 161(Suppl. 2), 16-22.
[http://dx.doi.org/10.1159/000350338] [PMID: 23711849]
[351]
Bedoya, V.I.; Boasso, A.; Hardy, A.W.; Rybak, S.; Shearer, G.M.; Rugeles, M.T. Ribonucleases in HIV type 1 inhibition: effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase gene and protein expression. AIDS Res. Hum. Retroviruses, 2006, 22(9), 897-907.
[http://dx.doi.org/10.1089/aid.2006.22.897] [PMID: 16989616]
[352]
Harrison, A.M.; Bonville, C.A.; Rosenberg, H.F.; Domachowske, J.B. Respiratory syncytical virus-induced chemokine expression in the lower airways: eosinophil recruitment and degranulation. Am. J. Respir. Crit. Care Med., 1999, 159(6), 1918-1924.
[http://dx.doi.org/10.1164/ajrccm.159.6.9805083] [PMID: 10351940]
[353]
Domachowske, J.B.; Dyer, K.D.; Bonville, C.A.; Rosenberg, H.F. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J. Infect. Dis., 1998, 177(6), 1458-1464.
[http://dx.doi.org/10.1086/515322] [PMID: 9607820]
[354]
Rugeles, M.T.; Trubey, C.M.; Bedoya, V.I.; Pinto, L.A.; Oppenheim, J.J.; Rybak, S.M.; Shearer, G.M. Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS, 2003, 17(4), 481-486.
[http://dx.doi.org/10.1097/00002030-200303070-00002] [PMID: 12598767]
[355]
Sikriwal, D.; Seth, D.; Parveen, S.; Malik, A.; Broor, S.; Batra, J.K. An insertion in loop L7 of human eosinophil-derived neurotoxin is crucial for its antiviral activity. J. Cell. Biochem., 2012, 113(10), 3104-3112.
[http://dx.doi.org/10.1002/jcb.24187] [PMID: 22581709]
[356]
Kim, C.K.; Seo, J.K.; Ban, S.H.; Fujisawa, T.; Kim, D.W.; Callaway, Z. Eosinophil-derived neurotoxin levels at 3 months post-respiratory syncytial virus bronchiolitis are a predictive biomarker of recurrent wheezing. Biomarkers, 2013, 18(3), 230-235.
[http://dx.doi.org/10.3109/1354750X.2013.773078] [PMID: 23557131]
[357]
Blom, K.; Elshafie, A.I.; Jönsson, U.B.; Rönnelid, J.; Håkansson, L.D.; Venge, P. The genetically determined production of the alarmin eosinophil-derived neurotoxin is reduced in visceral leishmaniasis. APMIS, 2018, 126(1), 85-91.
[http://dx.doi.org/10.1111/apm.12780] [PMID: 29193305]
[358]
Yang, Q.F.; Lu, T.T.; Shu, C.M.; Feng, L.F.; Chang, H.T.; Ji, Q.Y. Eosinophilic biomarkers for detection of acute exacerbation of chronic obstructive pulmonary disease with or without pulmonary embolism. Exp. Ther. Med., 2017, 14(4), 3198-3206.
[http://dx.doi.org/10.3892/etm.2017.4876] [PMID: 28912870]
[359]
Olsson, I.; Venge, P.; Spitznagel, J.K.; Lehrer, R.I. Arginine-rich cationic proteins of human eosinophil granules: comparison of the constituents of eosinophilic and neutrophilic leukocytes. Lab. Invest., 1977, 36(5), 493-500.
[PMID: 194110]
[360]
Chon, H.; Matsumura, H.; Koga, Y.; Takano, K.; Kanaya, S. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. J. Mol. Biol., 2006, 356(1), 165-178.
[http://dx.doi.org/10.1016/j.jmb.2005.11.017] [PMID: 16343535]
[361]
Hogan, S.P.; Waddell, A.; Fulkerson, P.C. Eosinophils in infection and intestinal immunity. Curr. Opin. Gastroenterol., 2013, 29(1), 7-14.
[http://dx.doi.org/10.1097/MOG.0b013e32835ab29a] [PMID: 23132211]
[362]
Trautmann, A.; Schmid-Grendelmeier, P.; Krüger, K.; Crameri, R.; Akdis, M.; Akkaya, A.; Bröcker, E-B.; Blaser, K.; Akdis, C.A. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J. Allergy Clin. Immunol., 2002, 109(2), 329-337.
[http://dx.doi.org/10.1067/mai.2002.121460] [PMID: 11842305]
[363]
Boix, E.; Salazar, V.A.; Torrent, M.; Pulido, D.; Nogués, M.V.; Moussaoui, M. Structural determinants of the eosinophil cationic protein antimicrobial activity. Biol. Chem., 2012, 393(8), 801-815.
[http://dx.doi.org/10.1515/hsz-2012-0160] [PMID: 22944682]
[364]
Salazar, V.A.; Arranz-Trullén, J.; Navarro, S.; Blanco, J.A.; Sánchez, D.; Moussaoui, M.; Boix, E. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans. MicrobiologyOpen, 2016, 5(5), 830-845.
[http://dx.doi.org/10.1002/mbo3.373] [PMID: 27277554]
[365]
Torrent, M.; Pulido, D.; Nogués, M.V.; Boix, E. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLoS Pathog., 2012, 8(11), e1003005.
[http://dx.doi.org/10.1371/journal.ppat.1003005] [PMID: 23133388]
[366]
Pulido, D.; Moussaoui, M.; Andreu, D.; Nogués, M.V.; Torrent, M.; Boix, E. Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure. Antimicrob. Agents Chemother., 2012, 56(5), 2378-2385.
[http://dx.doi.org/10.1128/AAC.06107-11] [PMID: 22330910]
[367]
Rutgers, S.R.; Timens, W.; Kaufmann, H.F.; van der Mark, T.W.; Koëter, G.H.; Postma, D.S. Comparison of induced sputum with bronchial wash, bronchoalveolar lavage and bronchial biopsies in COPD. Eur. Respir. J., 2000, 15(1), 109-115.
[http://dx.doi.org/10.1183/09031936.00.15110900] [PMID: 10678630]
[368]
Fujimoto, K.; Yasuo, M.; Urushibata, K.; Hanaoka, M.; Koizumi, T.; Kubo, K. Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur. Respir. J., 2005, 25(4), 640-646.
[http://dx.doi.org/10.1183/09031936.05.00047504] [PMID: 15802337]
[369]
de Nijs, S.B.; Fens, N.; Lutter, R.; Dijkers, E.; Krouwels, F.H.; Smids-Dierdorp, B.S.; van Steenwijk, R.P.; Sterk, P.J. Airway inflammation and mannitol challenge test in COPD. Respir. Res., 2011, 12, 11.
[http://dx.doi.org/10.1186/1465-9921-12-11] [PMID: 21241520]
[370]
Paplińska-Goryca, M.; Goryca, K.; Misiukiewicz, P.; Nejman-Gryz, P.; Górska, K.; Krenke, R. Genetic characterization of macrophages from induced sputum of patients with asthma and chronic obstructive pulmonary disease. Adv. Exp. Med. Biol., 2018, 128(9), 559-562.
[http://dx.doi.org/10.20452/pamw.4314]] [PMID: 30074017]
[371]
Peona, V.; De Amici, M.; Quaglini, S.; Bellaviti, G.; Castellazzi, A.M.; Marseglia, G.; Ciprandi, G. Serum eosinophilic cationic protein: is there a role in respiratory disorders? J. Asthma, 2010, 47(2), 131-134.
[http://dx.doi.org/10.3109/02770900903497170] [PMID: 20170318]
[372]
Górska, K.; Paplińska-Goryca, M.; Nejman-Gryz, P.; Goryca, K.; Krenke, R. Eosinophilic and neutrophilic airway inflammation in the phenotyping of mild-to-moderate asthma and chronic obstructive pulmonary disease. COPD, 2017, 14(2), 181-189.
[http://dx.doi.org/10.1080/15412555.2016.1260539] [PMID: 27983888]
[373]
Cocchi, F.; DeVico, A.L.; Lu, W.; Popovic, M.; Latinovic, O.; Sajadi, M.M.; Redfield, R.R.; Lafferty, M.K.; Galli, M.; Garzino-Demo, A.; Gallo, R.C. Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of β chemokines and RNases. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5411-5416.
[http://dx.doi.org/10.1073/pnas.1202240109] [PMID: 22431590]
[374]
Rosenberg, H.F.; Dyer, K.D. Human ribonuclease 4 (RNase 4): coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res., 1995, 23(21), 4290-4295.
[http://dx.doi.org/10.1093/nar/23.21.4290] [PMID: 7501448]
[375]
Hofsteenge, J.; Moldow, C.; Vicentini, A.M.; Zelenko, O.; Jarai-Kote, Z.; Neumann, U. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme. Biochemistry, 1998, 37(26), 9250-9257.
[http://dx.doi.org/10.1021/bi9803832] [PMID: 9649305]
[376]
Egesten, A.; Dyer, K.D.; Batten, D.; Domachowske, J.B.; Rosenberg, H.F. Ribonucleases and host defense: identification, localization and gene expression in adherent monocytes in vitro. Biochim. Biophys. Acta, 1997, 1358(3), 255-260.
[http://dx.doi.org/10.1016/S0167-4889(97)00081-5] [PMID: 9366257]
[377]
Zhou, Y.; Kang, M.J.; Jha, B.K.; Silverman, R.H.; Lee, C.G.; Elias, J.A. Role of ribonuclease L in viral pathogen-associated molecular pattern/influenza virus and cigarette smoke-induced inflammation and remodeling. J. Immunol., 2013, 191(5), 2637-2646.
[http://dx.doi.org/10.4049/jimmunol.1300082] [PMID: 23913960]
[378]
Adams, S.A.; Subramanian, V. The angiogenins: an emerging family of ribonuclease related proteins with diverse cellular functions. Angiogenesis, 1999, 3(3), 189-199.
[http://dx.doi.org/10.1023/A:1009015512200] [PMID: 14517418]
[379]
Abtin, A.; Eckhart, L.; Mildner, M.; Ghannadan, M.; Harder, J.; Schröder, J-M.; Tschachler, E. Degradation by stratum corneum proteases prevents endogenous RNase inhibitor from blocking antimicrobial activities of RNase 5 and RNase 7. J. Invest. Dermatol., 2009, 129(9), 2193-2201.
[http://dx.doi.org/10.1038/jid.2009.35] [PMID: 19262607]
[380]
Goncalves, K.A.; Silberstein, L.; Li, S.; Severe, N.; Hu, M.G.; Yang, H.; Scadden, D.T.; Hu, G.F. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell, 2016, 166(4), 894-906.
[http://dx.doi.org/10.1016/j.cell.2016.06.042] [PMID: 27518564]
[381]
Koutroubakis, I.E.; Xidakis, C.; Karmiris, K.; Sfiridaki, A.; Kandidaki, E.; Kouroumalis, E.A. Serum angiogenin in inflammatory bowel disease. Dig. Dis. Sci., 2004, 49(11-12), 1758-1762.
[http://dx.doi.org/10.1007/s10620-004-9565-4] [PMID: 15628698]
[382]
Kulka, M.; Fukuishi, N.; Metcalfe, D.D. Human mast cells synthesize and release angiogenin, a member of the ribonuclease A (RNase A) superfamily. J. Leukoc. Biol., 2009, 86(5), 1217-1226.
[http://dx.doi.org/10.1189/jlb.0908517] [PMID: 19625371]
[383]
Olson, K.A.; Verselis, S.J.; Fett, J.W. Angiogenin is regulated in vivo as an acute phase protein. Biochem. Biophys. Res. Commun., 1998, 242(3), 480-483.
[http://dx.doi.org/10.1006/bbrc.1997.7990] [PMID: 9464241]
[384]
Fett, J.W.; Strydom, D.J.; Lobb, R.R.; Alderman, E.M.; Bethune, J.L.; Riordan, J.F.; Vallee, B.L. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 1985, 24(20), 5480-5486.
[http://dx.doi.org/10.1021/bi00341a030] [PMID: 4074709]
[385]
Hooper, L.V.; Stappenbeck, T.S.; Hong, C.V.; Gordon, J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol., 2003, 4(3), 269-273.
[http://dx.doi.org/10.1038/ni888] [PMID: 12548285]
[386]
Gupta, S.K.; Haigh, B.J.; Griffin, F.J.; Wheeler, T.T. The mammalian secreted RNases: mechanisms of action in host defence. Innate Immun., 2013, 19(1), 86-97.
[http://dx.doi.org/10.1177/1753425912446955] [PMID: 22627784]
[387]
Schmaldienst, S.; Oberpichler, A.; Tschesche, H.; Hörl, W.H. Angiogenin: a novel inhibitor of neutrophil lactoferrin release during extracorporeal circulation. Kidney Blood Press. Res., 2003, 26(2), 107-112.
[http://dx.doi.org/10.1159/000070992] [PMID: 12771535]
[388]
Tschesche, H.; Kopp, C.; Hörl, W.H.; Hempelmann, U. Inhibition of degranulation of polymorphonuclear leukocytes by angiogenin and its tryptic fragment. J. Biol. Chem., 1994, 269(48), 30274-30280.
[PMID: 7982938]
[389]
Xu, L.; Liao, W.L.; Lu, Q.J.; Li, C.G.; Yuan, Y.; Xu, Z.Y.; Huang, S.D.; Chen, H.Z. ANG promotes proliferation and invasion of the cell of lung squamous carcinoma by directly up-regulating HMGA2. J. Cancer, 2016, 7(7), 862-871.
[http://dx.doi.org/10.7150/jca.14440] [PMID: 27162546]
[390]
Becknell, B.; Eichler, T.E.; Beceiro, S.; Li, B.; Easterling, R.S.; Carpenter, A.R.; James, C.L.; McHugh, K.M.; Hains, D.S.; Partida-Sanchez, S.; Spencer, J.D. Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int., 2015, 87(1), 151-161.
[http://dx.doi.org/10.1038/ki.2014.268] [PMID: 25075772]
[391]
Pulido, D.; Arranz-Trullén, J.; Prats-Ejarque, G.; Velázquez, D.; Torrent, M.; Moussaoui, M.; Boix, E. Insights into the antimicrobial mechanism of action of human RNase structural determinants for bacterial cell agglutination and membrane permeation. Int. J. Mol. Sci., 2016, 17(4), 552.
[http://dx.doi.org/10.3390/ijms17040552] [PMID: 27089320]
[392]
Christensen-Quick, A.; Lafferty, M.; Sun, L.; Marchionni, L.; DeVico, A.; Garzino-Demo, A. Human Th17 cells lack HIV-inhibitory rnases and are highly permissive to productive HIV infection. J. Virol., 2016, 90(17), 7833-7847.
[http://dx.doi.org/10.1128/JVI.02869-15] [PMID: 27334595]
[393]
Becknell, B.; Spencer, J.D. A review of ribonuclease 7's structure, regulation and contributions to host defense. Int. J. Mol. Sci., 2016, 17(3), 423.
[http://dx.doi.org/10.3390/ijms17030423] [PMID: 27011175]
[394]
Köten, B.; Simanski, M.; Gläser, R.; Podschun, R.; Schröder, J.M.; Harder, J. RNase 7 contributes to the cutaneous defense against Enterococcus faecium. PLoS One, 2009, 4(7), e6424.
[http://dx.doi.org/10.1371/journal.pone.0006424] [PMID: 19641608]
[395]
Rademacher, F.; Simanski, M.; Harder, J. RNase 7 in cutaneous defense. Int. J. Mol. Sci., 2016, 17(4), 560.
[http://dx.doi.org/10.3390/ijms17040560] [PMID: 27089327]
[396]
Zanger, P.; Holzer, J.; Schleucher, R.; Steffen, H.; Schittek, B.; Gabrysch, S. Constitutive expression of the antimicrobial peptide RNase 7 is associated with Staphylococcus aureus infection of the skin. J. Infect. Dis., 2009, 200(12), 1907-1915.
[http://dx.doi.org/10.1086/648408] [PMID: 19919305]
[397]
Harder, J.; Schroder, J.M. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J. Biol. Chem., 2002, 277(48), 46779-46784.
[http://dx.doi.org/10.1074/jbc.M207587200] [PMID: 12244054]
[398]
Pulido, D.; Torrent, M.; Andreu, D.; Nogués, M.V.; Boix, E. Two human host defense ribonucleases against mycobacteria, the eosinophil cationic protein (RNase 3) and RNase 7. Antimicrob. Agents Chemother., 2013, 57(8), 3797-3805.
[http://dx.doi.org/10.1128/AAC.00428-13] [PMID: 23716047]
[399]
Wanke, I.; Steffen, H.; Christ, C.; Krismer, B.; Götz, F.; Peschel, A.; Schaller, M.; Schittek, B. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J. Invest. Dermatol., 2011, 131(2), 382-390.
[http://dx.doi.org/10.1038/jid.2010.328] [PMID: 21048787]
[400]
Schabbauer, G.; Tencati, M.; Pedersen, B.; Pawlinski, R.; Mackman, N. PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler. Thromb. Vasc. Biol., 2004, 24(10), 1963-1969.
[http://dx.doi.org/10.1161/01.ATV.0000143096.15099.ce] [PMID: 15319270]
[401]
Williams, D.L.; Li, C.; Ha, T.; Ozment-Skelton, T.; Kalbfleisch, J.H.; Preiszner, J.; Brooks, L.; Breuel, K.; Schweitzer, J.B. Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis. J. Immunol., 2004, 172(1), 449-456.
[http://dx.doi.org/10.4049/jimmunol.172.1.449] [PMID: 14688354]
[402]
Amatngalim, G.D.; van Wijck, Y.; de Mooij-Eijk, Y.; Verhoosel, R.M.; Harder, J.; Lekkerkerker, A.N.; Janssen, R.A.J.; Hiemstra, P.S. Basal cells contribute to innate immunity of the airway epithelium through production of the antimicrobial protein RNase 7. J. Immunol., 2015, 194(7), 3340-3350.
[http://dx.doi.org/10.4049/jimmunol.1402169] [PMID: 25712218]
[403]
Kopfnagel, V.; Wagenknecht, S.; Harder, J.; Hofmann, K.; Kleine, M.; Buch, A.; Sodeik, B.; Werfel, T. RNase 7 strongly promotes TLR9-mediated DNA sensing by human plasmacytoid dendritic cells. J. Invest. Dermatol., 2018, 138(4), 872-881.
[http://dx.doi.org/10.1016/j.jid.2017.09.052] [PMID: 29157732]
[404]
Russo, A.F. Overview of neuropeptides: awakening the senses? Headache, 2017, 57(Suppl. 2), 37-46.
[http://dx.doi.org/10.1111/head.13084] [PMID: 28485842]
[405]
Augustyniak, D.; Nowak, J.; Lundy, F.T. Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential. Curr. Protein Pept. Sci., 2012, 13(8), 723-738.
[http://dx.doi.org/10.2174/138920312804871139] [PMID: 23305360]
[406]
Schluesener, H.J.; Su, Y.; Ebrahimi, A.; Pouladsaz, D. Antimicrobial peptides in the brain: neuropeptides and amyloid. Front. Biosci. (Schol. Ed.), 2012, 4, 1375-1380.
[http://dx.doi.org/10.2741/s339] [PMID: 22652879]
[407]
Augustyniak, D.; Jankowski, A.; Mackiewicz, P.; Skowyra, A.; Gutowicz, J.; Drulis-Kawa, Z. Innate immune properties of selected human neuropeptides against Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Immunol., 2012, 13, 24.
[http://dx.doi.org/10.1186/1471-2172-13-24] [PMID: 22551165]
[408]
Vouldoukis, I.; Shai, Y.; Nicolas, P.; Mor, A. Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett., 1996, 380(3), 237-240.
[http://dx.doi.org/10.1016/0014-5793(96)00050-6] [PMID: 8601432]
[409]
Holub, B.S.; Rauch, I.; Radner, S.; Sperl, W.; Hell, M.; Kofler, B. Effects of galanin message-associated peptide and neuropeptide Y against various non-albicans Candida strains. Int. J. Antimicrob. Agents, 2011, 38(1), 76-80.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.019] [PMID: 21550784]
[410]
Levite, M.; Cahalon, L.; Hershkoviz, R.; Steinman, L.; Lider, O. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin. J. Immunol., 1998, 160(2), 993-1000.
[PMID: 9551939]
[411]
Loser, K.; Brzoska, T.; Oji, V.; Auriemma, M.; Voskort, M.; Kupas, V.; Klenner, L.; Mensing, C.; Hauschild, A.; Beissert, S.; Luger, T.A. The neuropeptide alpha-melanocyte-stimulating hormone is critically involved in the development of cytotoxic CD8+ T cells in mice and humans. PLoS One, 2010, 5(2), e8958.
[http://dx.doi.org/10.1371/journal.pone.0008958] [PMID: 20126537]
[412]
Dunzendorfer, S.; Wiedermann, C.J. Neuropeptides and the immune system: focus on dendritic cells. Crit. Rev. Immunol., 2001, 21(6), 523-557.
[PMID: 12058863]
[413]
Cuesta, M.C.; Quintero, L.; Pons, H.; Suarez-Roca, H. Substance P and calcitonin gene-related peptide increase IL-1 beta, IL-6 and TNF alpha secretion from human peripheral blood mononuclear cells. Neurochem. Int., 2002, 40(4), 301-306.
[http://dx.doi.org/10.1016/S0197-0186(01)00094-8] [PMID: 11792459]
[414]
Wu, R.; Zhou, M.; Wang, P. Adrenomedullin and adrenomedullin binding protein-1 downregulate TNF-alpha in macrophage cell line and rat Kupffer cells. Regul. Pept., 2003, 112(1-3), 19-26.
[http://dx.doi.org/10.1016/S0167-0115(03)00018-1] [PMID: 12667621]
[415]
Gallicchio, M.; Benetti, E.; Rosa, A.C.; Fantozzi, R. Tachykinin receptor modulation of cyclooxygenase-2 expression in human polymorphonuclear leucocytes. Br. J. Pharmacol., 2009, 156(3), 486-496.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00033.x] [PMID: 19154444]
[416]
Yaraee, R.; Ghazanfari, T. Substance P potentiates TGFbeta-1 production in lung epithelial cell lines. Iran. J. Allergy Asthma Immunol., 2009, 8(1), 19-24.
[PMID: 19279355]
[417]
Kuo, H.P.; Lin, H.C.; Hwang, K.H.; Wang, C.H.; Lu, L.C. Lipopolysaccharide enhances substance P-mediated neutrophil adherence to epithelial cells and cytokine release. Am. J. Respir. Crit. Care Med., 2000, 162(5), 1891-1897.
[http://dx.doi.org/10.1164/ajrccm.162.5.9911065] [PMID: 11069831]
[418]
Brogden, K.A.; Guthmiller, J.M.; Salzet, M.; Zasloff, M. The nervous system and innate immunity: the neuropeptide connection. Nat. Immunol., 2005, 6(6), 558-564.
[http://dx.doi.org/10.1038/ni1209] [PMID: 15908937]
[419]
Bedoui, S.; Kromer, A.; Gebhardt, T.; Jacobs, R.; Raber, K.; Dimitrijevic, M.; Heine, J.; von Hörsten, S. Neuropeptide Y receptor-specifically modulates human neutrophil function. J. Neuroimmunol., 2008, 195(1-2), 88-95.
[http://dx.doi.org/10.1016/j.jneuroim.2008.01.012] [PMID: 18343509]
[420]
Wheway, J.; Mackay, C.R.; Newton, R.A.; Sainsbury, A.; Boey, D.; Herzog, H.; Mackay, F. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med., 2005, 202(11), 1527-1538.
[http://dx.doi.org/10.1084/jem.20051971] [PMID: 16330815]
[421]
Lundberg, J.M.; Terenius, L.; Hökfelt, T.; Goldstein, M. High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neurosci. Lett., 1983, 42(2), 167-172.
[http://dx.doi.org/10.1016/0304-3940(83)90401-9] [PMID: 6689363]
[422]
Sheppard, M.N.; Polak, J.M.; Allen, J.M.; Bloom, S.R. Neuropeptide tyrosine (NPY): a newly discovered peptide is present in the mammalian respiratory tract. Thorax, 1984, 39(5), 326-330.
[http://dx.doi.org/10.1136/thx.39.5.326] [PMID: 6377561]
[423]
Ohta, K.; Kajiya, M.; Zhu, T.; Nishi, H.; Mawardi, H.; Shin, J.; Elbadawi, L.; Kamata, N.; Komatsuzawa, H.; Kawai, T. Additive effects of orexin B and vasoactive intestinal polypeptide on LL-37-mediated antimicrobial activities. J. Neuroimmunol., 2011, 233(1-2), 37-45.
[http://dx.doi.org/10.1016/j.jneuroim.2010.11.009] [PMID: 21176972]
[424]
Delgado, M.; Anderson, P.; Garcia-Salcedo, J.A.; Caro, M.; Gonzalez-Rey, E. Neuropeptides kill African trypanosomes by targeting intracellular compartments and inducing autophagic-like cell death. Cell Death Differ., 2009, 16(3), 406-416.
[http://dx.doi.org/10.1038/cdd.2008.161] [PMID: 19057622]
[425]
Gonzalez-Rey, E.; Chorny, A.; Delgado, M. VIP: an agent with license to kill infective parasites. Ann. N. Y. Acad. Sci., 2006, 1070, 303-308.
[http://dx.doi.org/10.1196/annals.1317.032] [PMID: 16888182]
[426]
Mandal, J.; Roth, M.; Costa, L.; Boeck, L.; Rakic, J.; Scherr, A.; Tamm, M.; Stolz, D. Vasoactive intestinal peptide for diagnosing exacerbation in chronic obstructive pulmonary disease. Respiration, 2015, 90(5), 357-368.
[http://dx.doi.org/10.1159/000439228] [PMID: 26447811]
[427]
Lucchini, R.E.; Facchini, F.; Turato, G.; Saetta, M.; Caramori, G.; Ciaccia, A.; Maestrelli, P.; Springall, D.R.; Polak, J.M.; Fabbri, L.; Mapp, C.E. Increased VIP-positive nerve fibers in the mucous glands of subjects with chronic bronchitis. Am. J. Respir. Crit. Care Med., 1997, 156(6), 1963-1968.
[http://dx.doi.org/10.1164/ajrccm.156.6.96-10088] [PMID: 9412581]
[428]
Szema, A.M.; Forsyth, E.; Ying, B.; Hamidi, S.A.; Chen, J.J.; Hwang, S.; Li, J.C.; Sabatini Dwyer, D.; Ramiro-Diaz, J.M.; Giermakowska, W.; Gonzalez Bosc, L.V. NFATc3 and VIP in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. PLoS One, 2017, 12(1), e0170606.
[http://dx.doi.org/10.1371/journal.pone.0170606] [PMID: 28125639]
[429]
Coles, S.J.; Said, S.I.; Reid, L.M. Inhibition by vasoactive intestinal peptide of glycoconjugate and lysozyme secretion by human airways in vitro. Am. Rev. Respir. Dis., 1981, 124(5), 531-536.
[http://dx.doi.org/10.1164/arrd.1981.124.5.531]] [PMID: 7305106]
[430]
Greenberg, B.; Rhoden, K.; Barnes, P.J. Relaxant effects of vasoactive intestinal peptide and peptide histidine isoleucine in human and bovine pulmonary arteries. Blood Vessels, 1987, 24(1-2), 45-50.https://dxdoi.org/10.1159/000158670
[PMID: 3567364]
[431]
Martínez, A.; Miller, M.J.; Catt, K.J.; Cuttitta, F. Adrenomedullin receptor expression in human lung and in pulmonary tumors. J. Histochem. Cytochem., 1997, 45(2), 159-164.
[http://dx.doi.org/10.1177/002215549704500202] [PMID: 9016306]
[432]
Allaker, R.P.; Grosvenor, P.W.; McAnerney, D.C.; Sheehan, B.E.; Srikanta, B.H.; Pell, K.; Kapas, S. Mechanisms of adrenomedullin antimicrobial action. Peptides, 2006, 27(4), 661-666.
[http://dx.doi.org/10.1016/j.peptides.2005.09.003] [PMID: 16226342]
[433]
Mandal, J.; Roth, M.; Papakonstantinou, E.; Fang, L.; Savic, S.; Tamm, M.; Stolz, D. Adrenomedullin mediates pro-angiogenic and pro-inflammatory cytokines in asthma and COPD. Pulm. Pharmacol. Ther., 2019, 56, 8-14.
[http://dx.doi.org/10.1016/j.pupt.2019.01.006] [PMID: 30690080]
[434]
Brusse-Keizer, M.; Zuur-Telgen, M.; van der Palen, J.; VanderValk, P.; Kerstjens, H.; Boersma, W.; Blasi, F.; Kostikas, K.; Milenkovic, B.; Tamm, M.; Stolz, D. Adrenomedullin optimises mortality prediction in COPD patients. Respir. Med., 2015, 109(6), 734-742.
[http://dx.doi.org/10.1016/j.rmed.2015.02.013] [PMID: 25937049]
[435]
Zuur-Telgen, M.; VanderValk, P.; van der Palen, J.; Kerstjens, H.A.M.; Brusse-Keizer, M. Stable state proadrenomedullin level in COPD patients: a validation study. COPD, 2017, 14(2), 219-227.
[http://dx.doi.org/10.1080/15412555.2016.1250254] [PMID: 27880050]
[436]
Dres, M.; Hausfater, P.; Foissac, F.; Bernard, M.; Joly, L.M.; Sebbane, M.; Philippon, A.L.; Gil-Jardiné, C.; Schmidt, J.; Maignan, M.; Treluyer, J.M.; Roche, N. Mid-regional pro-adrenomedullin and copeptin to predict short-term prognosis of COPD exacerbations: a multicenter prospective blinded study. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 1047-1056.
[http://dx.doi.org/10.2147/COPD.S126400] [PMID: 28408815]
[437]
Citgez, E.; Zuur-Telgen, M.; van der Palen, J.; van der Valk, P.; Stolz, D.; Brusse-Keizer, M. Stable-state midrange proadrenomedullin is associated with severe exacerbations in COPD. Chest, 2018, 154(1), 51-57.
[http://dx.doi.org/10.1016/j.chest.2018.02.006] [PMID: 29475034]
[438]
Catania, A.; Garofalo, L.; Cutuli, M.; Gringeri, A.; Santagostino, E.; Lipton, J.M. Melanocortin peptides inhibit production of proinflammatory cytokines in blood of HIV-infected patients. Peptides, 1998, 19(6), 1099-1104.
[http://dx.doi.org/10.1016/S0196-9781(98)00055-2] [PMID: 9700761]
[439]
Grieco, P.; Rossi, C.; Colombo, G.; Gatti, S.; Novellino, E.; Lipton, J.M.; Catania, A. Novel alpha-melanocyte stimulating hormone peptide analogues with high candidacidal activity. J. Med. Chem., 2003, 46(5), 850-855.
[http://dx.doi.org/10.1021/jm0204338] [PMID: 12593664]
[440]
Masman, M.F.; Rodríguez, A.M.; Svetaz, L.; Zacchino, S.A.; Somlai, C.; Csizmadia, I.G.; Penke, B.; Enriz, R.D. Synthesis and conformational analysis of His-Phe-Arg-Trp-NH2 and analogues with antifungal properties. Bioorg. Med. Chem., 2006, 14(22), 7604-7614.
[http://dx.doi.org/10.1016/j.bmc.2006.07.007] [PMID: 16926096]
[441]
Madhuri; Shireen, T.; Venugopal, S.K.; Ghosh, D.; Gadepalli, R.; Dhawan, B.; Mukhopadhyay, K. In vitro antimicrobial activity of alpha-melanocyte stimulating hormone against major human pathogen Staphylococcus aureus. Peptides, 2009, 30(9), 1627-1635.
[http://dx.doi.org/10.1016/j.peptides.2009.06.020] [PMID: 19560499]
[442]
Singh, M.; Mukhopadhyay, K. Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. BioMed Res. Int., 2014, 2014, 874610.
[http://dx.doi.org/10.1155/2014/874610] [PMID: 25140322]
[443]
Cutuli, M.; Cristiani, S.; Lipton, J.M.; Catania, A. Antimicrobial effects of alpha-MSH peptides. J. Leukoc. Biol., 2000, 67(2), 233-239.
[http://dx.doi.org/10.1002/jlb.67.2.233] [PMID: 10670585]
[444]
Rauch, I.; Lundström, L.; Hell, M.; Sperl, W.; Kofler, B. Galanin message-associated peptide suppresses growth and the budded-to-hyphal-form transition of Candida albicans. Antimicrob. Agents Chemother., 2007, 51(11), 4167-4170.
[http://dx.doi.org/10.1128/AAC.00166-07] [PMID: 17698619]
[445]
Catania, A.; Gatti, S.; Colombo, G.; Lipton, J.M. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol. Rev., 2004, 56(1), 1-29.
[http://dx.doi.org/10.1124/pr.56.1.1] [PMID: 15001661]
[446]
Bloom, B.R.; Bennett, B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 1966, 153(3731), 80-82.
[http://dx.doi.org/10.1126/science.153.3731.80] [PMID: 5938421]
[447]
Russell, K.E.; Chung, K.F.; Clarke, C.J.; Durham, A.L.; Mallia, P.; Footitt, J.; Johnston, S.L.; Barnes, P.J.; Hall, S.R.; Simpson, K.D.; Starkey, M.R.; Hansbro, P.M.; Adcock, I.M.; Wiegman, C.H. The MIF antagonist ISO-1 attenuates corticosteroid-insensitive inflammation and airways hyperresponsiveness in an ozone-induced model of COPD. PLoS One, 2016, 11(1), e0146102.
[http://dx.doi.org/10.1371/journal.pone.0146102] [PMID: 26752192]
[448]
David, J.R. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. Sci. USA, 1966, 56(1), 72-77.
[http://dx.doi.org/10.1073/pnas.56.1.72] [PMID: 5229858]
[449]
Conroy, H.; Mawhinney, L.; Donnelly, S.C. Inflammation and cancer: macrophage migration inhibitory factor (MIF)-the potential missing link. QJM, 2010, 103(11), 831-836.
[http://dx.doi.org/10.1093/qjmed/hcq148] [PMID: 20805118]
[450]
Lolis, E.; Bucala, R. Macrophage migration inhibitory factor. Expert Opin. Ther. Targets, 2003, 7(2), 153-164.
[http://dx.doi.org/10.1517/14728222.7.2.153] [PMID: 12667094]
[451]
Hagemann, T.; Robinson, S.C.; Thompson, R.G.; Charles, K.; Kulbe, H.; Balkwill, F.R. Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Mol. Cancer Ther., 2007, 6(7), 1993-2002.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0118] [PMID: 17620429]
[452]
Grieb, G.; Merk, M.; Bernhagen, J.; Bucala, R. Macrophage migration inhibitory factor (MIF): a promising biomarker. Drug News Perspect., 2010, 23(4), 257-264.
[http://dx.doi.org/10.1358/dnp.2010.23.4.1453629] [PMID: 20520854]
[453]
Bernhagen, J.; Krohn, R.; Lue, H.; Gregory, J.L.; Zernecke, A.; Koenen, R.R.; Dewor, M.; Georgiev, I.; Schober, A.; Leng, L.; Kooistra, T.; Fingerle-Rowson, G.; Ghezzi, P.; Kleemann, R.; McColl, S.R.; Bucala, R.; Hickey, M.J.; Weber, C. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med., 2007, 13(5), 587-596.
[http://dx.doi.org/10.1038/nm1567] [PMID: 17435771]
[454]
Gregory, J.L.; Leech, M.T.; David, J.R.; Yang, Y.H.; Dacumos, A.; Hickey, M.J. Reduced leukocyte-endothelial cell interactions in the inflamed microcirculation of macrophage migration inhibitory factor-deficient mice. Arthritis Rheum., 2004, 50(9), 3023-3034.
[http://dx.doi.org/10.1002/art.20470] [PMID: 15457472]
[455]
Tillmann, S.; Bernhagen, J.; Noels, H. Arrest functions of the MIF ligand/receptor axes in atherogenesis. Front. Immunol., 2013, 4, 115.
[http://dx.doi.org/10.3389/fimmu.2013.00115] [PMID: 23720662]
[456]
Onodera, S.; Nishihira, J.; Koyama, Y.; Majima, T.; Aoki, Y.; Ichiyama, H.; Ishibashi, T.; Minami, A. Macrophage migration inhibitory factor up-regulates the expression of interleukin-8 messenger RNA in synovial fibroblasts of rheumatoid arthritis patients: common transcriptional regulatory mechanism between interleukin-8 and interleukin-1beta. Arthritis Rheum., 2004, 50(5), 1437-1447.
[http://dx.doi.org/10.1002/art.20190] [PMID: 15146413]
[457]
Calandra, T.; Echtenacher, B.; Roy, D.L.; Pugin, J.; Metz, C.N.; Hültner, L.; Heumann, D.; Männel, D.; Bucala, R.; Glauser, M.P. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat. Med., 2000, 6(2), 164-170.
[http://dx.doi.org/10.1038/72262] [PMID: 10655104]
[458]
Leech, M.; Metz, C.; Hall, P.; Hutchinson, P.; Gianis, K.; Smith, M.; Weedon, H.; Holdsworth, S.R.; Bucala, R.; Morand, E.F. Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids. Arthritis Rheum., 1999, 42(8), 1601-1608.
[http://dx.doi.org/10.1002/1529-0131(199908)42:8<1601: AID-ANR6>3.0.CO;2-B] [PMID: 10446857]
[459]
Mizue, Y.; Ghani, S.; Leng, L.; McDonald, C.; Kong, P.; Baugh, J.; Lane, S.J.; Craft, J.; Nishihira, J.; Donnelly, S.C.; Zhu, Z.; Bucala, R. Role for macrophage migration inhibitory factor in asthma. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14410-14415.
[http://dx.doi.org/10.1073/pnas.0507189102] [PMID: 16186482]
[460]
Rossi, A.G.; Haslett, C.; Hirani, N.; Greening, A.P.; Rahman, I.; Metz, C.N.; Bucala, R.; Donnelly, S.C. Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF). Potential role in asthma. J. Clin. Invest., 1998, 101(12), 2869-2874.
[http://dx.doi.org/10.1172/JCI1524] [PMID: 9637721]
[461]
She, W.B.; Liu, X.S.; Ni, W.; Chen, S.X.; Xu, Y.J. The expression of macrophage migration inhibition factor in pulmonary tissues of smokers with or without chronic obstructive pulmonary disease. Zhonghua Nei Ke Za Zhi, 2012, 51(11), 863-866.
[PMID: 23291023]
[462]
Ni, L.; Dong, C. Roles of myeloid and lymphoid cells in the pathogenesis of chronic obstructive pulmonary disease. Front. Immunol., 2018, 9, 1431.
[http://dx.doi.org/10.3389/fimmu.2018.01431] [PMID: 29977245]
[463]
Husebø, G.R.; Bakke, P.S.; Grønseth, R.; Hardie, J.A.; Ueland, T.; Aukrust, P.; Eagan, T.M.L. Macrophage migration inhibitory factor, a role in COPD. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 311(1), L1-L7.
[http://dx.doi.org/10.1152/ajplung.00461.2015] [PMID: 27190066]
[464]
Fallica, J.; Boyer, L.; Kim, B.; Serebreni, L.; Varela, L.; Hamdan, O.; Wang, L.; Simms, T.; Damarla, M.; Kolb, T.M.; Bucala, R.; Mitzner, W.; Hassoun, P.M.; Damico, R. Macrophage migration inhibitory factor is a novel determinant of cigarette smoke-induced lung damage. Am. J. Respir. Cell Mol. Biol., 2014, 51(1), 94-103.
[http://dx.doi.org/10.1165/rcmb.2013-0371OC] [PMID: 24490973]
[465]
Sauler, M.; Leng, L.; Trentalange, M.; Haslip, M.; Shan, P.; Piecychna, M.; Zhang, Y.; Andrews, N.; Mannam, P.; Allore, H.; Fried, T.; Bucala, R.; Lee, P.J. Macrophage migration inhibitory factor deficiency in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 2014, 306(6), L487-L496.
[http://dx.doi.org/10.1152/ajplung.00284.2013] [PMID: 24441872]
[466]
Peiper, S.C.; Wang, Z.X.; Neote, K.; Martin, A.W.; Showell, H.J.; Conklyn, M.J.; Ogborne, K.; Hadley, T.J.; Lu, Z.H.; Hesselgesser, J.; Horuk, R. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med., 1995, 181(4), 1311-1317.
[http://dx.doi.org/10.1084/jem.181.4.1311] [PMID: 7699323]
[467]
Graham, G.J.; Locati, M.; Mantovani, A.; Rot, A.; Thelen, M. The biochemistry and biology of the atypical chemokine receptors. Immunol. Lett., 2012, 145(1-2), 30-38.
[http://dx.doi.org/10.1016/j.imlet.2012.04.004] [PMID: 22698181]
[468]
Zimmerman, P.A.; Ferreira, M.U.; Howes, R.E.; Mercereau-Puijalon, O. Red blood cell polymorphism and susceptibility to Plasmodium vivax. Adv. Parasitol., 2013, 81, 27-76.
[http://dx.doi.org/10.1016/B978-0-12-407826-0.00002-3] [PMID: 23384621]
[469]
Rundle, C.H.; Mohan, S.; Edderkaoui, B. Duffy antigen receptor for chemokines regulates post-fracture inflammation. PLoS One, 2013, 8(10), e77362.
[http://dx.doi.org/10.1371/journal.pone.0077362] [PMID: 24146983]
[470]
Wan, W.; Liu, Q.; Lionakis, M.S.; Marino, A.P.M.P.; Anderson, S.A.; Swamydas, M.; Murphy, P.M. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc. Res., 2015, 106(3), 478-487.
[http://dx.doi.org/10.1093/cvr/cvv124] [PMID: 25858253]
[471]
Lee, K.M.; Danuser, R.; Stein, J.V.; Graham, D.; Nibbs, R.J.; Graham, G.J. The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density. EMBO J., 2014, 33(21), 2564-2580.
[http://dx.doi.org/10.15252/embj.201488887] [PMID: 25271254]
[472]
McKimmie, C.S.; Singh, M.D.; Hewit, K.; Lopez-Franco, O.; Le Brocq, M.; Rose-John, S.; Lee, K.M.; Baker, A.H.; Wheat, R.; Blackbourn, D.J.; Nibbs, R.J.B.; Graham, G.J. An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood, 2013, 121(18), 3768-3777.
[http://dx.doi.org/10.1182/blood-2012-04-425314] [PMID: 23479571]
[473]
Pashover-Schallinger, E.; Aswad, M.; Schif-Zuck, S.; Shapiro, H.; Singer, P.; Ariel, A. The atypical chemokine receptor D6 controls macrophage efferocytosis and cytokine secretion during the resolution of inflammation. FASEB J., 2012, 26(9), 3891-3900.
[http://dx.doi.org/10.1096/fj.11-194894] [PMID: 22651933]
[474]
Graham, G.J.; Locati, M. Regulation of the immune and inflammatory responses by the ‘atypical’ chemokine receptor D6. J. Pathol., 2013, 229(2), 168-175.
[http://dx.doi.org/10.1002/path.4123] [PMID: 23125030]
[475]
Hansell, C.A.H.; MacLellan, L.M.; Oldham, R.S.; Doonan, J.; Chapple, K.J.; Anderson, E.J.R.; Linington, C.; McInnes, I.B.; Nibbs, R.J.B.; Goodyear, C.S. The atypical chemokine receptor ACKR2 suppresses Th17 responses to protein autoantigens. Immunol. Cell Biol., 2015, 93(2), 167-176.
[http://dx.doi.org/10.1038/icb.2014.90] [PMID: 25348934]
[476]
Liu, L.; Graham, G.J.; Damodaran, A.; Hu, T.; Lira, S.A.; Sasse, M.; Canasto-Chibuque, C.; Cook, D.N.; Ransohoff, R.M. Cutting edge: the silent chemokine receptor D6 is required for generating T cell responses that mediate experimental autoimmune encephalomyelitis. J. Immunol., 2006, 177(1), 17-21.
[http://dx.doi.org/10.4049/jimmunol.177.1.17] [PMID: 16785491]
[477]
Zheng, S.; Coventry, S.; Cai, L.; Powell, D.W.; Jala, V.R.; Haribabu, B.; Epstein, P.N. Renal protection by genetic deletion of the atypical chemokine receptor ACKR2 in diabetic OVE mice. J. Diabetes Res., 2016, 2016, 5362506.
[http://dx.doi.org/10.1155/2016/5362506] [PMID: 26798651]
[478]
Di Liberto, D.; Locati, M.; Caccamo, N.; Vecchi, A.; Meraviglia, S.; Salerno, A.; Sireci, G.; Nebuloni, M.; Caceres, N.; Cardona, P.J.; Dieli, F.; Mantovani, A. Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection. J. Exp. Med., 2008, 205(9), 2075-2084.
[http://dx.doi.org/10.1084/jem.20070608] [PMID: 18695004]
[479]
Whitehead, G.S.; Wang, T.; DeGraff, L.M.; Card, J.W.; Lira, S.A.; Graham, G.J.; Cook, D.N. The chemokine receptor D6 has opposing effects on allergic inflammation and airway reactivity. Am. J. Respir. Crit. Care Med., 2007, 175(3), 243-249.
[http://dx.doi.org/10.1164/rccm.200606-839OC] [PMID: 17095748]
[480]
Russo, R.C.; Savino, B.; Mirolo, M.; Buracchi, C.; Germano, G.; Anselmo, A.; Zammataro, L.; Pasqualini, F.; Mantovani, A.; Locati, M.; Teixeira, M.M. The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2+ and CCR5+ IFNγ-producing γδT cells in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(6), L1010-L1025.
[http://dx.doi.org/10.1152/ajplung.00233.2017] [PMID: 29469612]
[481]
Bazzan, E.; Saetta, M.; Turato, G.; Borroni, E.M.; Cancellieri, C.; Baraldo, S.; Savino, B.; Calabrese, F.; Ballarin, A.; Balestro, E.; Mantovani, A.; Cosio, M.G.; Bonecchi, R.; Locati, M. Expression of the atypical chemokine receptor D6 in human alveolar macrophages in COPD. Chest, 2013, 143(1), 98-106.
[http://dx.doi.org/10.1378/chest.11-3220] [PMID: 22797410]
[482]
Mori, M.; Andersson, C.K.; Graham, G.J.; Löfdahl, C.G.; Erjefält, J.S. Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD. Respir. Res., 2013, 14, 65.
[http://dx.doi.org/10.1186/1465-9921-14-65] [PMID: 23758732]
[483]
Levoye, A.; Balabanian, K.; Baleux, F.; Bachelerie, F.; Lagane, B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood, 2009, 113(24), 6085-6093.
[http://dx.doi.org/10.1182/blood-2008-12-196618] [PMID: 19380869]
[484]
Haege, S.; Einer, C.; Thiele, S.; Mueller, W.; Nietzsche, S.; Lupp, A.; Mackay, F.; Schulz, S.; Stumm, R. CXC chemokine receptor 7 (CXCR7) regulates CXCR4 protein expression and capillary tuft development in mouse kidney. PLoS One, 2012, 7(8), e42814.
[http://dx.doi.org/10.1371/journal.pone.0042814] [PMID: 22880115]
[485]
Zhu, Y.; Matsumoto, T.; Nagasawa, T.; Mackay, F.; Murakami, F. Chemokine signaling controls integrity of radial glial scaffold in developing spinal cord and consequential proper position of boundary cap cells. J. Neurosci., 2015, 35(24), 9211-9224.
[http://dx.doi.org/10.1523/JNEUROSCI.0156-15.2015] [PMID: 26085643]
[486]
Werner, L.; Elad, H.; Brazowski, E.; Tulchinsky, H.; Vigodman, S.; Kopylov, U.; Halpern, Z.; Guzner-Gur, H.; Dotan, I. Reciprocal regulation of CXCR4 and CXCR7 in intestinal mucosal homeostasis and inflammatory bowel disease. J. Leukoc. Biol., 2011, 90(3), 583-590.
[http://dx.doi.org/10.1189/jlb.0111101] [PMID: 21628333]
[487]
Chatterjee, M.; von Ungern-Sternberg, S.N.; Seizer, P.; Schlegel, F.; Büttcher, M.; Sindhu, N.A.; Müller, S.; Mack, A.; Gawaz, M. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis., 2015, 6e, 1989.
[http://dx.doi.org/10.1038/cddis.2015.233] [PMID: 26583329]
[488]
Watanabe, K.; Penfold, M.E.; Matsuda, A.; Ohyanagi, N.; Kaneko, K.; Miyabe, Y.; Matsumoto, K.; Schall, T.J.; Miyasaka, N.; Nanki, T. Pathogenic role of CXCR7 in rheumatoid arthritis. Arthritis Rheum., 2010, 62(11), 3211-3220.
[http://dx.doi.org/10.1002/art.27650] [PMID: 20617529]
[489]
Miao, Z.; Luker, K.E.; Summers, B.C.; Berahovich, R.; Bhojani, M.S.; Rehemtulla, A.; Kleer, C.G.; Essner, J.J.; Nasevicius, A.; Luker, G.D.; Howard, M.C.; Schall, T.J. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc. Natl. Acad. Sci. USA, 2007, 104(40), 15735-15740.
[http://dx.doi.org/10.1073/pnas.0610444104] [PMID: 17898181]
[490]
Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; Sanli, K.; von Feilitzen, K.; Oksvold, P.; Lundberg, E.; Hober, S.; Nilsson, P.; Mattsson, J.; Schwenk, J.M.; Brunnström, H.; Glimelius, B.; Sjöblom, T.; Edqvist, P.H.; Djureinovic, D.; Micke, P.; Lindskog, C.; Mardinoglu, A.; Ponten, F. A pathology atlas of the human cancer transcriptome. Science, 2017, 357(6352), eaan2507.
[http://dx.doi.org/10.1126/science.aan2507] [PMID: 28818916]
[491]
Wu, Y.C.; Tang, S.J.; Sun, G.H.; Sun, K.H. CXCR7 mediates TGFβ1-promoted EMT and tumor-initiating features in lung cancer. Oncogene, 2016, 35(16), 2123-2132.
[http://dx.doi.org/10.1038/onc.2015.274] [PMID: 26212008]
[492]
Comerford, I.; Milasta, S.; Morrow, V.; Milligan, G.; Nibbs, R. The chemokine receptor CCX-CKR mediates effective scavenging of CCL19 in vitro. Eur. J. Immunol., 2006, 36(7), 1904-1916.
[http://dx.doi.org/10.1002/eji.200535716] [PMID: 16791897]
[493]
Yoshimura, T.; Oppenheim, J.J. Chemerin reveals its chimeric nature. J. Exp. Med., 2008, 205(10), 2187-2190.
[http://dx.doi.org/10.1084/jem.20081736] [PMID: 18809717]
[494]
Peyrassol, X.; Laeremans, T.; Gouwy, M.; Lahura, V.; Debulpaep, M.; Van Damme, J.; Steyaert, J.; Parmentier, M.; Langer, I. Development by genetic immunization of monovalent antibodies (nanobodies) behaving as antagonists of the human chemR23 receptor. J. Immunol., 2016, 196(6), 2893-2901.
[http://dx.doi.org/10.4049/jimmunol.1500888] [PMID: 26864035]
[495]
Lin, Y.; Yang, X.; Yue, W.; Xu, X.; Li, B.; Zou, L.; He, R. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization. Cell. Mol. Immunol., 2014, 11(4), 355-366.
[http://dx.doi.org/10.1038/cmi.2014.15] [PMID: 24727542]
[496]
Darios, E.S.; Winner, B.M.; Charvat, T.; Krasinksi, A.; Punna, S.; Watts, S.W. The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(2), H498-H507.
[http://dx.doi.org/10.1152/ajpheart.00998.2015] [PMID: 27371688]
[497]
Migeotte, I.; Franssen, J-D.; Goriely, S.; Willems, F.; Parmentier, M. Distribution and regulation of expression of the putative human chemokine receptor HCR in leukocyte populations. Eur. J. Immunol., 2002, 32(2), 494-501.
[http://dx.doi.org/10.1002/1521-4141(200202)32:2<494:AID-IMMU494>3.0.CO;2-Y] [PMID: 11828366]
[498]
Galligan, C.L.; Matsuyama, W.; Matsukawa, A.; Mizuta, H.; Hodge, D.R.; Howard, O.M.Z.; Yoshimura, T. Up-regulated expression and activation of the orphan chemokine receptor, CCRL2, in rheumatoid arthritis. Arthritis Rheum., 2004, 50(6), 1806-1814.
[http://dx.doi.org/10.1002/art.20275] [PMID: 15188357]
[499]
Otero, K.; Vecchi, A.; Hirsch, E.; Kearley, J.; Vermi, W.; Del Prete, A.; Gonzalvo-Feo, S.; Garlanda, C.; Azzolino, O.; Salogni, L.; Lloyd, C.M.; Facchetti, F.; Mantovani, A.; Sozzani, S. Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood, 2010, 116(16), 2942-2949.
[http://dx.doi.org/10.1182/blood-2009-12-259903] [PMID: 20606167]
[500]
Zuurman, M.W.; Heeroma, J.; Brouwer, N.; Boddeke, H.W.G.M.; Biber, K. LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo. Glia, 2003, 41(4), 327-336.
[http://dx.doi.org/10.1002/glia.10156] [PMID: 12555200]
[501]
Del Prete, A.; Martínez-Muñoz, L.; Mazzon, C.; Toffali, L.; Sozio, F.; Za, L.; Bosisio, D.; Gazzurelli, L.; Salvi, V.; Tiberio, L.; Liberati, C.; Scanziani, E.; Vecchi, A.; Laudanna, C.; Mellado, M.; Mantovani, A.; Sozzani, S. The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage. Blood, 2017, 130(10), 1223-1234.
[http://dx.doi.org/10.1182/blood-2017-04-777680] [PMID: 28743719]
[502]
De Henau, O.; Degroot, G-N.; Imbault, V.; Robert, V.; De Poorter, C.; Mcheik, S.; Galés, C.; Parmentier, M.; Springael, J.Y. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One, 2016, 11(10), e0164179.
[http://dx.doi.org/10.1371/journal.pone.0164179] [PMID: 27716822]
[503]
Zabel, B.A.; Ohyama, T.; Zuniga, L.; Kim, J.Y.; Johnston, B.; Allen, S.J.; Guido, D.G.; Handel, T.M.; Butcher, E.C. Chemokine-like receptor 1 expression by macrophages in vivo: regulation by TGF-beta and TLR ligands. Exp. Hematol., 2006, 34(8), 1106-1114.
[http://dx.doi.org/10.1016/j.exphem.2006.03.011] [PMID: 16863918]
[504]
Oostendorp, J.; Hylkema, M.N.; Luinge, M.; Geerlings, M.; Meurs, H.; Timens, W.; Zaagsma, J.; Postma, D.S.; Boddeke, H.W.; Biber, K. Localization and enhanced mRNA expression of the orphan chemokine receptor L-CCR in the lung in a murine model of ovalbumin-induced airway inflammation. J. Histochem. Cytochem., 2004, 52(3), 401-410.
[http://dx.doi.org/10.1177/002215540405200311] [PMID: 14966207]
[505]
Monnier, J.; Lewén, S.; O’Hara, E.; Huang, K.; Tu, H.; Butcher, E.C.; Zabel, B.A. Expression, regulation, and function of atypical chemerin receptor CCRL2 on endothelial cells. J. Immunol., 2012, 189(2), 956-967.
[http://dx.doi.org/10.4049/jimmunol.1102871] [PMID: 22696441]
[506]
Lev, S.; Hernandez, J.; Martinez, R.; Chen, A.; Plowman, G.; Schlessinger, J. Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. Mol. Cell. Biol., 1999, 19(3), 2278-2288.
[http://dx.doi.org/10.1128/MCB.19.3.2278] [PMID: 10022914]
[507]
Lin, Z.; Li, W.; Zhang, H.; Wu, W.; Peng, Y.; Zeng, Y.; Wan, Y.; Wang, J.; Ouyang, N. CCL18/PITPNM3 enhances migration, invasion, and EMT through the NF-κB signaling pathway in hepatocellular carcinoma. Tumour Biol., 2016, 37(3), 3461-3468.
[http://dx.doi.org/10.1007/s13277-015-4172-x] [PMID: 26449829]
[508]
Meng, F.; Li, W.; Li, C.; Gao, Z.; Guo, K.; Song, S. CCL18 promotes epithelial-mesenchymal transition, invasion and migration of pancreatic cancer cells in pancreatic ductal adenocarcinoma. Int. J. Oncol., 2015, 46(3), 1109-1120.
[http://dx.doi.org/10.3892/ijo.2014.2794] [PMID: 25502147]
[509]
Liu, Y.; Zheng, H.; Li, Q.; Li, S.; Lai, H.; Song, E.; Li, D.; Chen, J. Discovery of CCL18 antagonist blocking breast cancer metastasis. Clin. Exp. Metastasis, 2019, 36(3), 243-255.
[http://dx.doi.org/10.1007/s10585-019-09965-2] [PMID: 31062206]
[510]
Di Stefano, A.; Ricciardolo, F.L.M.; Caramori, G.; Adcock, I.M.; Chung, K.F.; Barnes, P.J.; Brun, P.; Leonardi, A.; Andò, F.; Vallese, D.; Gnemmi, I.; Righi, L.; Cappello, F.; Balbi, B. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur. Respir. J., 2017, 49(5), 1602006.
[http://dx.doi.org/10.1183/13993003.02006-2016] [PMID: 28536249]
[511]
Redente, E.F.; Jakubzick, C.V.; Martin, T.R.; Riches, D.W.H. Innate Immunity. In: Murray and Nadel’s Textbook of Respiratory Medicine; Elsevier, 2016, pp. 184-205.
[512]
Sugawara, I.; Yamada, H.; Mizuno, S.; Takeda, K.; Akira, S. Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol., 2003, 47(11), 841-847.
[http://dx.doi.org/10.1111/j.1348-0421.2003.tb03450.x] [PMID: 14638995]
[513]
Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Immunol., 2003, 21, 335-376.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126] [PMID: 12524386]
[514]
Takeuchi, O.; Kawai, T.; Sanjo, H.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Takeda, K.; Akira, S. TLR6: a novel member of an expanding toll-like receptor family. Gene, 1999, 231(1-2), 59-65.
[http://dx.doi.org/10.1016/S0378-1119(99)00098-0] [PMID: 10231569]
[515]
Takeuchi, O.; Sato, S.; Horiuchi, T.; Hoshino, K.; Takeda, K.; Dong, Z.; Modlin, R.L.; Akira, S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol., 2002, 169(1), 10-14.
[http://dx.doi.org/10.4049/jimmunol.169.1.10] [PMID: 12077222]
[516]
Kato, H.; Oh, S.W.; Fujita, T. RIG-I-like receptors and type I interferonopathies. J. Interferon Cytokine Res., 2017, 37(5), 207-213.
[http://dx.doi.org/10.1089/jir.2016.0095] [PMID: 28475461]
[517]
Takeda, K.; Akira, S. Toll-like receptors in innate immunity. Int. Immunol., 2005, 17(1), 1-14.
[http://dx.doi.org/10.1093/intimm/dxh186] [PMID: 15585605]
[518]
Lund, J.; Sato, A.; Akira, S.; Medzhitov, R.; Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med., 2003, 198(3), 513-520.
[http://dx.doi.org/10.1084/jem.20030162] [PMID: 12900525]
[519]
Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet., 2019, 20(11), 657-674.
[http://dx.doi.org/10.1038/s41576-019-0151-1] [PMID: 31358977]
[520]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[521]
Wagener, J.; Malireddi, R.K.S.; Lenardon, M.D.; Köberle, M.; Vautier, S.; MacCallum, D.M.; Biedermann, T.; Schaller, M.; Netea, M.G.; Kanneganti, T.D.; Brown, G.D.; Brown, A.J.P.; Gow, N.A.R. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog., 2014, 10(4), e1004050.
[http://dx.doi.org/10.1371/journal.ppat.1004050] [PMID: 24722226]
[522]
Carvalho, A.; Cunha, C.; Pasqualotto, A.C.; Pitzurra, L.; Denning, D.W.; Romani, L. Genetic variability of innate immunity impacts human susceptibility to fungal diseases. Int. J. Infect. Dis., 2010, 14(6), e460-e468.
[http://dx.doi.org/10.1016/j.ijid.2009.06.028] [PMID: 19828347]
[523]
Bochud, P.Y.; Chien, J.W.; Marr, K.A.; Leisenring, W.M.; Upton, A.; Janer, M.; Rodrigues, S.D.; Li, S.; Hansen, J.A.; Zhao, L.P.; Aderem, A.; Boeckh, M. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N. Engl. J. Med., 2008, 359(17), 1766-1777.
[http://dx.doi.org/10.1056/NEJMoa0802629] [PMID: 18946062]
[524]
Carvalho, A.; Pasqualotto, A.C.; Pitzurra, L.; Romani, L.; Denning, D.W.; Rodrigues, F. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J. Infect. Dis., 2008, 197(4), 618-621.
[http://dx.doi.org/10.1086/526500] [PMID: 18275280]
[525]
Koldehoff, M.; Beelen, D.W.; Elmaagacli, A.H. Increased susceptibility for aspergillosis and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell transplantation. Transpl. Infect. Dis., 2013, 15(5), 533-539.
[http://dx.doi.org/10.1111/tid.12115] [PMID: 23890253]
[526]
Kesh, S.; Mensah, N.Y.; Peterlongo, P.; Jaffe, D.; Hsu, K. VAN DEN Brink, M.; O’reilly, R.; Pamer, E.; Satagopan, J.; Papanicolaou, G.A. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann. N. Y. Acad. Sci., 2005, 1062, 95-103.
[http://dx.doi.org/10.1196/annals.1358.012] [PMID: 16461792]
[527]
Arora, S.; Ahmad, S.; Irshad, R.; Goyal, Y.; Rafat, S.; Siddiqui, N.; Dev, K.; Husain, M.; Ali, S.; Mohan, A.; Syed, M.A. TLRs in pulmonary diseases. Life Sci., 2019, 233, 116671.
[http://dx.doi.org/10.1016/j.lfs.2019.116671] [PMID: 31336122]
[528]
Zhu, H.; Shi, Y.; Tang, W.; Shi, G.; Wan, H. Inhaled corticosteroid influence toll like receptor 2 expression in induced sputum from patients with COPD. Transl. Respir. Med., 2013, 1(1), 7.
[http://dx.doi.org/10.1186/2213-0802-1-7] [PMID: 27234389]
[529]
Lea, S.R.; Reynolds, S.L.; Kaur, M.; Simpson, K.D.; Hall, S.R.; Hessel, E.M.; Singh, D. The effects of repeated Toll-like receptors 2 and 4 stimulation in COPD alveolar macrophages. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 771-780.
[http://dx.doi.org/10.2147/COPD.S97071] [PMID: 29535517]
[530]
Zhang, X.; Shan, P.; Jiang, G.; Cohn, L.; Lee, P.J. Toll-like receptor 4 deficiency causes pulmonary emphysema. J. Clin. Invest., 2006, 116(11), 3050-3059.
[http://dx.doi.org/10.1172/JCI28139] [PMID: 17053835]
[531]
Cosio, M.G.; Saetta, M.; Agusti, A. Immunologic aspects of chronic obstructive pulmonary disease. N. Engl. J. Med., 2009, 360(23), 2445-2454.
[http://dx.doi.org/10.1056/NEJMra0804752] [PMID: 19494220]
[532]
Sopori, M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol., 2002, 2(5), 372-377.
[http://dx.doi.org/10.1038/nri803] [PMID: 12033743]
[533]
Zhang, Y.; Ni, H.J.; Zhou, H.S. Study on the expression of Toll-like receptor 4 and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease and their clinical significance. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(9), 2185-2191.
[PMID: 28537664]
[534]
Wang, P.; Han, X.; Mo, B.; Huang, G.; Wang, C. LPS enhances TLR4 expression and IFN γ production via the TLR4/IRAK/NF-κB signaling pathway in rat pulmonary arterial smooth muscle cells. Mol. Med. Rep., 2017, 16(3), 3111-3116.
[http://dx.doi.org/10.3892/mmr.2017.6983] [PMID: 28714001]
[535]
Tripathi, P.M.; Kant, S.; Yadav, R.S.; Kushwaha, R.A.S.; Prakash, V.; Rizvi, S.H.M.; Parveen, A.; Mahdi, A.A.; Ahmad, I. Expression of toll-like receptor 2 and 4 in peripheral blood neutrophil cells from patients with chronic obstructive pulmonary disease. Oman Med. J., 2017, 32(6), 477-485.
[http://dx.doi.org/10.5001/omj.2017.92] [PMID: 29218124]
[536]
Foronjy, R.F.; Salathe, M.A.; Dabo, A.J.; Baumlin, N.; Cummins, N.; Eden, E.; Geraghty, P. TLR9 expression is required for the development of cigarette smoke-induced emphysema in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 311(1), L154-L166.
[http://dx.doi.org/10.1152/ajplung.00073.2016] [PMID: 27288485]
[537]
Singh, D.; Ravi, A.; Southworth, T. CRTH2 antagonists in asthma: current perspectives. Clin. Pharmacol., 2017, 9, 165-173.
[http://dx.doi.org/10.2147/CPAA.S119295] [PMID: 29276415]
[538]
Ulven, T.; Kostenis, E. Novel CRTH2 antagonists: a review of patents from 2006 to 2009. Expert Opin. Ther. Pat., 2010, 20(11), 1505-1530.
[http://dx.doi.org/10.1517/13543776.2010.525506] [PMID: 20946089]
[539]
Xue, L.; Salimi, M.; Panse, I.; Mjösberg, J.M.; McKenzie, A.N.; Spits, H.; Klenerman, P.; Ogg, G. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol., 2014, 133(4), 1184-1194.
[http://dx.doi.org/10.1016/j.jaci.2013.10.056] [PMID: 24388011]
[540]
Stinson, S.E.; Amrani, Y.; Brightling, C.E. D prostanoid receptor 2 (chemoattractant receptor-homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells. J. Allergy Clin. Immunol., 2015, 135(2), 395-406.
[http://dx.doi.org/10.1016/j.jaci.2014.08.027] [PMID: 25312757]
[541]
Nagata, K.; Tanaka, K.; Ogawa, K.; Kemmotsu, K.; Imai, T.; Yoshie, O.; Abe, H.; Tada, K.; Nakamura, M.; Sugamura, K.; Takano, S. Selective expression of a novel surface molecule by human Th2 cells in vivo. J. Immunol., 1999, 162(3), 1278-1286.
[PMID: 9973380]
[542]
Moon, T.C.; Campos-Alberto, E.; Yoshimura, T.; Bredo, G.; Rieger, A.M.; Puttagunta, L.; Barreda, D.R.; Befus, A.D.; Cameron, L. Expression of DP2 (CRTh2), a prostaglandin D2 receptor, in human mast cells. PLoS One, 2014, 9(9), e108595.
[http://dx.doi.org/10.1371/journal.pone.0108595] [PMID: 25268140]
[543]
Honda, K.; Arima, M.; Cheng, G.; Taki, S.; Hirata, H.; Eda, F.; Fukushima, F.; Yamaguchi, B.; Hatano, M.; Tokuhisa, T.; Fukuda, T. Prostaglandin D2 reinforces Th2 type inflammatory responses of airways to low-dose antigen through bronchial expression of macrophage-derived chemokine. J. Exp. Med., 2003, 198(4), 533-543.
[http://dx.doi.org/10.1084/jem.20022218] [PMID: 12925672]
[544]
Bateman, E.D.; O’Brien, C.; Rugman, P.; Luke, S.; Ivanov, S.; Uddin, M. Efficacy and safety of the CRTh2 antagonist AZD1981 as add-on therapy to inhaled corticosteroids and long-acting β2-agonists in patients with atopic asthma. Drug Des. Devel. Ther., 2018, 12, 1093-1106.
[http://dx.doi.org/10.2147/DDDT.S147389] [PMID: 29765200]
[545]
Bateman, E.D.; Guerreros, A.G.; Brockhaus, F.; Holzhauer, B.; Pethe, A.; Kay, R.A.; Townley, R.G. Fevipiprant, an oral prostaglandin DP2 receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur. Respir. J., 2017, 50(2), 50.
[http://dx.doi.org/10.1183/13993003.00670-2017] [PMID: 28838980]
[546]
Jiang, M.; Tao, S.; Zhang, S.; Wang, J.; Zhang, F.; Li, F.; Ding, J. Type 2 innate lymphoid cells participate in IL-33-stimulated Th2-associated immune response in chronic obstructive pulmonary disease. Exp. Ther. Med., 2019, 18(4), 3109-3116.
[http://dx.doi.org/10.3892/etm.2019.7924] [PMID: 31572551]
[547]
Jiang, M.; Liu, H.; Li, Z.; Wang, J.; Zhang, F.; Cao, K.; Li, F.; Ding, J. ILC2s induce adaptive Th2-type immunity in acute exacerbation of chronic obstructive pulmonary disease. Mediators Inflamm., 2019, 2019, 3140183.
[http://dx.doi.org/10.1155/2019/3140183] [PMID: 31320835]
[548]
Snell, N.; Foster, M.; Vestbo, J. Efficacy and safety of AZD1981, a CRTH2 receptor antagonist, in patients with moderate to severe COPD. Respir. Med., 2013, 107(11), 1722-1730.
[http://dx.doi.org/10.1016/j.rmed.2013.06.006] [PMID: 23827726]
[549]
Sabroe, I.; Peck, M.J.; Van Keulen, B.J.; Jorritsma, A.; Simmons, G.; Clapham, P.R.; Williams, T.J.; Pease, J.E. A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J. Biol. Chem., 2000, 275(34), 25985-25992.
[http://dx.doi.org/10.1074/jbc.M908864199] [PMID: 10854442]
[550]
Gladue, R.P.; Cole, S.H.; Roach, M.L.; Tylaska, L.A.; Nelson, R.T.; Shepard, R.M.; McNeish, J.D.; Ogborne, K.T.; Neote, K.S. The human specific CCR1 antagonist CP-481,715 inhibits cell infiltration and inflammatory responses in human CCR1 transgenic mice. J. Immunol., 2006, 176(5), 3141-3148.
[http://dx.doi.org/10.4049/jimmunol.176.5.3141] [PMID: 16493073]
[551]
Olzinski, A.R.; Turner, G.H.; Bernard, R.E.; Karr, H.; Cornejo, C.A.; Aravindhan, K.; Hoang, B.; Ringenberg, M.A.; Qin, P.; Goodman, K.B.; Willette, R.N.; Macphee, C.H.; Jucker, B.M.; Sehon, C.A.; Gough, P.J. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E-/- mouse: magnetic resonance imaging assessment. Arterioscler. Thromb. Vasc. Biol., 2010, 30(2), 253-259.
[http://dx.doi.org/10.1161/ATVBAHA.109.198812] [PMID: 19965779]
[552]
Lee, J.D.; Liu, N.; Levin, S.C.; Ottosson, L.; Andersson, U.; Harris, H.E.; Woodruff, T.M. Therapeutic blockade of HMGB1 reduces early motor deficits, but not survival in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J. Neuroinflammation, 2019, 16(1), 45.
[http://dx.doi.org/10.1186/s12974-019-1435-2] [PMID: 30782181]
[553]
Lundbäck, P.; Lea, J.D.; Sowinska, A.; Ottosson, L.; Fürst, C.M.; Steen, J.; Aulin, C.; Clarke, J.I.; Kipar, A.; Klevenvall, L.; Yang, H.; Palmblad, K.; Park, B.K.; Tracey, K.J.; Blom, A.M.; Andersson, U.; Antoine, D.J.; Erlandsson Harris, H. A novel high mobility group box 1 neutralizing chimeric antibody attenuates drug-induced liver injury and postinjury inflammation in mice. Hepatology, 2016, 64(5), 1699-1710.
[http://dx.doi.org/10.1002/hep.28736] [PMID: 27474782]
[554]
Stevens, N.E.; Chapman, M.J.; Fraser, C.K.; Kuchel, T.R.; Hayball, J.D.; Diener, K.R. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci. Rep., 2017, 7(1), 5850.
[http://dx.doi.org/10.1038/s41598-017-06205-z] [PMID: 28724977]
[555]
Fu, L.; Liu, K.; Wake, H.; Teshigawara, K.; Yoshino, T.; Takahashi, H.; Mori, S.; Nishibori, M. Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci. Rep., 2017, 7(1), 1179.
[http://dx.doi.org/10.1038/s41598-017-01325-y] [PMID: 28446773]
[556]
Zhao, J.; Wang, Y.; Xu, C.; Liu, K.; Wang, Y.; Chen, L.; Wu, X.; Gao, F.; Guo, Y.; Zhu, J.; Wang, S.; Nishibori, M.; Chen, Z. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav. Immun., 2017, 64, 308-319.
[http://dx.doi.org/10.1016/j.bbi.2017.02.002] [PMID: 28167116]
[557]
Yang, H.; Liu, H.; Zeng, Q.; Imperato, G.H.; Addorisio, M.E.; Li, J.; He, M.; Cheng, K.F.; Al-Abed, Y.; Harris, H.E.; Chavan, S.S.; Andersson, U.; Tracey, K.J. Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Mol. Med., 2019, 25(1), 13.
[http://dx.doi.org/10.1186/s10020-019-0081-6] [PMID: 30975096]
[558]
Ståhl, S.; Gräslund, T.; Eriksson Karlström, A.; Frejd, F.Y.; Nygren, P-Å.; Löfblom, J. Affibody molecules in biotechnological and medical applications. Trends Biotechnol., 2017, 35(8), 691-712.
[http://dx.doi.org/10.1016/j.tibtech.2017.04.007] [PMID: 28514998]
[559]
Yang, H.; Ochani, M.; Li, J.; Qiang, X.; Tanovic, M.; Harris, H.E.; Susarla, S.M.; Ulloa, L.; Wang, H.; DiRaimo, R.; Czura, C.J.; Wang, H.; Roth, J.; Warren, H.S.; Fink, M.P.; Fenton, M.J.; Andersson, U.; Tracey, K.J. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 296-301.
[http://dx.doi.org/10.1073/pnas.2434651100] [PMID: 14695889]
[560]
Muhammad, S.; Barakat, W.; Stoyanov, S.; Murikinati, S.; Yang, H.; Tracey, K.J.; Bendszus, M.; Rossetti, G.; Nawroth, P.P.; Bierhaus, A.; Schwaninger, M. The HMGB1 receptor RAGE mediates ischemic brain damage. J. Neurosci., 2008, 28(46), 12023-12031.
[http://dx.doi.org/10.1523/JNEUROSCI.2435-08.2008] [PMID: 19005067]
[561]
Perrin-Cocon, L.; Aublin-Gex, A.; Sestito, S.E.; Shirey, K.A.; Patel, M.C.; André, P.; Blanco, J.C.; Vogel, S.N.; Peri, F.; Lotteau, V. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci. Rep., 2017, 7, 40791.
[http://dx.doi.org/10.1038/srep40791] [PMID: 28106157]
[562]
Hudson, B.I.; Lippman, M.E. Targeting RAGE signaling in inflammatory disease. Annu. Rev. Med., 2018, 69, 349-364.
[http://dx.doi.org/10.1146/annurev-med-041316-085215] [PMID: 29106804]
[563]
Lee, H.; Lee, J.; Hong, S.H.; Rahman, I.; Yang, S.R. Inhibition of RAGE attenuates cigarette smoke-induced lung epithelial cell damage via RAGE-mediated Nrf2/DAMP signaling. Front. Pharmacol., 2018, 9, 684.
[http://dx.doi.org/10.3389/fphar.2018.00684] [PMID: 30013476]
[564]
Landman, D.; Georgescu, C.; Martin, D.A.; Quale, J. Polymyxins revisited. Clin. Microbiol. Rev., 2008, 21(3), 449-465.
[http://dx.doi.org/10.1128/CMR.00006-08] [PMID: 18625681]
[565]
Zavascki, A.P.; Goldani, L.Z.; Li, J.; Nation, R.L. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother., 2007, 60(6), 1206-1215.
[http://dx.doi.org/10.1093/jac/dkm357] [PMID: 17878146]
[566]
Lamb, H.M.; Wiseman, L.R. Pexiganan acetate. Drugs, 1998, 56(6), 1047-1052.
[http://dx.doi.org/10.2165/00003495-199856060-00011] [PMID: 9878992]
[567]
Lipsky, B.A.; Holroyd, K.J.; Zasloff, M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin. Infect. Dis., 2008, 47(12), 1537-1545.
[http://dx.doi.org/10.1086/593185] [PMID: 18990064]
[568]
Nilsson, A.C.; Janson, H.; Wold, H.; Fugelli, A.; Andersson, K.; Håkangård, C.; Olsson, P.; Olsen, W.M. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob. Agents Chemother., 2015, 59(1), 145-151.
[http://dx.doi.org/10.1128/AAC.03513-14] [PMID: 25331699]
[569]
Velden, W.J.; van Iersel, T.M.; Blijlevens, N.M.; Donnelly, J.P. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med., 2009, 7, 44.
[http://dx.doi.org/10.1186/1741-7015-7-44] [PMID: 19735580]
[570]
Grönberg, A.; Mahlapuu, M.; Ståhle, M.; Whately-Smith, C.; Rollman, O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen., 2014, 22(5), 613-621.
[http://dx.doi.org/10.1111/wrr.12211] [PMID: 25041740]
[571]
Shaykhiev, R.; Beisswenger, C.; Kändler, K.; Senske, J.; Püchner, A.; Damm, T.; Behr, J.; Bals, R. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 289(5), L842-L848.
[http://dx.doi.org/10.1152/ajplung.00286.2004] [PMID: 15964896]
[572]
Tokumaru, S.; Sayama, K.; Shirakata, Y.; Komatsuzawa, H.; Ouhara, K.; Hanakawa, Y.; Yahata, Y.; Dai, X.; Tohyama, M.; Nagai, H.; Yang, L.; Higashiyama, S.; Yoshimura, A.; Sugai, M.; Hashimoto, K. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J. Immunol., 2005, 175(7), 4662-4668.
[http://dx.doi.org/10.4049/jimmunol.175.7.4662] [PMID: 16177113]
[573]
Lee, S.Y.; Lee, M-S.; Lee, H.Y.; Kim, S.D.; Shim, J.W.; Jo, S.H.; Lee, J.W.; Kim, J.Y.; Choi, Y.W.; Baek, S.H.; Ryu, S.H.; Bae, Y.S. F2L, a peptide derived from heme-binding protein, inhibits LL-37-induced cell proliferation and tube formation in human umbilical vein endothelial cells. FEBS Lett., 2008, 582(2), 273-278.
[http://dx.doi.org/10.1016/j.febslet.2007.12.015] [PMID: 18083128]
[574]
Rodríguez-Martínez, S.; Cancino-Diaz, J.C.; Vargas-Zuñiga, L.M.; Cancino-Diaz, M.E. LL-37 regulates the overexpression of vascular endothelial growth factor (VEGF) and c-IAP-2 in human keratinocytes. Int. J. Dermatol., 2008, 47(5), 457-462.
[http://dx.doi.org/10.1111/j.1365-4632.2008.03340.x] [PMID: 18412861]
[575]
Mahler, D.A.; Gifford, A.H.; Gilani, A.; Waterman, L.A.; Hilton, J.; Chang, A.S.; Kupchak, B.R.; Kraemer, W.J. Antagonism of substance P and perception of breathlessness in patients with chronic obstructive pulmonary disease. Respir. Physiol. Neurobiol., 2014, 196, 1-7.
[http://dx.doi.org/10.1016/j.resp.2014.02.008] [PMID: 24582719]
[576]
Alinari, L.; Yu, B.; Christian, B.A.; Yan, F.; Shin, J.; Lapalombella, R.; Hertlein, E.; Lustberg, M.E.; Quinion, C.; Zhang, X.; Lozanski, G.; Muthusamy, N.; Prætorius-Ibba, M.; O’Connor, O.A.; Goldenberg, D.M.; Byrd, J.C.; Blum, K.A.; Baiocchi, R.A. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood, 2011, 117(17), 4530-4541.
[http://dx.doi.org/10.1182/blood-2010-08-303354] [PMID: 21228331]
[577]
Liu, X.; Adib, D. R.; Goldberg, R. M.; Barak, H.; Yazji, S. Development of a phase Ib/IIa proof-of-concept study of imalumab (BAX69), a first-in-class anti-macrophage migration inhibitory factor (MIF) antibody, as the 3rd or 4th line treatment in metastatic colorectal cancer (mCRC). J. Clin. Oncol., 2015, 33(15_Suppl.), TPS3633-TPS3633..
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.tps3633]
[578]
Gore, Y.; Starlets, D.; Maharshak, N.; Becker-Herman, S.; Kaneyuki, U.; Leng, L.; Bucala, R.; Shachar, I. Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J. Biol. Chem., 2008, 283(5), 2784-2792.
[http://dx.doi.org/10.1074/jbc.M703265200] [PMID: 18056708]
[579]
Kang, I.; Bucala, R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat. Rev. Rheumatol., 2019, 15(7), 427-437.
[http://dx.doi.org/10.1038/s41584-019-0238-2] [PMID: 31197253]
[580]
Wallace, D.J.; Silverman, S.L.; Conklin, J.; Barken, D.; Dervieux, T. Systemic lupus erythematosus and primary fibromyalgia can be distinguished by testing for cell-bound complement activation products. Lupus Sci. Med., 2016, 3(1), e000127.
[http://dx.doi.org/10.1136/lupus-2015-000127] [PMID: 26870391]
[581]
Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; Johnson, K.; Lolis, E.J. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11313-11318.
[http://dx.doi.org/10.1073/pnas.1002716107] [PMID: 20534506]
[582]
Benedek, G.; Meza-Romero, R.; Jordan, K.; Zhang, Y.; Nguyen, H.; Kent, G.; Li, J.; Siu, E.; Frazer, J.; Piecychna, M.; Du, X.; Sreih, A.; Leng, L.; Wiedrick, J.; Caillier, S.J.; Offner, H.; Oksenberg, J.R.; Yadav, V.; Bourdette, D.; Bucala, R.; Vandenbark, A.A. MIF and D-DT are potential disease severity modifiers in male MS subjects. Proc. Natl. Acad. Sci. USA, 2017, 114(40), E8421-E8429.
[http://dx.doi.org/10.1073/pnas.1712288114] [PMID: 28923927]
[583]
Fox, R.J.; Coffey, C.S.; Conwit, R.; Cudkowicz, M.E.; Gleason, T.; Goodman, A.; Klawiter, E.C.; Matsuda, K.; McGovern, M.; Naismith, R.T.; Ashokkumar, A.; Barnes, J.; Ecklund, D.; Klingner, E.; Koepp, M.; Long, J.D.; Natarajan, S.; Thornell, B.; Yankey, J.; Bermel, R.A.; Debbins, J.P.; Huang, X.; Jagodnik, P.; Lowe, M.J.; Nakamura, K.; Narayanan, S.; Sakaie, K.E.; Thoomukuntla, B.; Zhou, X.; Krieger, S.; Alvarez, E.; Apperson, M.; Bashir, K.; Cohen, B.A.; Coyle, P.K.; Delgado, S.; Dewitt, L.D.; Flores, A.; Giesser, B.S.; Goldman, M.D.; Jubelt, B.; Lava, N.; Lynch, S.G.; Moses, H.; Ontaneda, D.; Perumal, J.S.; Racke, M.; Repovic, P.; Riley, C.S.; Severson, C.; Shinnar, S.; Suski, V.; Weinstock-Guttman, B.; Yadav, V.; Zabeti, A. NN102/SPRINT-MS Trial Investigators. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med., 2018, 379(9), 846-855.
[http://dx.doi.org/10.1056/NEJMoa1803583] [PMID: 30157388]
[584]
Sauler, M.; Bucala, R.; Lee, P.J. Role of macrophage migration inhibitory factor in age-related lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309(1), L1-L10.
[http://dx.doi.org/10.1152/ajplung.00339.2014] [PMID: 25957294]
[585]
Liu, Q.; Yang, H.; Zhang, S.F. Expression and significance of MIF and CD147 in non-small cell lung cancer. Sichuan Da Xue Xue Bao Yi Xue Ban, 2010, 41(1), 85-90.
[PMID: 20369477]
[586]
McClelland, M.; Zhao, L.; Carskadon, S.; Arenberg, D. Expression of CD74, the receptor for macrophage migration inhibitory factor, in non-small cell lung cancer. Am. J. Pathol., 2009, 174(2), 638-646.
[http://dx.doi.org/10.2353/ajpath.2009.080463] [PMID: 19131591]
[587]
Kamimura, A.; Kamachi, M.; Nishihira, J.; Ogura, S.; Isobe, H.; Dosaka-Akita, H.; Ogata, A.; Shindoh, M.; Ohbuchi, T.; Kawakami, Y. Intracellular distribution of macrophage migration inhibitory factor predicts the prognosis of patients with adenocarcinoma of the lung. Cancer, 2000, 89(2), 334-341.
[http://dx.doi.org/10.1002/1097-0142(20000715)89:2<334: AID-CNCR18>3.0.CO;2-N] [PMID: 10918163]
[588]
White, E.S.; Flaherty, K.R.; Carskadon, S.; Brant, A.; Iannettoni, M.D.; Yee, J.; Orringer, M.B.; Arenberg, D.A. Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer: role in angiogenesis and prognosis. Clin. Cancer Res., 2003, 9(2), 853-860.
[PMID: 12576459]
[589]
Govindan, S.V.; Cardillo, T.M.; Sharkey, R.M.; Tat, F.; Gold, D.V.; Goldenberg, D.M. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol. Cancer Ther., 2013, 12(6), 968-978.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1170] [PMID: 23427296]
[590]
Takahashi, K.; Koga, K.; Linge, H.M.; Zhang, Y.; Lin, X.; Metz, C.N.; Al-Abed, Y.; Ojamaa, K.; Miller, E.J. Macrophage CD74 contributes to MIF-induced pulmonary inflammation. Respir. Res., 2009, 10, 33.
[http://dx.doi.org/10.1186/1465-9921-10-33] [PMID: 19413900]
[591]
Patra, M.C.; Choi, S. Recent progress in the development of Toll-like receptor (TLR) antagonists. Expert Opin. Ther. Pat., 2016, 26(6), 719-730.
[http://dx.doi.org/10.1080/13543776.2016.1185415] [PMID: 27136061]
[592]
Arslan, F.; Houtgraaf, J.H.; Keogh, B.; Kazemi, K.; de Jong, R.; McCormack, W.J.; O’Neill, L.A.J.; McGuirk, P.; Timmers, L.; Smeets, M.B.; Akeroyd, L.; Reilly, M.; Pasterkamp, G.; de Kleijn, D.P.V. Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ. Cardiovasc. Interv., 2012, 5(2), 279-287.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.967596] [PMID: 22354933]
[593]
Reilly, M.; Miller, R.M.; Thomson, M.H.; Patris, V.; Ryle, P.; McLoughlin, L.; Mutch, P.; Gilboy, P.; Miller, C.; Broekema, M.; Keogh, B.; McCormack, W.; van de Wetering de Rooij, J. Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin. Pharmacol. Ther., 2013, 94(5), 593-600.
[http://dx.doi.org/10.1038/clpt.2013.150] [PMID: 23880971]
[594]
Koymans, K.J.; Feitsma, L.J.; Brondijk, T.H.C.; Aerts, P.C.; Lukkien, E.; Lössl, P.; van Kessel, K.P.M.; de Haas, C.J.C.; van Strijp, J.A.G.; Huizinga, E.G. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc. Natl. Acad. Sci. USA, 2015, 112(35), 11018-11023.
[http://dx.doi.org/10.1073/pnas.1502026112] [PMID: 26283364]
[595]
Cheng, K.; Wang, X.; Zhang, S.; Yin, H. Discovery of small-molecule inhibitors of the TLR1/TLR2 complex. Angew. Chem. Int. Ed. Engl., 2012, 51(49), 12246-12249.
[http://dx.doi.org/10.1002/anie.201204910] [PMID: 22969053]
[596]
Murgueitio, M.S.; Henneke, P.; Glossmann, H.; Santos-Sierra, S.; Wolber, G. Prospective virtual screening in a sparse data scenario: design of small-molecule TLR2 antagonists. Chem.Med.Chem, 2014, 9(4), 813-822.
[http://dx.doi.org/10.1002/cmdc.201300445] [PMID: 24470159]
[597]
Monnet, E.; Lapeyre, G.; Poelgeest, E.V.; Jacqmin, P.; Graaf, K.; Reijers, J.; Moerland, M.; Burggraaf, J.; Min, C. Evidence of NI-0101 pharmacological activity, an anti-TLR4 antibody, in a randomized phase I dose escalation study in healthy volunteers receiving LPS. Clin. Pharmacol. Ther., 2017, 101(2), 200-208.
[http://dx.doi.org/10.1002/cpt.522] [PMID: 27706798]
[598]
David, B.T.; Ratnayake, A.; Amarante, M.A.; Reddy, N.P.; Dong, W.; Sampath, S.; Heary, R.F.; Elkabes, S. A toll-like receptor 9 antagonist reduces pain hypersensitivity and the inflammatory response in spinal cord injury. Neurobiol. Dis., 2013, 54, 194-205.
[http://dx.doi.org/10.1016/j.nbd.2012.12.012] [PMID: 23313320]
[599]
Acioglu, C.; Mirabelli, E.; Baykal, A.T.; Ni, L.; Ratnayake, A.; Heary, R.F.; Elkabes, S. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: direct versus astrocyte-mediated mechanisms. Brain Behav. Immun., 2016, 56, 310-324.
[http://dx.doi.org/10.1016/j.bbi.2016.03.027] [PMID: 27044334]
[600]
Thomas, M.; Ponce-Aix, S.; Navarro, A.; Riera-Knorrenschild, J.; Schmidt, M.; Wiegert, E.; Kapp, K.; Wittig, B.; Mauri, C.; Dómine Gómez, M.; Kollmeier, J.; Sadjadian, P.; Fröhling, K.P.; Huber, R.M.; Wolf, M. IMPULSE study team. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann. Oncol., 2018, 29(10), 2076-2084.
[http://dx.doi.org/10.1093/annonc/mdy326] [PMID: 30137193]
[601]
Ronsley, R.; Kariminia, A.; Ng, B.; Mostafavi, S.; Reid, G.; Subrt, P.; Hijiya, N.; Schultz, K.R. The TLR9 agonist (GNKG168) induces a unique immune activation pattern in vivo in children with minimal residual disease positive acute leukemia: Results of the TACL T2009-008 phase I study. Pediatr. Hematol. Oncol., 2019, 36(8), 468-481.
[http://dx.doi.org/10.1080/08880018.2019.1667461] [PMID: 31530240]
[602]
Balak, D.M.W.; van Doorn, M.B.A.; Arbeit, R.D.; Rijneveld, R.; Klaassen, E.; Sullivan, T.; Brevard, J.; Thio, H.B.; Prens, E.P.; Burggraaf, J.; Rissmann, R. IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clin. Immunol., 2017, 174, 63-72.
[http://dx.doi.org/10.1016/j.clim.2016.09.015] [PMID: 27876460]
[603]
Barnes, N.; Pavord, I.; Chuchalin, A.; Bell, J.; Hunter, M.; Lewis, T.; Parker, D.; Payton, M.; Collins, L.P.; Pettipher, R.; Steiner, J.; Perkins, C.M. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin. Exp. Allergy, 2012, 42(1), 38-48.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03813.x] [PMID: 21762224]
[604]
Pettipher, R.; Hunter, M.G.; Perkins, C.M.; Collins, L.P.; Lewis, T.; Baillet, M.; Steiner, J.; Bell, J.; Payton, M.A. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy, 2014, 69(9), 1223-1232.
[http://dx.doi.org/10.1111/all.12451] [PMID: 24866478]
[605]
Hall, I.P.; Fowler, A.V.; Gupta, A.; Tetzlaff, K.; Nivens, M.C.; Sarno, M.; Finnigan, H.A.; Bateman, E.D.; Rand Sutherland, E. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm. Pharmacol. Ther., 2015, 32, 37-44.
[http://dx.doi.org/10.1016/j.pupt.2015.03.003] [PMID: 25861737]
[606]
Busse, W.W.; Wenzel, S.E.; Meltzer, E.O.; Kerwin, E.M.; Liu, M.C.; Zhang, N.; Chon, Y.; Budelsky, A.L.; Lin, J.; Lin, S.L. Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. J. Allergy Clin. Immunol., 2013, 131(2), 339-345.
[http://dx.doi.org/10.1016/j.jaci.2012.10.013] [PMID: 23174659]
[607]
Gonem, S.; Berair, R.; Singapuri, A.; Hartley, R.; Laurencin, M.F.M.; Bacher, G.; Holzhauer, B.; Bourne, M.; Mistry, V.; Pavord, I.D.; Mansur, A.H.; Wardlaw, A.J.; Siddiqui, S.H.; Kay, R.A.; Brightling, C.E. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir. Med., 2016, 4(9), 699-707.
[http://dx.doi.org/10.1016/S2213-2600(16)30179-5] [PMID: 27503237]
[608]
Kuna, P.; Bjermer, L.; Tornling, G. Two Phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des. Devel. Ther., 2016, 10, 2759-2770.
[http://dx.doi.org/10.2147/DDDT.S105142] [PMID: 27621597]
[609]
Budden, K.F.; Shukla, S.D.; Rehman, S.F.; Bowerman, K.L.; Keely, S.; Hugenholtz, P.; Armstrong-James, D.P.H.; Adcock, I.M.; Chotirmall, S.H.; Chung, K.F.; Hansbro, P.M. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med., 2019, 7(10), 907-920.
[http://dx.doi.org/10.1016/S2213-2600(18)30510-1] [PMID: 30975495]
[610]
Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol., 2017, 15(1), 55-63.
[http://dx.doi.org/10.1038/nrmicro.2016.142] [PMID: 27694885]
[611]
Caverly, L.J.; Huang, Y.J.; Sze, M.A. Past, present, and future research on the lung microbiome in inflammatory airway disease. Chest, 2019, 156(2), 376-382.
[http://dx.doi.org/10.1016/j.chest.2019.05.011] [PMID: 31154042]
[612]
Shukla, S.D.; Budden, K.F.; Neal, R.; Hansbro, P.M. Microbiome effects on immunity, health and disease in the lung. Clin. Transl. Immunology, 2017, 6(3), e133.
[http://dx.doi.org/10.1038/cti.2017.6] [PMID: 28435675]
[613]
Erb-Downward, J.R.; Thompson, D.L.; Han, M.K.; Freeman, C.M.; McCloskey, L.; Schmidt, L.A.; Young, V.B.; Toews, G.B.; Curtis, J.L.; Sundaram, B.; Martinez, F.J.; Huffnagle, G.B. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One, 2011, 6(2), e16384.
[http://dx.doi.org/10.1371/journal.pone.0016384] [PMID: 21364979]
[614]
Pragman, A.A.; Kim, H.B.; Reilly, C.S.; Wendt, C.; Isaacson, R.E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One, 2012, 7(10), e47305.
[http://dx.doi.org/10.1371/journal.pone.0047305] [PMID: 23071781]
[615]
Sze, M.A.; Dimitriu, P.A.; Hayashi, S.; Elliott, W.M.; McDonough, J.E.; Gosselink, J.V.; Cooper, J.; Sin, D.D.; Mohn, W.W.; Hogg, J.C. The lung tissue microbiome in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2012, 185(10), 1073-1080.
[http://dx.doi.org/10.1164/rccm.201111-2075OC] [PMID: 22427533]
[616]
Jungnickel, C.; Schmidt, L.H.; Bittigkoffer, L.; Wolf, L.; Wolf, A.; Ritzmann, F.; Kamyschnikow, A.; Herr, C.; Menger, M.D.; Spieker, T.; Wiewrodt, R.; Bals, R.; Beisswenger, C. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth. Oncogene, 2017, 36(29), 4182-4190.
[http://dx.doi.org/10.1038/onc.2017.28] [PMID: 28346430]
[617]
Larsen, J.M.; Musavian, H.S.; Butt, T.M.; Ingvorsen, C.; Thysen, A.H.; Brix, S. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology, 2015, 144(2), 333-342.
[http://dx.doi.org/10.1111/imm.12376] [PMID: 25179236]
[618]
Hughes, B.M.; Burton, C.S.; Reese, A.; Jabeen, M.F.; Wright, C.; Willis, J.; Khoshaein, N.; Marsh, E.K.; Peachell, P.; Sun, S.C.; Dockrell, D.H.; Marriott, H.M.; Sabroe, I.; Condliffe, A.M.; Prince, L.R. Pellino-1 regulates immune responses to Haemophilus influenzae in models of inflammatory lung disease. Front. Immunol., 2019, 10, 1721.
[http://dx.doi.org/10.3389/fimmu.2019.01721] [PMID: 31417543]
[619]
Maciejewski, B.A.; Jamieson, K.C.; Arnason, J.W.; Kooi, C.; Wiehler, S.; Traves, S.L.; Leigh, R.; Proud, D. Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 312(5), L731-L740.
[http://dx.doi.org/10.1152/ajplung.00362.2016] [PMID: 28283475]
[620]
Heinrich, A.; Heyl, K.A.; Klaile, E.; Müller, M.M.; Klassert, T.E.; Wiessner, A.; Fischer, K.; Schumann, R.R.; Seifert, U.; Riesbeck, K.; Moter, A.; Singer, B.B.; Bachmann, S.; Slevogt, H. Moraxella catarrhalis induces CEACAM3-Syk-CARD9-dependent activation of human granulocytes. Cell. Microbiol., 2016, 18(11), 1570-1582.
[http://dx.doi.org/10.1111/cmi.12597] [PMID: 27038042]
[621]
Alam, R.; Abdolmaleky, H.M.; Zhou, J.R. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2017, 174(6), 651-660.
[http://dx.doi.org/10.1002/ajmg.b.32567] [PMID: 28691768]
[622]
Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology, 2017, 152(7), 1671-1678.
[http://dx.doi.org/10.1053/j.gastro.2016.12.048] [PMID: 28192102]
[623]
Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The microbiome, cancer and cancer therapy. Nat. Med., 2019, 25(3), 377-388.
[http://dx.doi.org/10.1038/s41591-019-0377-7] [PMID: 30842679]
[624]
Shen, S.; Wong, C.H. Bugging inflammation: role of the gut microbiota. Clin. Transl. Immunology, 2016, 5(4), e72.
[http://dx.doi.org/10.1038/cti.2016.12] [PMID: 27195115]
[625]
Young, R.P.; Hopkins, R.J. Is the “Western Diet” a new smoking gun for chronic obstructive pulmonary disease? Ann. Am. Thorac. Soc., 2018, 15(6), 662-663.
[http://dx.doi.org/10.1513/AnnalsATS.201802-131ED] [PMID: 29856249]
[626]
Vaughan, A.; Frazer, Z.A.; Hansbro, P.M.; Yang, I.A. COPD and the gut-lung axis: the therapeutic potential of fibre. J. Thorac. Dis., 2019, 11(Suppl. 17), S2173-S2180.
[http://dx.doi.org/10.21037/jtd.2019.10.40] [PMID: 31737344]
[627]
Szmidt, M.K.; Kaluza, J.; Harris, H.R.; Linden, A.; Wolk, A. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of women., Eur. J. Nutr., 2020, 59(5), 1869-1879..
[http://dx.doi.org/10.1007/s00394-019-02038-w ] [PMID: 31280344]
[628]
Kaluza, J.; Larsson, S.C.; Orsini, N.; Linden, A.; Wolk, A. Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men. Thorax, 2017, 72(6), 500-509.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207851] [PMID: 28228486]
[629]
Mortaz, E.; Adcock, I.M.; Ricciardolo, F.L.M.; Varahram, M.; Jamaati, H.; Velayati, A.A.; Folkerts, G.; Garssen, J. Anti-inflammatory effects of Lactobacillus rahmnosus and Bifidobacterium breve on cigarette smoke activated human macrophages. PLoS One, 2015, 10(8), e0136455.
[http://dx.doi.org/10.1371/journal.pone.0136455] [PMID: 26317628]
[630]
Vollenweider, D.J.; Frei, A.; Steurer-Stey, C.A.; Garcia-Aymerich, J.; Puhan, M.A. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev., 2018, 10, CD010257.
[http://dx.doi.org/10.1002/14651858.CD010257.pub2] [PMID: 30371937]
[631]
Herath, S.C.; Normansell, R.; Maisey, S.; Poole, P. Prophylactic antibiotic therapy for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev., 2018, 10, CD009764.
[http://dx.doi.org/10.1002/14651858.CD009764.pub3] [PMID: 30376188]
[632]
Adcock, I.M.; Caramori, G.; Kirkham, P.A. Strategies for improving the efficacy and therapeutic ratio of glucocorticoids. Curr. Opin. Pharmacol., 2012, 12(3), 246-251.
[http://dx.doi.org/10.1016/j.coph.2012.02.006] [PMID: 22445282]
[633]
Adcock, I.M.; Marwick, J.; Casolari, P.; Contoli, M.; Chung, K.F.; Kirkham, P.; Papi, A.; Caramori, G. Mechanisms of corticosteroid resistance in severe asthma and chronic obstructive pulmonary disease (COPD). Curr. Pharm. Des., 2010, 16(32), 3554-3573.
[http://dx.doi.org/10.2174/138161210793797889] [PMID: 20977420]
[634]
Clevers, H. Modeling development and disease with organoids. Cell, 2016, 165(7), 1586-1597.
[http://dx.doi.org/10.1016/j.cell.2016.05.082] [PMID: 27315476]
[635]
Barnes, P.J. The cytokine network in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol., 2009, 41(6), 631-638.
[http://dx.doi.org/10.1165/rcmb.2009-0220TR] [PMID: 19717810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy