Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Achievements in Nucleophilic Decarboxylative Addition Reactions

Author(s): Serhii Melnykov*, Volodymyr Sukach and Mykhailo Vovk

Volume 24, Issue 19, 2020

Page: [2193 - 2215] Pages: 23

DOI: 10.2174/1385272824999200818181531

Price: $65

Abstract

Decarboxylative addition reactions are well known as an effective approach to C–C bonds formation due to the availability of starting reagents, ease of handling, and low environmental impact. This approach clearly demonstrated its potential for the synthesis of the variety of acyclic and heterocyclic compounds, including optically active ones. The significant amount of articles devoted to this topic published in recent years proves the importance of this approach in modern organic synthesis. In this review, the recent achievements in decarboxylative addition to C=C, C=N, and C=O bonds have been summarized and discussed over the last 6 years.

Keywords: Decarboxylative addition, regio- and stereoselective synthesis, enolization, metalo- and organocatalysis, C-C bond formation, nucleophilic addition.

Next »
Graphical Abstract
[1]
Staunton, J.; Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep., 2001, 18(4), 380-416.
[http://dx.doi.org/10.1039/a909079g] [PMID: 11548049]
[2]
Wang, Z-L. Recent advances in catalytic asymmetric decarboxylative addition reactions. Adv. Synth. Catal., 2013, 355(14-15), 2745-2755.
[http://dx.doi.org/10.1002/adsc.201300375]
[3]
Nakamura, S. Catalytic enantioselective decarboxylative reactions using organocatalysts. Org. Biomol. Chem., 2014, 12(3), 394-405.
[http://dx.doi.org/10.1039/C3OB42161A] [PMID: 24270735]
[4]
Hyodo, K.; Nakamura, S. Catalytic enantioselective decarboxylative nucleophilic addition reactions using chiral organocatalysts. Org. Biomol. Chem., 2020, 18(15), 2781-2792.
[http://dx.doi.org/10.1039/D0OB00127A] [PMID: 32222743]
[5]
Bojanowski, J.; Albrecht, A. Carboxylic‐acid‐activated olefins in decarboxylative reactions. Asian J. Org. Chem., 2019, 8(6), 746-754.
[http://dx.doi.org/10.1002/ajoc.201900166]
[6]
Evans, D.A.; Mito, S.; Seidel, D. Scope and mechanism of enantioselective Michael additions of 1,3-dicarbonyl compounds to nitroalkenes catalyzed by nickel(II)-diamine complexes. J. Am. Chem. Soc., 2007, 129(37), 11583-11592.
[http://dx.doi.org/10.1021/ja0735913] [PMID: 17718492]
[7]
Furutachi, M.; Mouri, S.; Matsunaga, S.; Shibasaki, M. A heterobimetallic Ni/La-salan complex for catalytic asymmetric decarboxylative 1,4-addition of malonic acid half-thioester. Chem. Asian J., 2010, 5(11), 2351-2354.
[http://dx.doi.org/10.1002/asia.201000540] [PMID: 20839279]
[8]
Li, S-W.; Gong, J.; Kang, Q. Chiral-at-metal Rh(III) complex-catalyzed decarboxylative Michael addition of β-keto acids with α,β-unsaturated 2-acyl imidazoles or pyridine. Org. Lett., 2017, 19(6), 1350-1353.
[http://dx.doi.org/10.1021/acs.orglett.7b00220] [PMID: 28245128]
[9]
Lee, J.; Wang, S.; Callahan, M.; Nagorny, P. Copper(II)-catalyzed tandem decarboxylative Michael/aldol reactions leading to the formation of functionalized cyclohex-enones. Org. Lett., 2018, 20(7), 2067-2070.
[http://dx.doi.org/10.1021/acs.orglett.8b00607] [PMID: 29560721]
[10]
Quintard, A.; Rodriguez, J. Synergistic Cu-amine catalysis for the enantioselective synthesis of chiral cyclohexenones. Chem. Commun. (Camb.), 2015, 51(46), 9523-9526.
[http://dx.doi.org/10.1039/C5CC02987B] [PMID: 25968341]
[11]
Li, C.; Breit, B. Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to allenes: efficient construction of tertiary and quaternary carbon centers. J. Am. Chem. Soc., 2014, 136(3), 862-865.
[http://dx.doi.org/10.1021/ja411397g] [PMID: 24397382]
[12]
Zhu, T.; Ma, S. 3,4-Alkadienyl ketones via the palladium-catalyzed decarboxylative allenylation of 3-oxocarboxylic acids. Chem. Commun. (Camb.), 2017, 53(44), 6037-6040.
[http://dx.doi.org/10.1039/C7CC02050C] [PMID: 28524922]
[13]
Cruz, F.A.; Chen, Z.; Kurtoic, S.I.; Dong, V.M. Tandem Rh-catalysis: decarboxylative β-keto acid and alkyne cross-coupling. Chem. Commun. (Camb.), 2016, 52(34), 5836-5839.
[http://dx.doi.org/10.1039/C6CC02522F] [PMID: 27043656]
[14]
Jiang, C.; Chen, Y.; Huang, G.; Ni, C.; Liu, X.; Lu, H. Scandium(III)-catalysed decarboxylative addition of β-ketoacids to para-quinone methides: evidence for 1,6-addition and base-assisted decarboxylation tandem process. Asian J. Org. Chem., 2019, 8(2), 257-260.
[http://dx.doi.org/10.1002/ajoc.201800729]
[15]
Fujii, M.; Terao, Y.; Sekiya, M. Decarboxylation reactions. II. Reaction of conjugated unsaturated ketones and nitriles with carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1974, 22(11), 2675-2679.
[http://dx.doi.org/10.1248/cpb.22.2675]
[16]
Lubkoll, J.; Wennemers, H. Mimicry of polyketide synthases--enantioselective 1,4-addition reactions of malonic acid half-thioesters to nitroolefins. Angew. Chem. Int. Ed. Engl., 2007, 46(36), 6841-6844.
[http://dx.doi.org/10.1002/anie.200702187] [PMID: 17680584]
[17]
Cosimi, E.; Saadi, J.; Wennemers, H. Stereoselective synthesis of α-fluoro-γ-nitro thioesters under organocatalytic conditions. Org. Lett., 2016, 18(23), 6014-6017.
[http://dx.doi.org/10.1021/acs.orglett.6b02795] [PMID: 27934387]
[18]
Qiao, B.; Liu, Q.; Liu, H.; Yan, L.; Jiang, Z. Asymmetric decarboxylative 1,4-addition of malonic acid half thioesters to vinyl sulfones: highly enantioselective synthesis of 3-monofluoromethyl-3-arylpropanoic esters. Chem. Asian J., 2014, 9(5), 1252-1256.
[http://dx.doi.org/10.1002/asia.201400049] [PMID: 24591040]
[19]
Wei, Y.; Guo, R.; Dang, Y.; Nie, J.; Ma, J-A. Organocatalytic enantioselective decarboxylative Michael addition of β-keto acids to dicyanoolefins and disulfonylolefins. Adv. Synth. Catal., 2016, 358(17), 2721-2726.
[http://dx.doi.org/10.1002/adsc.201600485]
[20]
Kaur, J.; Kumari, A.; Chimni, S.S. Grinding assisted, column chromatography free decarboxylative carbon-carbon bond formation: greener synthesis of 3,3-disubstituted oxindoles. Tetrahedron, 2017, 73(6), 802-808.
[http://dx.doi.org/10.1016/j.tet.2016.12.070]
[21]
Zhou, F.; Liu, Y.L.; Zhou, J. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. Adv. Synth. Catal., 2010, 352(9), 1381-1407.
[http://dx.doi.org/10.1002/adsc.201000161]
[22]
Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Synthesis of novel spiropyrrolizidines as potent antimicrobial agents for human and plant pathogens. Bioorg. Med. Chem. Lett., 2008, 18(7), 2342-2345.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.065] [PMID: 18342506]
[23]
Lo, M.M.C.; Neumann, C.S.; Nagayama, S.; Perlstein, E.O.; Schreiber, S.L. A library of spirooxindoles based on a stereoselective three-component coupling reaction. J. Am. Chem. Soc., 2004, 126(49), 16077-16086.
[http://dx.doi.org/10.1021/ja045089d] [PMID: 15584743]
[24]
Qiu, X.; Janson, C.A.; Smith, W.W.; Head, M.; Lonsdale, J.; Konstantinidis, A.K. Refined structures of β-ketoacyl-acyl carrier protein synthase III. J. Mol. Biol., 2001, 307(1), 341-356.
[http://dx.doi.org/10.1006/jmbi.2000.4457] [PMID: 11243824]
[25]
Kumari, A.; Kaur, J.; Bhardwaj, V.K.; Chimni, S.S. Organocatalytic asymmetric decarboxylative addition of β-ketoacids to methyleneindolinones derivatives. Eur. J. Org. Chem., 2018, 2018(30), 4081-4088.
[http://dx.doi.org/10.1002/ejoc.201800454]
[26]
Nakamura, S.; Toda, A.; Sano, M.; Hatanaka, T.; Funahashi, Y. Organocatalytic enantioselective conjugate addition of malonic acid half thioesters to coumarin-3-carboxylic acids using N-heteroarenesulfonyl Cinchona alkaloid amides. Adv. Synth. Catal., 2016, 358(7), 1029-1034.
[http://dx.doi.org/10.1002/adsc.201600040]
[27]
Albrecht, A. Utilization of chromone-3-carboxylic acids as acceptors in the Michael-type decarboxylative addition. Eur. J. Org. Chem., 2018, 2018(46), 6482-6485.
[http://dx.doi.org/10.1002/ejoc.201801110]
[28]
Melnykov, S.V.; Pataman, A.S.; Dmytriv, Y.V.; Shishkina, S.V.; Vovk, M.V.; Sukach, V.A. Regioselective decarboxylative addition of malonic acid and its mono(thio)esters to 4-trifluoromethylpyrimidin-2(1H)-ones. Beilstein J. Org. Chem., 2017, 13(1), 2617-2625.
[http://dx.doi.org/10.3762/bjoc.13.259] [PMID: 29259672]
[29]
Tkachuk, V.M.; Mel’nikov, S.V.; Sukach, V.A.; Vovk, M.V. The addition of β-ketoacids to 4-(trifluoromethyl)pyrimidin-2(1H)-ones with decarboxylation: an effective method for the synthesis of 4-(2-oxoalkyl)-6-(trifluoromethyl)-3,4-dihydropyrimidin-2-ones. Chem. Heterocycl. Compd., 2017, 53(10), 1124-1127.
[http://dx.doi.org/10.1007/s10593-017-2182-x]
[30]
Tkachuk, V.M.; Melnykov, S.V.; Vorobei, A.V.; Sukach, V.A.; Vovk, M.V. Study of regioselectivity in cyanomethylation of 4-(trifluoromethyl)-pyrimidin-2(1H)-ones. Chem. Heterocycl. Compd., 2019, 55(1), 66-71.
[http://dx.doi.org/10.1007/s10593-019-02420-w]
[31]
Sukach, V.A.; Tkachuk, V.M.; Shoba, V.M.; Pirozhenko, V.V.; Rusanov, E.B.; Chekotilo, A.A.; Röschenthaler, G-V.; Vovk, M.V. Control of regio- and enantioselectivity in the asymmetric organocatalytic addition of acetone to 4-(trifluoromethyl) pyrimidin-2(1H)-ones. Eur. J. Org. Chem., 2014, 2014(7), 1452-1460.
[http://dx.doi.org/10.1002/ejoc.201301542]
[32]
Guo, Y.L.; Li, Y.H.; Chang, H.H.; Kuo, T.S.; Han, J.L. Molecular sieve mediated sequential Knoevenagel condensation/decarboxylative Michael addition reaction: efficient and mild conditions for the synthesis of 3,3-disubstituted oxindoles with an all carbon quaternary center. RSC Advances, 2016, 6(78), 74683-74690.
[http://dx.doi.org/10.1039/C6RA16975A]
[33]
Zhao, Y.; Benz, S.; Sakai, N.; Matile, S. Selective acceleration of disfavored enolate addition reactions by anion-π interactions. Chem. Sci. (Camb.), 2015, 6(11), 6219-6223.
[http://dx.doi.org/10.1039/C5SC02563J] [PMID: 30090238]
[34]
Wang, C.; Miros, F.N.; Mareda, J.; Sakai, N.; Matile, S. Asymmetric anion-π catalysis on perylenediimides. Angew. Chem. Int. Ed. Engl., 2016, 55(46), 14422-14426.
[http://dx.doi.org/10.1002/anie.201608842] [PMID: 27739617]
[35]
Zhao, Y.; Cotelle, Y.; Liu, L.; Andarias, J.L.; Bornhof, A-B.; Akamatsu, M.; Sakai, N.; Matile, S. The emergence of anion-π catalysis. Acc. Chem. Res., 2018, 51(9), 2255-2263.
[http://dx.doi.org/10.1021/acs.accounts.8b00223] [PMID: 30188692]
[36]
Yang, C-F.; Shen, C.; Wang, J-Y.; Tian, S-K. A highly diastereoselective decarboxylative mannich reaction of β-keto acids with optically active N-sulfinyl α-imino esters. Org. Lett., 2012, 14(12), 3092-3095.
[http://dx.doi.org/10.1021/ol301180z] [PMID: 22651252]
[37]
Qian, P.; Dai, Y.; Mei, H.; Soloshonok, V.A.; Han, J.; Pan, Y. Ni-catalyzed asymmetric decarboxylative Mannich reaction for the synthesis of β-trifluoromethyl-β-amino ketones. RSC Advances, 2015, 5(34), 26811-26814.
[http://dx.doi.org/10.1039/C5RA02653A]
[38]
Zhang, H-X.; Nie, J.; Cai, H.; Ma, J-A. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity. Org. Lett., 2014, 16(9), 2542-2545.
[http://dx.doi.org/10.1021/ol500929d] [PMID: 24762142]
[39]
Jia, C-M.; Zhang, H-X.; Nie, J.; Ma, J-A. Catalytic asymmetric decarboxylative Mannich reaction of malonic acid half esters with cyclic aldimines: access to chiral β-amino esters and chroman-4-amines. J. Org. Chem., 2016, 81(18), 8561-8569.
[http://dx.doi.org/10.1021/acs.joc.6b01750] [PMID: 27562019]
[40]
Biswas, K.; Li, A.; Chen, J.J.; D’Amico, D.C.; Fotsch, C.; Han, N.; Human, J.; Liu, Q.; Norman, M.H.; Riahi, B.; Yuan, C.; Suzuki, H.; Mareska, D.A.; Zhan, J.; Clarke, D.E.; Toro, A.; Groneberg, R.D.; Burgess, L.E.; Zeiner, D.L.; Biddlecome, G.; Manning, B.H.; Arik, L.; Dong, H.; Huang, M.; Kamassah, A.; Loeloff, R.; Sun, H.; Hsieh, F.Y.; Kumar, G.; Ng, G.Y.; Hungate, R.W.; Askew, B.C.; Johnson, E. Potent nonpeptide antagonists of the bradykinin B1 receptor: structure-activity relationship studies with novel diaminochroman carboxamides. J. Med. Chem., 2007, 50(9), 2200-2212.
[http://dx.doi.org/10.1021/jm070055c] [PMID: 17408249]
[41]
Lloyd, J.; Atwal, K.S.; Finlay, H.J.; Nyman, M.; Huynh, T.; Bhandaru, R.; Kover, A.; Schmidt, J.; Vaccaro, W.; Conder, M.L.; Jenkins-West, T.; Levesque, P. Benzopyran sulfonamides as KV1.5 potassium channel blockers. Bioorg. Med. Chem. Lett., 2007, 17(12), 3271-3275.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.020] [PMID: 17462888]
[42]
Lai, B.N.; Qiu, J.F.; Zhang, H.X.; Nie, J.; Ma, J.A. Stereoselective synthesis of fused aziridines via one-pot sequential decarboxylative Mannich reaction and oxidative C-H amination of cyclic imines with β-ketoacids. Org. Lett., 2016, 18(3), 520-523.
[http://dx.doi.org/10.1021/acs.orglett.5b03551] [PMID: 26760451]
[43]
Sawa, M.; Miyazaki, S.; Yonesaki, R.; Morimoto, H.; Ohshima, T. Catalytic enantioselective decarboxylative Mannich-type reaction of N-unprotected isatin-derived ketimines. Org. Lett., 2018, 20(17), 5393-5397.
[http://dx.doi.org/10.1021/acs.orglett.8b02306] [PMID: 30106593]
[44]
Zhang, H.J.; Xie, Y.C.; Yin, L. Copper(I)-catalyzed asymmetric decarboxylative Mannich reaction enabled by acidic activation of 2H-azirines. Nat. Commun., 2019, 10(1), 1699.
[http://dx.doi.org/10.1038/s41467-019-09750-5] [PMID: 30979892]
[45]
Bergmeier, S.C.; Krake, S.H. Inter- and intramolecular reactions of epoxides and aziridines with π-nucleophiles. Tetrahedron, 2010, 66(37), 7337-7360.
[http://dx.doi.org/10.1016/j.tet.2010.06.064]
[46]
Schneider, C. Catalytic, enantioselective ring opening of aziridines. Angew. Chem. Int. Ed. Engl., 2009, 48(12), 2082-2084.
[http://dx.doi.org/10.1002/anie.200805542] [PMID: 19173352]
[47]
Pineschi, M. Asymmetric ring-opening of epoxides and aziridines with carbon nucleophiles. Eur. J. Org. Chem., 2006, 22, 4979-4988.
[http://dx.doi.org/10.1002/ejoc.200600384]
[48]
Hu, X.E. Nucleophilic ring opening of aziridines. Tetrahedron, 2004, 60(12), 2701-2743.
[http://dx.doi.org/10.1016/j.tet.2004.01.042]
[49]
Tanner, D. Chiral aziridines - their synthesis and use in stereoselective transformations. Angew. Chem. Int. Ed. Engl., 1994, 33(6), 599-619.
[http://dx.doi.org/10.1002/anie.199405991]
[50]
Baudoux, J.; Lefebvre, P.; Legay, R.; Lasne, M-C.; Rouden, J. Environmentally benign metal-free decarboxylative aldol and Mannich reactions. Green Chem., 2010, 12(2), 252-259.
[http://dx.doi.org/10.1039/B915681J]
[51]
Cragg, J.E.; Herbert, R.B.; Kgaphola, M.M. Pea-seedling diamine oxidase: applications in synthesis and evidence relating to its mechanism of action. Tetrahedron Lett., 1990, 31(47), 6907-6910.
[http://dx.doi.org/10.1016/S0040-4039(00)97204-6]
[52]
Herbert, R.B.; Jackson, F.B.; Nicolson, I.T. Biosynthesis of phenanthroindolizidine alkaloids: incorporation of 2-pyrrolidin-2-ylacetophenone and benzoylacetic acid and derivatives. J. Chem. Soc., Perkin Trans. 1, 1984, 1984, 825-831.
[http://dx.doi.org/10.1039/p19840000825]
[53]
Böhm, M.; Proksch, K.; Mahrwald, R. Decarboxylative Mannich reactions. Eur. J. Org. Chem., 2013, 2013(6), 1046-1049.
[http://dx.doi.org/10.1002/ejoc.201201644]
[54]
Sukach, V.; Melnykov, S.; Bertho, S.; Diachenko, I.; Retailleau, P.; Vovk, M.; Gillaizeau, I. Access to unprotected β-fluoroalkyl β-amino acids and their α-hydroxy derivatives. Org. Lett., 2019, 21(7), 2340-2345.
[http://dx.doi.org/10.1021/acs.orglett.9b00622] [PMID: 30873840]
[55]
Rodionow, W.M.; Postovskaja, E.A. The mechanism of formation of beta-aryl-beta-amino fatty acids by the condensation of aromatic aldehydes with malonic acid and its derivatives. J. Am. Chem. Soc., 1929, 51(3), 841-847.
[http://dx.doi.org/10.1021/ja01378a027]
[56]
Ojima, I. Strategic incorporation of fluorine into taxoid anticancer agents for medicinal chemistry and chemical biology studies. J. Fluor. Chem., 2017, 198, 10-23.
[http://dx.doi.org/10.1016/j.jfluchem.2016.12.016] [PMID: 28824201]
[57]
Seitz, J.; Vineberg, J.G.; Zuniga, E.S.; Ojima, I. Fluorine-containing taxoid anticancer agents and their tumor-targeted drug delivery. J. Fluor. Chem., 2013, 152, 157-165.
[http://dx.doi.org/10.1016/j.jfluchem.2013.05.013] [PMID: 23935213]
[58]
Kaur, J.; Kumari, A.; Bhardwaj, V.K.; Chimni, S.S. Chiral squaramide-catalyzed enantioselective decarboxylative addition of β-keto acids to isatin imines. Adv. Synth. Catal., 2017, 359(10), 1725-1734.
[http://dx.doi.org/10.1002/adsc.201700011]
[59]
Zhou, Y.; You, Y.; Wang, Z-H.; Zhang, X-M.; Xu, X-Y.; Yuan, W-C. Organocatalyzed enantioselective decarboxylative Mannich reaction of β-ketoacids with pyrazolinone ketimines for the construction of chiral β-amino ketone-pyrazolinone derivatives. Eur. J. Org. Chem., 2019, 2019(20), 3112-3116.
[http://dx.doi.org/10.1002/ejoc.201900346]
[60]
Liu, M.; Sibi, M.P. Recent advances in the stereoselective synthesis of β-amino acids. Tetrahedron, 2002, 58(40), 7991-8035.
[http://dx.doi.org/10.1016/S0040-4020(02)00991-2]
[61]
Cherney, R.J.; Mo, R.; Meyer, D.T.; Hardman, K.D.; Liu, R.Q.; Covington, M.B.; Qian, M.; Wasserman, Z.R.; Christ, D.D.; Trzaskos, J.M.; Newton, R.C.; Decicco, C.P. Sultam hydroxamates as novel matrix metalloproteinase inhibitors. J. Med. Chem., 2004, 47(12), 2981-2983.
[http://dx.doi.org/10.1021/jm049833g] [PMID: 15163180]
[62]
Hanessian, S.; Sailes, H.; Therrien, E. Synthesis of functionally diverse bicyclic sulfonamides as constrained proline analogues and application to the design of potential thrombin inhibitors. Tetrahedron, 2003, 59(35), 7047-7056.
[http://dx.doi.org/10.1016/S0040-4020(03)00919-0]
[63]
Wells, G.J.; Tao, M.; Josef, K.A.; Bihovsky, R. 1,2-Benzothiazine 1,1-dioxide P2-P3 peptide mimetic aldehyde calpain I inhibitors. J. Med. Chem., 2001, 44(21), 3488-3503.
[http://dx.doi.org/10.1021/jm010178b] [PMID: 11585453]
[64]
Nakamura, S.; Sano, M.; Toda, A.; Nakane, D.; Masuda, H. Organocatalytic enantioselective decarboxylative reaction of malonic acid half thioesters with cyclic N-sulfonyl ketimines by using N-heteroarenesulfonyl cinchona alkaloid amides. Chemistry, 2015, 21(10), 3929-3932.
[http://dx.doi.org/10.1002/chem.201406270] [PMID: 25614368]
[65]
Liu, Y-J.; Li, J-S.; Nie, J.; Ma, J-A. Organocatalytic asymmetric decarboxylative Mannich reaction of β-keto acids with cyclic α-ketiminophosphonates: access to quater-nary α-aminophosphonates. Org. Lett., 2018, 20(12), 3643-3646.
[http://dx.doi.org/10.1021/acs.orglett.8b01422] [PMID: 29847943]
[66]
Jiang, B.; Si, Y-G. Highly enantioselective construction of a chiral tertiary carbon center by alkynylation of a cyclic N-acyl ketimine: an efficient preparation of HIV therapeutics. Angew. Chem. Int. Ed. Engl., 2004, 43(2), 216-218.
[http://dx.doi.org/10.1002/anie.200352301] [PMID: 14695613]
[67]
Jiang, B.; Dong, J.J.; Si, Y.G.; Zhao, X.L.; Huang, Z.G.; Xu, M. Highly enantioselective construction of a quaternary carbon center of dihydroquinazoline by asymmetric Mannich reaction and chiral recognition. Adv. Synth. Catal., 2008, 350(9), 1360-1366.
[http://dx.doi.org/10.1002/adsc.200800039]
[68]
Zhang, F.G.; Zhu, X.Y.; Li, S.; Nie, J.; Ma, J.A. Highly enantioselective organocatalytic Strecker reaction of cyclic N-acyl trifluoromethylketimines: synthesis of anti-HIV drug DPC 083. Chem. Commun. (Camb.), 2012, 48(94), 11552-11554.
[http://dx.doi.org/10.1039/c2cc36307k] [PMID: 23090241]
[69]
Zhang, K-F.; Nie, J.; Guo, R.; Zheng, Y.; Ma, J-A. Chiral Phosphoric acid-catalyzed asymmetric aza-friedel-crafts reaction of indoles with cyclic N-acylketimines: enanti-oselective synthesis of trifluoromethyldihydroquinazolines. Adv. Synth. Catal., 2013, 355(17), 3497-3502.
[http://dx.doi.org/10.1002/adsc.201300534]
[70]
Zhou, D.; Huang, Z.; Yu, X.; Wang, Y.; Li, J.; Wang, W.; Xie, H. A Quinine-squaramide catalyzed enantioselective Aza-Friedel-Crafts reaction of cyclic trifluoromethyl ketimines with naphthols and electron-rich phenols. Org. Lett., 2015, 17(22), 5554-5557.
[http://dx.doi.org/10.1021/acs.orglett.5b02668] [PMID: 26524623]
[71]
Zhou, B.; Jiang, C.; Gandi, V.R.; Lu, Y.; Hayashi, T. Palladium-catalyzed asymmetric arylation of trifluoromethylated/perfluoroalkylated 2-quinazolinones with high enantioselectivity. Chemistry, 2016, 22(37), 13068-13071.
[http://dx.doi.org/10.1002/chem.201603105] [PMID: 27377667]
[72]
Yuan, H-N.; Wang, S.; Nie, J.; Meng, W.; Yao, Q.; Ma, J-A. Hydrogen-bond-directed enantioselective decarboxylative Mannich reaction of β-ketoacids with ketimines: application to the synthesis of anti-HIV drug DPC 083. Angew. Chem. Int. Ed. Engl., 2013, 52(14), 3869-3873.
[http://dx.doi.org/10.1002/anie.201210361] [PMID: 23460261]
[73]
Yuan, H-N.; Li, S.; Nie, J.; Zheng, Y.; Ma, J-A. Highly enantioselective decarboxylative Mannich reaction of malonic acid half oxyesters with cyclic trifluoromethyl ketimines: synthesis of β-amino esters and anti-HIV drug DPC 083. Chemistry, 2013, 19(47), 15856-15860.
[http://dx.doi.org/10.1002/chem.201303307] [PMID: 24150893]
[74]
van Tamelen, E.E.; Knapp, G.G. Synthesis of β-(2-Piperidyl)-indoles. J. Am. Chem. Soc., 1955, 77(7), 1860-1862.
[http://dx.doi.org/10.1021/ja01612a044]
[75]
Chapman, J.H.; Holton, P.G.; Ritchie, A.C.; Walker, T.; Webb, G.B.; Whiting, K.D.E. 473. Emetine and related compounds. Part I. The synthesis of tetrahydroisoquinolyl ketones. J. Chem. Soc., 1962, 1962, 2471-2479.
[http://dx.doi.org/10.1039/jr9620002471]
[76]
Lahosa, A.; Soler, T.; Arrieta, A.; Cossío, F.P.; Foubelo, F.; Yus, M. Stereoselective coupling of N-tert-butanesulfinyl aldimines and β-keto acids: access to β-amino ketones. J. Org. Chem., 2017, 82(14), 7481-7491.
[http://dx.doi.org/10.1021/acs.joc.7b01178] [PMID: 28661149]
[77]
Lisnyak, V.G.; Lynch-Colameta, T.; Snyder, S.A. Mannich-type reactions of cyclic nitrones: effective methods for the enantioselective synthesis of piperidine-containing alkaloids. Angew. Chem. Int. Ed. Engl., 2018, 57(46), 15162-15166.
[http://dx.doi.org/10.1002/anie.201809799] [PMID: 30276949]
[78]
List, B.; Pojarliev, P.; Castello, C. Proline-catalyzed asymmetric aldol reactions between ketones and α-unsubstituted aldehydes. Org. Lett., 2001, 3(4), 573-575.
[http://dx.doi.org/10.1021/ol006976y] [PMID: 11178828]
[79]
Yuan, J-W.; Liu, S-N.; Mai, W-P. Copper-catalysed difluoroalkylation of aromatic aldehydes via a decarboxylation/aldol reaction. Org. Biomol. Chem., 2017, 15(36), 7654-7659.
[http://dx.doi.org/10.1039/C7OB01739A] [PMID: 28871302]
[80]
Wang, N.; Liu, H.; Gao, H.; Zhou, J.; Zheng, L.; Li, J.; Xiao, H-P.; Li, X.; Jiang, J. Ni(II)-catalyzed enantioselective synthesis of β-hydroxy esters with carboxylate assis-tance. Org. Lett., 2019, 21(17), 6684-6689.
[http://dx.doi.org/10.1021/acs.orglett.9b02297] [PMID: 31393737]
[81]
Duan, Z.; Han, J.; Qian, P.; Zhang, Z.; Wang, Y.; Pan, Y. A convenient enantioselective decarboxylative aldol reaction to access chiral α-hydroxy esters using β-keto acids. Beilstein J. Org. Chem., 2014, 10(1), 969-974.
[http://dx.doi.org/10.3762/bjoc.10.95] [PMID: 24991246]
[82]
Wei, A-J.; Nie, J.; Zheng, Y.; Ma, J-A. Ni-catalyzed highly chemo-, regio-, and enantioselective decarboxylative aldol reaction of β,γ-unsaturated α-ketoesters with β-ketoacids. J. Org. Chem., 2015, 80(8), 3766-3776.
[http://dx.doi.org/10.1021/jo502741z] [PMID: 25785671]
[83]
Gao, H.; Luo, Z.; Ge, P.; He, J.; Zhou, F.; Zheng, P.; Jiang, J. Direct catalytic asymmetric synthesis of β-hydroxy acids from malonic acid. Org. Lett., 2015, 17(24), 5962-5965.
[http://dx.doi.org/10.1021/acs.orglett.5b02891] [PMID: 26587748]
[84]
Chang, C.F.; Hsu, Y.L.; Lee, C.Y.; Wu, C.H.; Wu, Y.C.; Chuang, T.H. Isolation and cytotoxicity evaluation of the chemical constituents from Cephalantheropsis gracilis. Int. J. Mol. Sci., 2015, 16(2), 3980-3989.
[http://dx.doi.org/10.3390/ijms16023980] [PMID: 25686035]
[85]
Jao, C.W.; Lin, W.C.; Wu, Y.T.; Wu, P.L. Isolation, structure elucidation, and synthesis of cytotoxic tryptanthrin analogues from Phaius mishmensis. J. Nat. Prod., 2008, 71(7), 1275-1279.
[http://dx.doi.org/10.1021/np800064w] [PMID: 18507473]
[86]
Chen, M.; Gan, L.; Lin, S.; Wang, X.; Li, L.; Li, Y.; Zhu, C.; Wang, Y.; Jiang, B.; Jiang, J.; Yang, Y.; Shi, J. Alkaloids from the root of Isatis indigotica. J. Nat. Prod., 2012, 75(6), 1167-1176.
[http://dx.doi.org/10.1021/np3002833] [PMID: 22694318]
[87]
Blaquiere, N.; Shore, D.G.; Rousseaux, S.; Fagnou, K. Decarboxylative ketone aldol reactions: development and mechanistic evaluation under metal-free conditions. J. Org. Chem., 2009, 74(16), 6190-6198.
[http://dx.doi.org/10.1021/jo901022j] [PMID: 20560569]
[88]
Wang, Y.; Huang, G.; Hu, S.; Jin, K.; Wu, Y.; Chen, F. Enantioselective β-hydroxy thioesters formation via decarboxylative aldol reactions of malonic acid half thioesters with aldehydes promoted by chloramphenicol derived sulfonamides. Tetrahedron, 2017, 73(34), 5055-5062.
[http://dx.doi.org/10.1016/j.tet.2017.05.066]
[89]
March, T.; Murata, A.; Kobayashi, Y.; Takemoto, Y. Enantioselective synthesis of anti-β-hydroxy-α-amino esters via an organocatalyzed decarboxylative aldol reaction. Synlett, 2017, 28(11), 1295-1299.
[http://dx.doi.org/10.1055/s-0036-1588141]
[90]
Saadi, J.; Wennemers, H. Enantioselective aldol reactions with masked fluoroacetates. Nat. Chem., 2016, 8(3), 276-280.
[http://dx.doi.org/10.1038/nchem.2437] [PMID: 26892561]
[91]
Vamisetti, G.B.; Chowdhury, R.; Ghosh, S.K. Organocatalytic decarboxylative aldol reaction of β-ketoacids with α-ketophosphonates en route to the enantioselective synthesis of tertiary α-hydroxyphosphonates. Org. Biomol. Chem., 2017, 15(18), 3869-3873.
[http://dx.doi.org/10.1039/C7OB00796E] [PMID: 28440830]
[92]
Park, J.H.; Sim, J.H.; Song, C.E. Direct Access to β-trifluoromethyl-β-hydroxy thioesters by biomimetic organocatalytic enantioselective aldol reaction. Org. Lett., 2019, 21(12), 4567-4570.
[http://dx.doi.org/10.1021/acs.orglett.9b01469] [PMID: 31184184]
[93]
Kawanishi, R.; Hattori, S.; Iwasa, S.; Shibatomi, K. Amine-catalyzed decarboxylative aldol reaction of β-ketocarboxylic acids with trifluoropyruvates. Molecules, 2019, 24(15), 2773.
[http://dx.doi.org/10.3390/molecules24152773] [PMID: 31366138]
[94]
Han, M-Y.; Pan, H.; Lin, J.; Li, W.; Li, P.; Wang, L. A catalyst-controlled switchable reaction of β-keto acids to silyl glyoxylates. Org. Biomol. Chem., 2018, 16(22), 4117-4126.
[http://dx.doi.org/10.1039/C8OB00740C] [PMID: 29774914]
[95]
Peddibhotla, S. 3-Substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities. Curr. Bioact. Compd., 2009, 5(1), 20-38.
[http://dx.doi.org/10.2174/157340709787580900]
[96]
Zaryanova, E.V.; Lozinskaya, N.A.; Beznos, O.V.; Volkova, M.S.; Chesnokova, N.B.; Zefirov, N.S. Oxindole-based intraocular pressure reducing agents. Bioorg. Med. Chem. Lett., 2017, 27(16), 3787-3793.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.065] [PMID: 28687205]
[97]
Li, Y-L.; Wang, X-L.; Xiao, D.; Liu, M-Y.; Du, Y.; Deng, J. Organocatalytic biomimetic decarboxylative aldol reaction of fluorinated β-keto acids with unprotected isatins. Adv. Synth. Catal., 2018, 360(21), 4147-4152.
[http://dx.doi.org/10.1002/adsc.201800831]
[98]
Zou, B.; Leong, S.Y.; Ding, M.; Smith, P.W. A mild and efficient synthesis of spiroquinolinones via an unexpected rearrangement. Tetrahedron Lett., 2015, 56(44), 6016-6018.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.054]
[99]
Bew, S.P.; Stephenson, G.R.; Rouden, J.; Ashford, P-A.; Bourane, M.; Charvet, A.; Dalstein, V.M.D.; Jauseau, R.; Gipson, G.D.H.; Lozano, L.A.M. Bioinspired, base- and metal-free, mild decarboxylative aldol activation of malonic acid half thioesters under phase-transfer reaction conditions. Adv. Synth. Catal., 2015, 357(6), 1245-1257.
[http://dx.doi.org/10.1002/adsc.201400915]
[100]
Ren, N.; Nie, J.; Ma, J-A. Base- and metal-free decarboxylative aldol reaction of β-ketoacids with glyoxylate hydrates and glyoxal monohydrates in water. Green Chem., 2016, 18(24), 6609-6617.
[http://dx.doi.org/10.1039/C6GC02705A]
[101]
Kumar, A.; Khan, S.; Ahmed, Q.N. Base-controlled reactions through an aldol intermediate formed between 2-oxoaldehydes and malonate half esters. Org. Lett., 2017, 19(18), 4730-4733.
[http://dx.doi.org/10.1021/acs.orglett.7b02016] [PMID: 28876954]
[102]
Kawata, J.; Naoe, T.; Ogasawara, Y.; Dairi, T. Biosynthesis of the carbonylmethylene structure found in the ketomemicin class of pseudotripeptides. Angew. Chem. Int. Ed. Engl., 2017, 56(8), 2026-2029.
[http://dx.doi.org/10.1002/anie.201611005] [PMID: 28097768]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy