Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Synthesis of Benzazoles via Imines

Author(s): Ran An, Mengbi Guo, Yingbo Zang, Hang Xu, Zhuang Hou* and Chun Guo*

Volume 24, Issue 17, 2020

Page: [1897 - 1942] Pages: 46

DOI: 10.2174/1385272824999200818180845

Price: $65

Abstract

Imines, versatile intermediates for organic synthesis, can be exploited for the preparation of diverse classes of biologically active benzazoles. Because of the special characteristics of the C=N bond, imines can be simultaneously used in the synthesis of 1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of novel cascade reactions for benzazole synthesis have been reported in the last decade. Therefore, there is a strong need to elucidate the recent progress in the formation of various classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles, and benzisoxazoles, via imines obtained by condensation reactions or oxidative/ redox coupling reactions In this review, we provide a comprehensive survey of this area. In particular, various green and mild synthetic methodologies are summarized, and the multiple roles of novel catalysts and significant mechanisms for several transformations are highlighted in detail. We believe that this review will aid researchers studying the synthesis of complex molecules containing the benzazole motif via imines.

Keywords: Imines, 1 3-benzazoles, 1 2-benzazoles, oxidative/redox coupling reactions, synthetic methodologies, mechanisms.

Next »
Graphical Abstract
[1]
Murahashi, S-I. Synthetic aspects of metal-catalyzed oxidations of amines and related reactions. Angew. Chem., 1995, 34(22), 2443-2465.
[http://dx.doi.org/10.1002/anie.199524431]
[2]
Liu, Z-Y.; Wang, Y-M.; Li, Z-R.; Jiang, J-D.; Boykin, D.W. Synthesis and anticancer activity of novel 3,4-diarylthiazol-2(3H)-ones (imines). Bioorg. Med. Chem. Lett., 2009, 19(19), 5661-5664.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.025] [PMID: 19713108]
[3]
Ryland, B.L.; Stahl, S.S. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angew. Chem., 2014, 53(34), 8824-8838.
[http://dx.doi.org/10.1002/anie.201403110]]
[4]
Frath, D.; Azizi, S.; Ulrich, G.; Ziessel, R. Chemistry on boranils: an entry to functionalized fluorescent dyes. Org. Lett., 2012, 14(18), 4774-4777.
[http://dx.doi.org/10.1021/ol3020573] [PMID: 22958188]
[5]
Urban, M.; Durka, K.; Jankowski, P.; Serwatowski, J.; Luliński, S. Highly fluorescent red-light emitting bis(boranils) based on naphthalene backbone. J. Org. Chem., 2017, 82(15), 8234-8241.
[http://dx.doi.org/10.1021/acs.joc.7b01001] [PMID: 28670903]
[6]
Al-Sharif, H.H.T.; Ziessel, R.; Waddell, P.G.; Dixon, C.; Harriman, A. Origin of fluorescence from boranils in the crystalline phase. J. Phys. Chem. A, 2020, 124(11), 2160-2172.
[http://dx.doi.org/10.1021/acs.jpca.0c00905] [PMID: 32111115]
[7]
Kobayashi, S.; Ishitani, H. Catalytic enantioselective addition to imines. Chem. Rev., 1999, 99(5), 1069-1094.
[http://dx.doi.org/10.1021/cr980414z] [PMID: 11749440]
[8]
Chen, D.; Wang, Y.; Klankermayer, J. Enantioselective hydrogenation with chiral frustrated Lewis pairs. Angew. Chem. Int. Ed. Engl., 2010, 49(49), 9475-9478.
[http://dx.doi.org/10.1002/anie.201004525] [PMID: 21031385]
[9]
Kobayashi, S.; Mori, Y.; Fossey, J.S.; Salter, M.M. Catalytic enantioselective formation of C-C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev., 2011, 111(4), 2626-2704.
[http://dx.doi.org/10.1021/cr100204f] [PMID: 21405021]
[10]
He, R.; Jin, X.; Chen, H.; Huang, Z-T.; Zheng, Q-Y.; Wang, C. Mn-catalyzed three-component reactions of imines/nitriles, Grignard reagents, and tetrahydrofuran: an expedient access to 1,5-amino/keto alcohols. J. Am. Chem. Soc., 2014, 136(18), 6558-6561.
[http://dx.doi.org/10.1021/ja503520t] [PMID: 24754481]
[11]
Kondo, M.; Kobayashi, N.; Hatanaka, T.; Funahashi, Y.; Nakamura, S. Catalytic enantioselective reaction of α-phenylthioacetonitriles with imines using chiral bis(imidazoline)-palladium catalysts. Chemistry, 2015, 21(25), 9066-9070.
[http://dx.doi.org/10.1002/chem.201501351] [PMID: 25965425]
[12]
Belowich, M.E.; Stoddart, J.F. Dynamic imine chemistry. Chem. Soc. Rev., 2012, 41(6), 2003-2024.
[http://dx.doi.org/10.1039/c2cs15305j] [PMID: 22310886]
[13]
Drożdż, W.; Bouillon, C.; Kotras, C.; Richeter, S.; Barboiu, M.; Clément, S.; Stefankiewicz, A.R.; Ulrich, S. Generation of multicomponent molecular cages using simultaneous dynamic covalent reactions. Chemistry, 2017, 23(71), 18010-18018.
[http://dx.doi.org/10.1002/chem.201703868] [PMID: 28960590]
[14]
Chen, H.; Ye, H.; Hai, Y.; Zhang, L.; You, L. n → π* interactions as a versatile tool for controlling dynamic imine chemistry in both organic and aqueous media. Chem. Sci. (Camb.), 2020, 11(10), 2707-2715.
[http://dx.doi.org/10.1039/C9SC05698J]
[15]
Phan, N-M.; Percástegui, E.G.; Johnson, D.W. Dynamic covalent chemistry as a facile route to unusual main-group thiolate assemblies and disulfide hoops and cages. ChemPlusChem, 2020, 85(6), 1270-1282.
[http://dx.doi.org/10.1002/cplu.202000257] [PMID: 32529751]
[16]
Liu, G.; Cogan, D.A.; Owens, T.D.; Tang, T.P.; Ellman, J.A. Synthesis of enantiomerically pure n-tert-butanesulfinyl imines (tert-butanesulfinimines) by the direct condensation of tert-butanesulfinamide with aldehydes and ketones. J. Org. Chem., 1999, 64(4), 1278-1284.
[http://dx.doi.org/10.1021/jo982059i]
[17]
Reeves, J.T.; Visco, M.D.; Marsini, M.A.; Grinberg, N.; Busacca, C.A.; Mattson, A.E.; Senanayake, C.H. A general method for imine formation using B(OCH2CF3)3. Org. Lett., 2015, 17(10), 2442-2445.
[http://dx.doi.org/10.1021/acs.orglett.5b00949] [PMID: 25906082]
[18]
Chen, B.; Wang, L.; Gao, S. Recent advances in aerobic oxidation of alcohols and amines to imines. ACS Catal., 2015, 5(10), 5851-5876.
[http://dx.doi.org/10.1021/acscatal.5b01479]
[19]
Lin, M.; Wang, Z.; Fang, H.; Liu, L.; Yin, H.; Yan, C-H.; Fu, X. Metal-free aerobic oxidative coupling of amines in dimethyl sulfoxide via a radical pathway. RSC Advances, 2016, 6(13), 10861-10864.
[http://dx.doi.org/10.1039/C5RA25434E]
[20]
Zhai, Y.; Zhang, M.; Fang, H.; Ru, S.; Yu, H.; Zhao, W.; Wei, Y. An efficient protocol for the preparation of aldehydes/ketones and imines by an inorganic-ligand supported iron catalyst. Org. Chem. Front., 2018, 5(23), 3454-3459.
[http://dx.doi.org/10.1039/C8QO00833G]
[21]
Dutta, B.; Achola, L.A.; Clarke, R.; Sharma, V.; He, J.; Kerns, P.; Suib, S.L. Photocatalytic transformation of amines to imines by meso-porous copper sulfides. ChemCatChem, 2019, 11(17), 4262-4265.
[http://dx.doi.org/10.1002/cctc.201900673]
[22]
Xu, B.; Hartigan, E.M.; Feula, G.; Huang, Z.; Lumb, J-P.; Arndtsen, B.A. Simple copper catalysts for the aerobic oxidation of amines: selectivity control by the counterion. Angew. Chem. Int. Ed. Engl., 2016, 55(51), 15802-15806.
[http://dx.doi.org/10.1002/anie.201609255] [PMID: 27873434]
[23]
Lohoelter, C.; Weckbecker, M.; Waldvogel, S.R. (-)-Isosteviol as a versatile ex-chiral-pool building block for organic chemistry. Eur. J. Org. Chem., 2013, 2013(25), 5539-5554.
[http://dx.doi.org/10.1002/ejoc.201390070]
[24]
Schümperli, M.T.; Hammond, C.; Hermans, I. Developments in the aerobic oxidation of amines. ACS Catal., 2012, 2(6), 1108-1117.
[http://dx.doi.org/10.1021/cs300212q]
[25]
Patil, R.D.; Adimurthy, S. Catalytic methods for imine synthesis. Asian J. Org. Chem., 2013, 2(9), 726-744.
[http://dx.doi.org/10.1002/ajoc.201300012]
[26]
Yadav, D.K.T.; Bhanage, B.M. Base-catalyzed synthesis of amides and imines via C-C and C=C bond cleavage. RSC Advances, 2015, 5(16), 12387-12391.
[http://dx.doi.org/10.1039/C4RA14234A]
[27]
Alla, S.K.; Kumar, R.K.; Sadhu, P.; Punniyamurthy, T. Iodobenzene catalyzed C-H amination of N-substituted amidines using m-chloroperbenzoic acid. Org. Lett., 2013, 15(6), 1334-1337.
[http://dx.doi.org/10.1021/ol400274f] [PMID: 23444897]
[28]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[29]
Jones, P.; Wilcoxen, K.; Rowley, M.; Toniatti, C. Niraparib: a Poly(ADP-ribose) Polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J. Med. Chem., 2015, 58(8), 3302-3314.
[http://dx.doi.org/10.1021/jm5018237] [PMID: 25761096]
[30]
Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A.T.; Jones, A.L.; Brown, R.; Stach, J.E.M.; Goodfellow, M.; Beil, W.; Krämer, M.; Imhoff, J.F.; Süssmuth, R.D.; Fiedler, H-P. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J. Antibiot. (Tokyo), 2009, 62(2), 99-104.
[http://dx.doi.org/10.1038/ja.2008.24] [PMID: 19198633]
[31]
Song, X.; Vig, B.S.; Lorenzi, P.L.; Drach, J.C.; Townsend, L.B.; Amidon, G.L. Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter. J. Med. Chem., 2005, 48(4), 1274-1277.
[http://dx.doi.org/10.1021/jm049450i] [PMID: 15715497]
[32]
Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Efficient and economical access to substituted benzothiazoles: copper-catalyzed coupling of 2-haloanilides with metal sulfides and subsequent condensation. Angew. Chem. Int. Ed. Engl., 2009, 48(23), 4222-4225.
[http://dx.doi.org/10.1002/anie.200900486] [PMID: 19425042]
[33]
Nieddu, G.; Giacomelli, G. A microwave assisted synthesis of benzoxazoles from carboxylic acids. Tetrahedron, 2013, 69(2), 791-795.
[http://dx.doi.org/10.1016/j.tet.2012.10.084]
[34]
Wen, X.; Bakali, J.E.; Deprez-Poulain, R.; Deprez, B. Efficient propylphosphonic anhydride (®T3P) mediated synthesis of benzothiazoles, benzoxazoles and benzimidazoles. Tetrahedron Lett., 2012, 53(19), 2440-2443.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.007]
[35]
Rojas-Buzo, S.; García-García, P.; Corma, A. Remarkable acceleration of benzimidazole synthesis and cyanosilylation reactions in a supramolecular solid catalyst. ChemCatChem, 2017, 9(6), 997-1004.
[http://dx.doi.org/10.1002/cctc.201601407]
[36]
He, J.; Lin, F.; Yang, X.; Wang, D.; Tan, X.; Zhang, S. Sustainable synthesis of 2-arylbenzoxazoles over a cobalt-based nanocomposite catalyst. Org. Process Res. Dev., 2016, 20(6), 1093-1096.
[http://dx.doi.org/10.1021/acs.oprd.6b00168]
[37]
Wade, A.R.; Pawar, H.R.; Biware, M.V.; Chikate, R.C. Synergism in semiconducting nanocomposites: visible light photocatalysis towards the formation of C-S and C-N bonds. Green Chem., 2015, 17(7), 3879-3888.
[http://dx.doi.org/10.1039/C5GC00748H]
[38]
Liang, Y.; Wang, J.; Cheng, C.; Jing, H. Lewis acidic ionic liquids of crown ether complex cations: preparation and applications in organic reactions. RSC Advances, 2016, 6(96), 93546-93550.
[http://dx.doi.org/10.1039/C6RA21947K]
[39]
Meng, X.; Wang, Y.; Chen, B.; Chen, G.; Jing, Z.; Zhao, P. OMS-2/H2O2/dimethyl carbonate: an environmentally-friendly heterogeneous catalytic system for the oxidative synthesis of benzoxazoles at room temperature. Org. Process Res. Dev., 2017, 21(12), 2018-2024.
[http://dx.doi.org/10.1021/acs.oprd.7b00315]
[40]
Dhopte, K.B.; Zambare, R.S.; Patwardhan, A.V.; Nemade, P.R. Role of graphene oxide as a heterogeneous acid catalyst and benign oxidant for synthesis of benzimidazoles and benzothiazoles. RSC Advances, 2016, 6(10), 8164-8172.
[http://dx.doi.org/10.1039/C5RA19066E]
[41]
Markina, N.A.; Dubrovskiy, A.V.; Larock, R.C. One-pot synthesis of 1-alkyl-1H-indazoles from 1,1-dialkylhydrazones via aryne annulation. Org. Biomol. Chem., 2012, 10(12), 2409-2412.
[http://dx.doi.org/10.1039/c2ob07117g] [PMID: 22337070]
[42]
Conlon, I.L.; Konsein, K.; Morel, Y.; Chan, A.; Fletcher, S. Construction of 1H-indazoles from ortho-aminobenzoximes by the Mitsunobu reaction. Tetrahedron Lett., 2019, 60(37)150929
[http://dx.doi.org/10.1016/j.tetlet.2019.07.020]
[43]
Chauhan, J.; Fletcher, S. One-pot synthesis of 2,1-benzisoxazoles (anthranils) by a stannous chloride-mediated tandem reduction-heterocyclization of 2-nitroacylbenzenes under neutral conditions. Tetrahedron Lett., 2012, 53(37), 4951-4954.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.006]
[44]
Stokes, B.J.; Vogel, C.V.; Urnezis, L.K.; Pan, M.; Driver, T.G. Intramolecular Fe(II)-catalyzed N-O or N-N bond formation from aryl azides. Org. Lett., 2010, 12(12), 2884-2887.
[http://dx.doi.org/10.1021/ol101040p] [PMID: 20507088]
[45]
Xie, H.; Li, G.; Zhang, F.; Xiao, F.; Deng, G-J. Efficient synthesis of 1,2-benzisothiazoles from o-haloarylamidines and elemental sulfur via N-S/C-S bond formation under transition-metal-free conditions. Green Chem., 2018, 20(4), 827-831.
[http://dx.doi.org/10.1039/C7GC03599C]
[46]
Panchangam, R.L.; Manickam, V.; Chanda, K. Assembly of fully substituted 2H-indazoles catalyzed by Cu2O rhombic dodecahedra and evaluation of anticancer activity. ChemMedChem, 2019, 14(2), 262-272.
[http://dx.doi.org/10.1002/cmdc.201800707]]
[47]
Chen, C.Y.; Andreani, T.; Li, H. A divergent and selective synthesis of isomeric benzoxazoles from a single N-Cl imine. Org. Lett., 2011, 13(23), 6300-6303.
[http://dx.doi.org/10.1021/ol202844c] [PMID: 22067007]
[48]
Verma, S.; Kujur, S.; Agrahari, B.; Layek, S.; Pathak, D.D. Synthesis and characterization of cucurbit[6]uril supported copper oxide nanoparticles, CuO@CB[6]: application as nanocatalyst for the synthesis of 2H-indazoles. ChemistrySelect, 2019, 4(35), 10408-10416.
[http://dx.doi.org/10.1002/slct.201902957]
[49]
Patra, A.; James, A.; Das, T.K.; Biju, A.T. Oxidative NHC catalysis for the generation of imidoyl azoliums: synthesis of benzoxazoles. J. Org. Chem., 2018, 83(23), 14820-14826.
[http://dx.doi.org/10.1021/acs.joc.8b02598] [PMID: 30371086]
[50]
Noroozi Pesyan, N.; Batmani, H.; Havasi, F. Copper supported on functionalized MCM-41 as a novel and a powerful heterogeneous nanocatalyst for the synthesis of benzothiazoles. Polyhedron, 2019, 158, 248-254.
[http://dx.doi.org/10.1016/j.poly.2018.11.005]
[51]
Xiao, T.; Xiong, S.; Xie, Y.; Dong, X.; Zhou, L. Copper-catalyzed synthesis of benzazoles via aerobic oxidative condensation of o-amino/merca-ptan/hydroxyanilines with benzylamines. RSC Advances, 2013, 3(36), 15592-15595.
[http://dx.doi.org/10.1039/c3ra42175a]
[52]
Nguyen, K.M.H.; Largeron, M. Catalytic oxidative coupling of primary amines under air: a flexible route to benzimidazole derivatives. Eur. J. Org. Chem., 2016, 2016(5), 1025-1032.
[http://dx.doi.org/10.1002/ejoc.201501520]
[53]
Endo, Y.; Bäckvall, J-E. Biomimetic oxidative coupling of benzylamines and 2-aminophenols: synthesis of benzoxazoles. Chemistry, 2012, 18(43), 13609-13613.
[http://dx.doi.org/10.1002/chem.201202187] [PMID: 22968931]
[54]
Hudwekar, A.D.; Verma, P.K.; Kour, J.; Balgotra, S.; Sawant, S.D. Transition metal-free oxidative coupling of primary amines in polyethylene glycol at room temperature: synthesis of imines, azobenzenes, benzothiazoles, and disulfides. Eur. J. Org. Chem., 2019, 2019(6), 1242-1250.
[http://dx.doi.org/10.1002/ejoc.201801610]
[55]
Das, S.; Mallick, S.; De Sarkar, S. Cobalt-catalyzed sustainable synthesis of benzimidazoles by redox-economical coupling of o-nitroanilines and alcohols. J. Org. Chem., 2019, 84(18), 12111-12119.
[http://dx.doi.org/10.1021/acs.joc.9b02090] [PMID: 31429563]
[56]
Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G-J. Iron-catalyzed 2-arylbenzoxazole formation from o-nitrophenols and benzylic alcohols. Org. Lett., 2012, 14(11), 2722-2725.
[http://dx.doi.org/10.1021/ol300937z] [PMID: 22621258]
[57]
Nykaza, T.V.; Harrison, T.S.; Ghosh, A.; Putnik, R.A.; Radosevich, A.T. A biphilic phosphetane catalyzes N-N bond-forming cadogan heterocyclization via PIII/PV═O redox cycling. J. Am. Chem. Soc., 2017, 139(20), 6839-6842.
[http://dx.doi.org/10.1021/jacs.7b03260] [PMID: 28489354]
[58]
Farber, K.M.; Haddadin, M.J.; Kurth, M.J. Davis-Beirut reaction: route to thiazolo-, thiazino-, and thiazepino-2H-indazoles. J. Org. Chem., 2014, 79(15), 6939-6945.
[http://dx.doi.org/10.1021/jo501014e] [PMID: 25019525]
[59]
Chen, C.Y.; Tang, G.; He, F.; Wang, Z.; Jing, H.; Faessler, R. A synthesis of 1H-indazoles via a Cu(OAc)2-catalyzed N-N bond formation. Org. Lett., 2016, 18(7), 1690-1693.
[http://dx.doi.org/10.1021/acs.orglett.6b00611] [PMID: 26990834]
[60]
Zhang, X.; Huang, R.; Marrot, J.; Coeffard, V.; Xiong, Y. Hypervalent iodine-mediated synthesis of benzoxazoles and benzimidazoles via an oxidative rearrangement. Tetrahedron, 2015, 71(4), 700-708.
[http://dx.doi.org/10.1016/j.tet.2014.11.066]
[61]
Lindberg, P.; Nordberg, P.; Alminger, T.; Braendstroem, A.; Wallmark, B. The mechanism of action of the antisecretory agent omeprazole. J. Med. Chem., 1986, 29(8), 1327-1329.
[http://dx.doi.org/10.1021/jm00158a001] [PMID: 3016260]
[62]
Rodembusch, F.S.; Buckup, T.; Segala, M.; Tavares, L.; Correia, R.R.B.; Stefani, V. First hyperpolarizability in a new benzimidazole derivative. Chem. Phys., 2004, 305(1), 115-121.
[http://dx.doi.org/10.1016/j.chemphys.2004.06.046]
[63]
Carvalho, L.C.R.; Fernandes, E.; Marques, M.M.B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles. Chemistry, 2011, 17(45), 12544-12555.
[http://dx.doi.org/10.1002/chem.201101508] [PMID: 21989969]
[64]
Kovvuri, J.; Nagaraju, B.; Kamal, A.; Srivastava, A.K. An efficient synthesis of 2-substituted benzimidazoles via photocatalytic condensation of o-phenylenediamines and aldehydes. ACS Comb. Sci., 2016, 18(10), 644-650.
[http://dx.doi.org/10.1021/acscombsci.6b00107] [PMID: 27631587]
[65]
Hu, Z.; Zhao, T.; Wang, M.; Wu, J.; Yu, W.; Chang, J. I2-mediated intramolecular C-H amidation for the synthesis of N-substituted benzimidazoles. J. Org. Chem., 2017, 82(6), 3152-3158.
[http://dx.doi.org/10.1021/acs.joc.7b00142] [PMID: 28233495]
[66]
Senapak, W.; Saeeng, R.; Jaratjaroonphong, J.; Promarak, V.; Sirion, U. Metal-free selective synthesis of 2-substituted benzimidazoles catalyzed by Brönsted acidic ionic liquid: Convenient access to one-pot synthesis of N-alkylated 1,2-disubstituted benzimidazoles. Tetrahedron, 2019, 75(26), 3543-3552.
[http://dx.doi.org/10.1016/j.tet.2019.05.014]
[67]
Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(I)-catalyzed regioselective amination of N-aryl imines using TMSN3 and TBHP: a route to substituted benzimidazoles. J. Org. Chem., 2015, 80(3), 1644-1650.
[http://dx.doi.org/10.1021/jo502574u] [PMID: 25588127]
[68]
Daw, P.; Ben-David, Y.; Milstein, D. Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols catalyzed by cobalt. ACS Catal., 2017, 7(11), 7456-7460.
[http://dx.doi.org/10.1021/acscatal.7b02777]
[69]
Hikawa, H.; Ichinose, R.; Kikkawa, S.; Azumaya, I. Palladium-catalyzed dehydrogenation of benzyl alcohols for construction of 2-arylbenzimidazoles “on water”. Asian J. Org. Chem., 2018, 7(2), 416-423.
[http://dx.doi.org/10.1002/ajoc.201700618]
[70]
Das, K.; Mondal, A.; Srimani, D. Selective synthesis of 2-substituted and 1,2-disubstituted benzimidazoles directly from aromatic diamines and alcohols catalyzed by molecularly defined nonphosphine manganese(I) complex. J. Org. Chem., 2018, 83(16), 9553-9560.
[http://dx.doi.org/10.1021/acs.joc.8b01316] [PMID: 29993244]
[71]
Hille, T.; Irrgang, T.; Kempe, R. The synthesis of benzimidazoles and quinoxalines from aromatic diamines and alcohols by iridium-catalyzed acceptorless dehydrogenative alkylation. Chemistry, 2014, 20(19), 5569-5572.
[http://dx.doi.org/10.1002/chem.201400400] [PMID: 24711248]
[72]
Luo, Q.; Dai, Z.; Cong, H.; Li, R.; Peng, T.; Zhang, J. Oxidant-free synthesis of benzimidazoles from alcohols and aromatic diamines catalysed by new Ru(II)-PNS(O) pincer complexes. Dalton Trans., 2017, 46(43), 15012-15022.
[http://dx.doi.org/10.1039/C7DT02584J] [PMID: 29052678]
[73]
Dong, C.P.; Higashiura, Y.; Marui, K.; Kumazawa, S.; Nomoto, A.; Ueshima, M.; Ogawa, A. Metal-free oxidative coupling of benzylamines to imines under an oxygen atmosphere promoted using salicylic acid derivatives as organocatalysts. ACS Omega, 2016, 1(5), 799-807.
[http://dx.doi.org/10.1021/acsomega.6b00235] [PMID: 31457163]
[74]
Reddy, P.L.; Arundhathi, R.; Tripathi, M.; Chauhan, P.; Yan, N.; Rawat, D.S. Solvent-free oxidative synthesis of 2-substituted benzimidazoles by immobilized cobalt oxide nanoparticles on alumina/silica support. ChemistrySelect, 2017, 2(13), 3889-3895.
[http://dx.doi.org/10.1002/slct.201700251]
[75]
Guo, B.; Li, H-X.; Zhang, S-Q.; Young, D.J.; Lang, J-P. C-N Bond formation catalyzed by ruthenium nanoparticles supported on N-doped carbon via acceptorless dehydrogenation to secondary amines, imines, benzimidazoles and quinoxalines. ChemCatChem, 2018, 10(24), 5627-5636.
[http://dx.doi.org/10.1002/cctc.201801525]
[76]
Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(II)-catalyzed oxidative cross-coupling of anilines, primary alkyl amines, and sodium azide using TBHP: a route to 2-substituted benzimidazoles. J. Org. Chem., 2016, 81(8), 3227-3234.
[http://dx.doi.org/10.1021/acs.joc.6b00186] [PMID: 26991254]
[77]
Nguyen, T.B.; Ermolenko, L.; Al-Mourabit, A. Iron sulfide catalyzed redox/condensation cascade reaction between 2-amino/hydroxy nitrobenzenes and activated methyl groups: a straightforward atom economical approach to 2-hetaryl-benzimidazoles and -benzoxazoles. J. Am. Chem. Soc., 2013, 135(1), 118-121.
[http://dx.doi.org/10.1021/ja311780a] [PMID: 23249371]
[78]
Etemadi-Davan, E.; Iranpoor, N.; Khalili, D. Pd-Catalyzed reductive carbonylation-ring closure of aryl halides: a direct approach for synthesis of benzimidazoles. ChemistrySelect, 2016, 1(15), 4418-4422.
[http://dx.doi.org/10.1002/slct.201600732]
[79]
Schwob, T.; Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem. Int. Ed. Engl., 2016, 55(48), 15175-15179.
[http://dx.doi.org/10.1002/anie.201608321] [PMID: 27797434]
[80]
Lampa, E.; Romano, A.R.; Berrino, L.; Tortora, G.; Di, R.G.; Filippelli, A.; Gentile, B.; Marmo, E. Pharmacological properties of a new non-steroidal anti-inflammatory drug: flunoxaprofen. Drugs Exp. Clin. Res., 1985, 11(8), 501-509.
[PMID: 2942383]
[81]
Moghaddam, F.M.; Saberi, V.; Kalhor, S.; Veisi, N. Palladium(II) immobilized onto the glucose functionalized magnetic nanoparticle as a new and efficient catalyst for the one-pot synthesis of benzoxazoles. Appl. Organomet. Chem., 2018, 32(4)e4240
[http://dx.doi.org/10.1002/aoc.4240]
[82]
Chang, W.; Sun, Y.; Huang, Y. One-pot green synthesis of benzoxazole derivatives through molecular sieve-catalyzed oxidative cyclization reaction. Heteroatom Chem., 2017, 28(2)e21360
[http://dx.doi.org/10.1002/hc.21360]
[83]
Wang, L.; Ma, Z-G.; Wei, X-J.; Meng, Q-Y.; Yang, D-T.; Du, S-F.; Chen, Z-F.; Wu, L-Z.; Liu, Q. Synthesis of 2-substituted pyrimidines and benzoxazoles via a visible-light-driven organocatalytic aerobic oxidation: enhancement of the reaction rate and selectivity by a base. Green Chem., 2014, 16(8), 3752-3757.
[http://dx.doi.org/10.1039/C4GC00337C]
[84]
Li, F.; Li, Z.; Tang, X.; Cao, X.; Wang, C.; Li, J.; Wang, L. Hemoglobin: a new biocatalyst for the synthesis of 2-substituted benzoxazoles via oxidative cyclization. ChemCatChem, 2019, 11(4), 1192-1195.
[http://dx.doi.org/10.1002/cctc.201801760]
[85]
Chen, X.; Ji, F.; Zhao, Y.; Liu, Y.; Zhou, Y.; Chen, T.; Yin, S-F. Copper-catalyzed aerobic oxidative, C. (aryl)-OH bond functionalization of catechols with amines affording benzoxazoles. ChemCatChem, 2015, 357(13), 2924-2930.
[http://dx.doi.org/10.1002/adsc.201500515]]
[86]
Meng, X.; Wang, Y.; Wang, Y.; Chen, B.; Jing, Z.; Chen, G.; Zhao, P. OMS-2-supported Cu hydroxide-catalyzed benzoxazoles synthesis from catechols and amines via Domino oxidation process at room temperature. J. Org. Chem., 2017, 82(13), 6922-6931.
[http://dx.doi.org/10.1021/acs.joc.7b01119] [PMID: 28597654]
[87]
Sharghi, H.; Aboonajmi, J.; Aberi, M.; Shekouhy, M. Amino acids: nontoxic and cheap alternatives for amines for the synthesis of benzoxazoles through the oxidative functionalization of catechols. Adv. Synth. Catal., 2020, 362(5), 1064-1083.
[http://dx.doi.org/10.1002/adsc.201901096]
[88]
Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chem. Commun. (Camb.), 2014, 50(46), 6145-6148.
[http://dx.doi.org/10.1039/c4cc01822b] [PMID: 24776805]
[89]
Sarode, S.A.; Bhojane, J.M.; Nagarkar, J.M. An efficient magnetic copper ferrite nanoparticle: for one pot synthesis of 2-substituted benzoxazole via redox reactions. Tetrahedron Lett., 2015, 56(1), 206-210.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.065]
[90]
Sen, C.; Sahoo, T.; Galani, S.M.; Panda, A.B.; Ghosh, S.C. Synthesis of 2-arylbenzoxazoles by hetereogeneous γ-MnO2 catalyzed redox reaction of o-nitrophenol with benzyl alcohols or benzyl amines. ChemistrySelect, 2016, 1(10), 2542-2547.
[91]
Mathis, C.A.; Wang, Y.; Holt, D.P.; Huang, G-F.; Debnath, M.L.; Klunk, W.E. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2003, 46(13), 2740-2754.
[http://dx.doi.org/10.1021/jm030026b] [PMID: 12801237]
[92]
Mortimer, C.G.; Wells, G.; Crochard, J-P.; Stone, E.L.; Bradshaw, T.D.; Stevens, M.F.G.; Westwell, A.D. Antitumor benzothiazoles. 26. 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem., 2006, 49(1), 179-185.
[http://dx.doi.org/10.1021/jm050942k] [PMID: 16392802]
[93]
Draganov, A.B.; Wang, K.; Holmes, J.; Damera, K.; Wang, D.; Dai, C.; Wang, B. Click with a boronic acid handle: a neighboring group-assisted Click reaction that allows ready secondary functionalization. Chem. Commun. (Camb.), 2015, 51(82), 15180-15183.
[http://dx.doi.org/10.1039/C5CC05890B] [PMID: 26327521]
[94]
Che, X.; Jiang, J.; Xiao, F.; Huang, H.; Deng, G-J. Assembly of 2-arylbenzothiazoles through three-component oxidative annulation under transition-metal-free conditions. Org. Lett., 2017, 19(17), 4576-4579.
[http://dx.doi.org/10.1021/acs.orglett.7b02168] [PMID: 28817291]
[95]
Liu, Y.; Yuan, X.; Guo, X.; Zhang, X.; Chen, B. Efficient 2-aryl benzothiazole formation from acetophenones, anilines, and elemental sulfur by iodine-catalyzed oxidative C(CO)-C(alkyl) bond cleavage. Tetrahedron, 2018, 74(41), 6057-6062.
[http://dx.doi.org/10.1016/j.tet.2018.08.047]
[96]
Ray, S.; Das, P.; Banerjee, B.; Bhaumik, A.; Mukhopadhyay, C. Piperazinylpyrimidine modified MCM-41 for the ecofriendly synthesis of benzothiazoles by the simple cleavage of disulfide in the presence of molecular O2. RSC Advances, 2015, 5(89), 72745-72754.
[http://dx.doi.org/10.1039/C5RA14894D]
[97]
Liu, B.; Zhu, N.; Hong, H.; Han, L. Novel synthesis of benzothiazole by self-redox tandem reaction of disulfide with aldehyde. Tetrahedron, 2015, 71(49), 9287-9292.
[http://dx.doi.org/10.1016/j.tet.2015.10.029]
[98]
Lima, D.B.; Penteado, F.; Vieira, M.M.; Alves, D.; Perin, G.; Santi, C.; Lenardão, E.J. α-Keto acids as acylating agents in the synthesis of 2-substituted benzothiazoles and benzoselenazoles. Eur. J. Org. Chem., 2017, 2017(26), 3830-3836.
[http://dx.doi.org/10.1002/ejoc.201700648]
[99]
Zolfigol, M.A.; Khazaei, A.; Alaie, S.; Baghery, S.; Maleki, F.; Bayat, Y.; Asgari, A. Experimental and theoretical approving of anomeric based oxidation in the preparation of 2-sbstituted benz-(imida, oxa and othia)-zoles using [2,6-DMPy-NO2]C(NO2)3 as a novel nano molten salt catalyst. RSC Advances, 2016, 6(63), 58667-58679.
[http://dx.doi.org/10.1039/C6RA13231F]
[100]
Ziarati, A.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R.; Badiei, A. Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2-xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths, 2017, 35(4), 374-381.
[http://dx.doi.org/10.1016/S1002-0721(17)60922-0]
[101]
Karimian, A.; Kakhki, R.M.; Beidokhti, H.K. Magnetic Co-doped NiFe2O4 nanocomposite: a heterogeneous and recyclable catalyst for the one-pot synthesis of benzimidazoles, benzoxazoles and benzothiazoles under solvent-free conditions. J. Chin. Chem. Soc. (Taipei), 2017, 64(11), 1316-1325.
[http://dx.doi.org/10.1002/jccs.201700060]
[102]
Samanta, S.; Das, S.; Biswas, P. Photocatalysis by 3,6-disubstituted-s-tetrazine: visible-light driven metal-free green synthesis of 2-substituted benzimidazole and benzothiazole. J. Org. Chem., 2013, 78(22), 11184-11193.
[http://dx.doi.org/10.1021/jo401445j] [PMID: 24134516]
[103]
Maphupha, M.; Juma, W.P.; de Koning, C.B.; Brady, D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Advances, 2018, 8(69), 39496-39510.
[http://dx.doi.org/10.1039/C8RA07377E]
[104]
Sankar, V.; Karthik, P.; Neppolian, B.; Sivakumar, B. Metal-organic framework mediated expeditious synthesis of benzimidazole and benzothiazole derivatives through an oxidative cyclization pathway. New J. Chem., 2020, 44(3), 1021-1027.
[http://dx.doi.org/10.1039/C9NJ04431K]
[105]
Gopalaiah, K.; Chandrudu, S.N. Iron(II) bromide-catalyzed oxidative coupling of benzylamines with ortho-substituted anilines: synthesis of 1,3-benzazoles. RSC Advances, 2015, 5(7), 5015-5023.
[http://dx.doi.org/10.1039/C4RA12490A]
[106]
Bala, M.; Verma, P.K.; Sharma, U.; Kumar, N.; Singh, B. Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chem., 2013, 15(6), 1687-1693.
[http://dx.doi.org/10.1039/c3gc40137e]
[107]
Yang, D.; Yan, K.; Wei, W.; Tian, L.; Shuai, Y.; Li, R.; You, J.; Wang, H. One-pot copper-catalyzed aerobic decarboxylative coupling of phenylacetic acids with o-aminobenzenes and dioxygen as the oxidant leading to benzoxazoles and benzothiazoles. Asian J. Org. Chem., 2014, 3(9), 969-973.
[http://dx.doi.org/10.1002/ajoc.201402085]
[108]
Jin, X.; Liu, Y.; Lu, Q.; Yang, D.; Sun, J.; Qin, S.; Zhang, J.; Shen, J.; Chu, C.; Liu, R. Formation of C=N bonds by the release of H2: a new strategy for synthesis of imines and benzazoles. Org. Biomol. Chem., 2013, 11(23), 3776-3780.
[http://dx.doi.org/10.1039/c3ob40388b] [PMID: 23657786]
[109]
Zhang, R.; Qin, Y.; Zhang, L.; Luo, S. Oxidative synthesis of benzimidazoles, quinoxalines, and benzoxazoles from primary amines by ortho-quinone catalysis. Org. Lett., 2017, 19(20), 5629-5632.
[http://dx.doi.org/10.1021/acs.orglett.7b02786] [PMID: 28968131]
[110]
Mogharabi-Manzari, M.; Kiani, M.; Aryanejad, S.; Imanparast, S.; Amini, M.; Faramarzi, M.A. A magnetic heterogeneous biocatalyst composed of immobilized laccase and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) for green one-pot cascade synthesis of 2-substituted benzimidazole and benzoxazole derivatives under mild reaction conditions. Adv. Synth. Catal., 2018, 360(18), 3563-3571.
[http://dx.doi.org/10.1002/adsc.201800459]
[111]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: an overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[112]
Kumar, M.R.; Park, A.; Park, N.; Lee, S. Consecutive condensation, C-N.; bond formations, N-N. Consecutive condensation, C-N and N-N bond formations: a copper- catalyzed one-pot three-component synthesis of 2H-indazole. Org. Lett., 2011, 13(13), 3542-3545.
[http://dx.doi.org/10.1021/ol201409j] [PMID: 21644532]
[113]
Sharghi, H.; Aberi, M.; Shiri, P. Silica-supported Cu(II)-quinoline complex: efficient and recyclable nanocatalyst for one-pot synthesis of benzimidazolquinoline derivatives and 2H-indazoles. Appl. Organomet. Chem., 2019, 33(7)e4974
[http://dx.doi.org/10.1002/aoc.4974]
[114]
Taherinia, Z.; Ghorbani-Choghamarani, A.; Hajjami, M. Decorated peptide nanofibers with Cu nanoparticles: an efficient catalyst for the multicomponent synthesis of chromeno [2, 3-d] pyrimidin-8-amines, quinazolines and 2H- indazoles. ChemistrySelect, 2019, 4(9), 2753-2760.
[http://dx.doi.org/10.1002/slct.201803412]
[115]
Behrouz, S. Highly efficient one-pot three component synthesis of 2H-indazoles by consecutive condensation, C-N and N-N bond formations using Cu/aminoclay/reduced graphene oxide nanohybrid. J. Heterocycl. Chem., 2017, 54(3), 1863-1871.
[http://dx.doi.org/10.1002/jhet.2777]
[116]
Soltani Rad, M.N. Ultrasound promoted mild and facile one-pot, three component synthesis of 2H-indazoles by consecutive condensation, CN and NN bond formations catalysed by Copper-Doped Silica Cuprous Sulphate (CDSCS) as an efficient heterogeneous nano-catalyst. Ultrason. Sonochem., 2017, 34, 865-872.
[http://dx.doi.org/10.1016/j.ultsonch.2016.07.026] [PMID: 27773314]
[117]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[118]
Lauria, A.; Patella, C.; Dattolo, G.; Almerico, A.M. Design and synthesis of 4-substituted indolo[3,2-e][1,2,3]triazolo[1,5-a]pyrimidine derivatives with antitumor activity. J. Med. Chem., 2008, 51(7), 2037-2046.
[http://dx.doi.org/10.1021/jm700964u] [PMID: 18345607]
[119]
Shinde, A.H.; Vidyacharan, S.; Sharada, D.S. BF3•OEt2 mediated metal-free one-pot Sequential Multiple Annulation Cascade (SMAC) synthesis of complex and diverse tetrahydroisoquinoline fused hybrid molecules. Org. Biomol. Chem., 2016, 14(12), 3207-3211.
[http://dx.doi.org/10.1039/C6OB00253F] [PMID: 26935814]
[120]
Kumar, K.S.; Naikawadi, P.K.; Rajesham, B.; Rambabu, D. Four-component, three-step cascade reaction: an effective synthesis of indazole-fused triazolo[5,1-c]quinoxalines. New J. Chem., 2019, 43(11), 4333-4337.
[http://dx.doi.org/10.1039/C8NJ06299D]
[121]
Cadogan, J.I.G.; Cameron-Wood, M.; Mackie, R.K.; Searle, R.J.G. The reactivity of organophosphorus compounds. Part XIX. Reduction of nitro-compounds by triethyl phosphite: a convenient new route to carbazoles, indoles, indazoles, triazoles, and related compounds. J. Am. Chem. Soc., 1965, 1965, 4831-4837.
[http://dx.doi.org/10.1039/JR9650004831]
[122]
Schoene, J.; Bel Abed, H.; Schmieder, P.; Christmann, M.; Nazaré, M. A general one-pot synthesis of 2H-indazoles using an organophosphorus-silane system. Chemistry, 2018, 24(36), 9090-9100.
[http://dx.doi.org/10.1002/chem.201800763] [PMID: 29644761]
[123]
Zhu, J.S.; Haddadin, M.J.; Kurth, M.J. Davis-Beirut reaction: diverse chemistries of highly reactive nitroso intermediates in heterocycle synthesis. Acc. Chem. Res., 2019, 52(8), 2256-2265.
[http://dx.doi.org/10.1021/acs.accounts.9b00220] [PMID: 31328502]
[124]
Zhu, J.S.; Duong, M.R.; Teuthorn, A.P.; Lu, J.Y.; Son, J-H.; Haddadin, M.J.; Kurth, M.J. Davis-Beirut reaction: alkoxide versus hydroxide addition to the key O-nitrosoimine intermediate. Org. Lett., 2018, 20(5), 1308-1311.
[http://dx.doi.org/10.1021/acs.orglett.8b00036] [PMID: 29431446]
[125]
Zhu, J.S.; Li, C.J.; Tsui, K.Y.; Kraemer, N.; Son, J-H.; Haddadin, M.J.; Tantillo, D.J.; Kurth, M.J. Accessing multiple classes of 2H-indazoles: mechanistic implications for the Cadogan and Davis-Beirut Reactions. J. Am. Chem. Soc., 2019, 141(15), 6247-6253.
[http://dx.doi.org/10.1021/jacs.8b13481] [PMID: 30912441]
[126]
Lukin, K.; Hsu, M.C.; Fernando, D.; Leanna, M.R. New practical synthesis of indazoles via condensation of o-fluorobenzaldehydes and their O-methyloximes with hydrazine. J. Org. Chem., 2006, 71(21), 8166-8172.
[http://dx.doi.org/10.1021/jo0613784] [PMID: 17025307]
[127]
Kosobokov, M.D.; Sandleben, A.; Vogt, N.; Klein, A.; Vicic, D.A. Nitrogen-nitrogen bond formation via a substrate-bound anion at a mononuclear nickel platform. Organometallics, 2018, 37(4), 521-525.
[http://dx.doi.org/10.1021/acs.organomet.7b00887]
[128]
Wray, B.C.; Stambuli, J.P. Synthesis of N-arylindazoles and benzimidazoles from a common intermediate. Org. Lett., 2010, 12(20), 4576-4579.
[http://dx.doi.org/10.1021/ol101899q] [PMID: 20849145]
[129]
Madabhushi, S.; Chinthala, N.; Vangipuram, V.S.; Godala, K.R.; Jillella, R.; Mallu, K.K.R.; Beeram, C.R. Microwave-assisted efficient one-step synthesis of amides from ketones and benzoxazoles from (2-hydroxyaryl) ketones with acetohydroxamic acid using sulfuric acid as the catalyst. Tetrahedron Lett., 2011, 52(46), 6103-6107.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy