Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Research Article

Serum Uric Acid and Progression of Autosomal Dominant Polycystic Kidney Disease: Results from the HALT PKD Trials

Author(s): Godela M. Brosnahan*, Zhiying You, Wei Wang, Berenice Y. Gitomer and Michel Chonchol

Volume 17, Issue 3, 2021

Published on: 17 August, 2020

Page: [228 - 237] Pages: 10

DOI: 10.2174/1573402116666200817113125

Price: $65

Abstract

Background: Epidemiological studies have suggested that elevated serum uric acid may contribute to the progression of chronic kidney disease. However, no large prospective study has examined whether hyperuricemia is an independent risk factor for the progression of autosomal dominant polycystic kidney disease (ADPKD).

Methods: We measured uric acid in stored serum samples from the 2-year study visit of 671 participants from the HALT PKD multicenter trials. Participants were categorized according to uric acid tertiles. For Study A (participants aged 15-49 years with preserved kidney function, n=350), we used linear mixed effects models to examine the association between uric acid and repeated measures of height-adjusted total kidney volume (htTKV), the primary outcome for Study A. For Study B (participants aged 18-64 with decreased kidney function, n=321), we used Cox proportional hazards models to assess the hazard for the combined endpoint of 50% loss in estimated glomerular filtration rate (eGFR), end-stage kidney disease (ESKD), or death, the primary outcome for Study B. To assess the association of uric acid with the slope of eGFR decline (secondary outcome of HALT A and B), we used linear mixed effects models for the combined population of Study A and B.

Results: In the unadjusted model, the annual change in htTKV was 2.7% higher in the highest uric acid tertile compared to the lowest (p<0.001), but this difference became insignificant after adjustment for gender. Men had faster TKV growth than women (p<0.001). There was no difference in eGFR decline between the 3 uric acid tertiles. Hazard ratios for the clinical endpoint were 2.9 (95% confidence interval, 1.9-4.4) and 1.8 (1.1-2.8) respectively in the high and medium uric acid groups in unadjusted and partially adjusted models (p<0.001), but the significance was lost after adjustment for baseline eGFR. Results were similar when uric acid was examined as a continuous variable.

Conclusion: Elevated serum uric acid is not an independent risk factor for disease progression in ADPKD.

Keywords: Autosomal dominant polycystic kidney disease, serum uric acid, total kidney volume, estimated glomerular filtration rate, HALT PKD trials, chronic kidney disease.

Graphical Abstract
[1]
Willey CJ, Blais JD, Hall AK, Krasa HB, Makin AJ, Czerwiec FS. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant 2017; 32(8): 1356-63.
[PMID: 27325254]
[2]
Lanktree MB, Haghighi A, Guiard E, et al. Prevalence Estimates of Polycystic Kidney and Liver Disease by Population Sequencing. J Am Soc Nephrol 2018; 29(10): 2593-600.
[http://dx.doi.org/10.1681/ASN.2018050493] [PMID: 30135240]
[3]
Suwabe T, Shukoor S, Chamberlain AM, et al. Epidemiology of autosomal dominant polycystic kidney disease in Olmsted County. Clin J Am Soc Nephrol 2020; 15(1): 69-79.
[http://dx.doi.org/10.2215/CJN.05900519] [PMID: 31791998]
[4]
Torres VE, Chapman AB, Devuyst O, et al. TEMPO 3:4 Trial Investigators. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2012; 367(25): 2407-18.
[http://dx.doi.org/10.1056/NEJMoa1205511] [PMID: 23121377]
[5]
Gabow PA, Johnson AM, Kaehny WD, et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int 1992; 41(5): 1311-9.
[http://dx.doi.org/10.1038/ki.1992.195] [PMID: 1614046]
[6]
Johnson AM, Gabow PA. Identification of patients with autosomal dominant polycystic kidney disease at highest risk for end-stage renal disease. J Am Soc Nephrol 1997; 8(10): 1560-7.
[PMID: 9335384]
[7]
Torres VE, Grantham JJ, Chapman AB, et al. Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2011; 6(3): 640-7.
[http://dx.doi.org/10.2215/CJN.03250410] [PMID: 21088290]
[8]
Schrier RW, Brosnahan G, Cadnapaphornchai MA, et al. Predictors of autosomal dominant polycystic kidney disease progression. J Am Soc Nephrol 2014; 25(11): 2399-418.
[http://dx.doi.org/10.1681/ASN.2013111184] [PMID: 24925719]
[9]
Kang DH, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002; 13(12): 2888-97.
[http://dx.doi.org/10.1097/01.ASN.0000034910.58454.FD] [PMID: 12444207]
[10]
Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 2010; 28(6): 1234-42.
[http://dx.doi.org/10.1097/HJH.0b013e328337da1d] [PMID: 20486275]
[11]
Wang D, Iversen J, Wilcox CS, Strandgaard S. Endothelial dysfunction and reduced nitric oxide in resistance arteries in autosomal-dominant polycystic kidney disease. Kidney Int 2003; 64(4): 1381-8.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00236.x] [PMID: 12969157]
[12]
Nowak KL, Wang W, Farmer-Bailey H, et al. Vascular dysfunction, oxidative stress, and inflammation in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2018; 13(10): 1493-501.
[http://dx.doi.org/10.2215/CJN.05850518] [PMID: 30228110]
[13]
Kanbay M, Huddam B, Azak A, et al. A randomized study of allopurinol on endothelial function and estimated glomular filtration rate in asymptomatic hyperuricemic subjects with normal renal function. Clin J Am Soc Nephrol 2011; 6(8): 1887-94.
[http://dx.doi.org/10.2215/CJN.11451210] [PMID: 21784838]
[14]
Zhou Y, Fang L, Jiang L, et al. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS One 2012; 7(6)e39738
[http://dx.doi.org/10.1371/journal.pone.0039738] [PMID: 22761883]
[15]
Romi MM, Arfian N, Tranggono U, Setyaningsih WAW, Sari DCR. Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation. BMC Nephrol 2017; 18(1): 326.
[http://dx.doi.org/10.1186/s12882-017-0736-x] [PMID: 29089036]
[16]
Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis 2018; 71(6): 851-65.
[http://dx.doi.org/10.1053/j.ajkd.2017.12.009] [PMID: 29496260]
[17]
Ta MH, Harris DC, Rangan GK. Role of interstitial inflammation in the pathogenesis of polycystic kidney disease. Nephrology (Carlton) 2013; 18(5): 317-30.
[http://dx.doi.org/10.1111/nep.12045] [PMID: 23448509]
[18]
Grantham JJ, Mulamalla S, Swenson-Fields KI. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 2011; 7(10): 556-66.
[http://dx.doi.org/10.1038/nrneph.2011.109] [PMID: 21862990]
[19]
Chapman AB, Torres VE, Perrone RD, et al. The HALT polycystic kidney disease trials: design and implementation. Clin J Am Soc Nephrol 2010; 5(1): 102-9.
[http://dx.doi.org/10.2215/CJN.04310709] [PMID: 20089507]
[20]
Schrier RW, Abebe KZ, Perrone RD, et al. HALT-PKD Trial Investigators. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med 2014; 371(24): 2255-66.
[http://dx.doi.org/10.1056/NEJMoa1402685] [PMID: 25399733]
[21]
Torres VE, Abebe KZ, Chapman AB, et al. HALT-PKD Trial Investigators. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N Engl J Med 2014; 371(24): 2267-76.
[http://dx.doi.org/10.1056/NEJMoa1402686] [PMID: 25399731]
[22]
Chapman AB, Guay-Woodford LM, Grantham JJ, et al. Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int 2003; 64(3): 1035-45.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00185.x] [PMID: 12911554]
[23]
Levey AS, Stevens LA, Schmid CH, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150(9): 604-12. [Erratum in: Ann Intern Med 2011; 155: 408
[http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006] [PMID: 19414839]
[24]
Heyer CM, Sundsbak JL, Abebe KZ, et al. HALT PKD and CRISP Investigators. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2016; 27(9): 2872-84.
[http://dx.doi.org/10.1681/ASN.2015050583] [PMID: 26823553]
[25]
Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS. Uric acid and incident kidney disease in the community. J Am Soc Nephrol 2008; 19(6): 1204-11.
[http://dx.doi.org/10.1681/ASN.2007101075] [PMID: 18337481]
[26]
Bellomo G, Venanzi S, Verdura C, Saronio P, Esposito A, Timio M. Association of uric acid with change in kidney function in healthy normotensive individuals. Am J Kidney Dis 2010; 56(2): 264-72.
[http://dx.doi.org/10.1053/j.ajkd.2010.01.019] [PMID: 20385436]
[27]
Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 2009; 58(7): 1668-71.
[http://dx.doi.org/10.2337/db09-0014] [PMID: 19411615]
[28]
De Cosmo S, Viazzi F, Pacilli A, et al. AMD-Annals Study Group. Serum uric acid and risk of CKD in type 2 diabetes. Clin J Am Soc Nephrol 2015; 10(11): 1921-9.
[http://dx.doi.org/10.2215/CJN.03140315] [PMID: 26342044]
[29]
Sánchez-Lozada LG, Tapia E, Soto V, et al. Treatment with the xanthine oxidase inhibitor febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol Dial Transplant 2008; 23(4): 1179-85.
[http://dx.doi.org/10.1093/ndt/gfm783] [PMID: 18048425]
[30]
Omori H, Kawada N, Inoue K, et al. Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol 2012; 16(4): 549-56.
[http://dx.doi.org/10.1007/s10157-012-0609-3] [PMID: 22350467]
[31]
Fan S, Zhang P, Wang AY, et al. Hyperuricemia and its related histopathological features on renal biopsy. BMC Nephrol 2019; 20(1): 95.
[http://dx.doi.org/10.1186/s12882-019-1275-4] [PMID: 30885171]
[32]
Pilemann-Lyberg S, Hansen TW, Tofte N, et al. Uric acid is an independent risk factor for decline in kidney function, cardiovascular events, and mortality in patients with type 1 diabetes. Diabetes Care 2019; 42(6): 1088-94.
[http://dx.doi.org/10.2337/dc18-2173] [PMID: 30885950]
[33]
Hanai K, Tauchi E, Nishiwaki Y, et al. Effects of uric acid on kidney function decline differ depending on baseline kidney function in type 2 diabetic patients. Nephrol Dial Transplant 2018. Epub ahead of print
[http://dx.doi.org/10.1093/ndt/gfy138] [PMID: 29860523]
[34]
Kuwabara M, Bjornstad P, Hisatome I, et al. Elevated serum uric acid level predicts rapid decline in kidney function. Am J Nephrol 2017; 45(4): 330-7.
[http://dx.doi.org/10.1159/000464260] [PMID: 28285309]
[35]
Tsai CW, Chiu HT, Huang HC, Ting IW, Yeh HC, Kuo CC. Uric acid predicts adverse outcomes in chronic kidney disease: a novel insight from trajectory analyses. Nephrol Dial Transplant 2018; 33(2): 231-41.
[http://dx.doi.org/10.1093/ndt/gfx297] [PMID: 29140472]
[36]
Srivastava A, Kaze AD, McMullan CJ, Isakova T, Waikar SS. Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis 2018; 71(3): 362-70.
[http://dx.doi.org/10.1053/j.ajkd.2017.08.017] [PMID: 29132945]
[37]
Helal I, McFann K, Reed B, Yan X-D, Schrier RW, Fick-Brosnahan GM. Serum uric acid, kidney volume and progression in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant 2013; 28(2): 380-5.
[http://dx.doi.org/10.1093/ndt/gfs417] [PMID: 23222419]
[38]
Kocyigit I, Yilmaz MI, Orscelik O, et al. Serum uric acid levels and endothelial dysfunction in patients with autosomal dominant polycystic kidney disease. Nephron Clin Pract 2013; 123(3-4): 157-64.
[http://dx.doi.org/10.1159/000353730] [PMID: 23887359]
[39]
Mao Z, Xie G, Ong AC. Metabolic abnormalities in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2015; 30(2): 197-203.
[http://dx.doi.org/10.1093/ndt/gfu044] [PMID: 24589722]
[40]
Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 2009; 106(25): 10338-42.
[http://dx.doi.org/10.1073/pnas.0901249106] [PMID: 19506252]
[41]
Liu P, Chen Y, Wang B, Zhang F, Wang D, Wang Y. Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3-year randomized parallel-controlled study. Clin Endocrinol (Oxf) 2015; 83(4): 475-82.
[http://dx.doi.org/10.1111/cen.12673] [PMID: 25400252]
[42]
Goicoechea M, de Vinuesa SG, Verdalles U, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010; 5(8): 1388-93.
[http://dx.doi.org/10.2215/CJN.01580210] [PMID: 20538833]
[43]
Kimura K, Hosoya T, Uchida S, et al. FEATHER Study Investigators. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 2018; 72(6): 798-810.
[http://dx.doi.org/10.1053/j.ajkd.2018.06.028] [PMID: 30177485]
[44]
Badve SV, Pascoe EM, Tiku A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med 2020; 382(8): 2504-13.
[http://dx.doi.org/10.1056/NEJMoa1915833] [PMID: 32579811]
[45]
Doria A, Galecki AT, Spino C, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med 2020; 382(8): 2493-503.
[http://dx.doi.org/10.1056/NEJMoa1916624] [PMID: 32579810]
[46]
Li X, Meng X, Timofeeva M, et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017; 357: j2376.
[http://dx.doi.org/10.1136/bmj.j2376] [PMID: 28592419]
[47]
Jordan DM, Choi HK, Verbanck M, et al. No causal effects of serum urate levels on the risk of chronic kidney disease: A Mendelian randomization study. PLoS Med 2019; 16(1)e1002725
[http://dx.doi.org/10.1371/journal.pmed.1002725] [PMID: 30645594]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy