Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Drug Repurposing in Oncology, an Attractive Opportunity for Novel Combinatorial Regimens

Author(s): Paolo Falvo, Stefania Orecchioni, Stefania Roma, Alessandro Raveane and Francesco Bertolini*

Volume 28 , Issue 11 , 2021

Published on: 17 August, 2020

Page: [2114 - 2136] Pages: 23

DOI: 10.2174/0929867327999200817104912

Price: $65

Abstract

The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.

Keywords: Oncology, drug, repurposing, in silico, computational approaches, preclinical models, therapies.

[1]
Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology--patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[2]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[3]
Orecchioni, S.; Roma, S.; Raimondi, S.; Gandini, S.; Bertolini, F. Identifying drug repurposing opportunities in oncology. Cancer J., 2019, 25(2), 82-87.
[http://dx.doi.org/10.1097/PPO.0000000000000360] [PMID: 30896529]
[4]
Nowak-Sliwinska, P; Scapozza, L ; Altaba, A Ruiz i. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer Biochim Biophys Acta BBA - Rev Cancer, 2019, 1871, 434- 454..
[5]
Mottini, C.; Napolitano, F.; Li, Z.; Gao, X.; Cardone, L. Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin. Cancer Biol., 2021, 68, 59-74.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.023] [PMID: 31562957.]
[6]
Nabirotchkin, S.; Peluffo, A.E.; Rinaudo, P.; Yu, J.; Hajj, R.; Cohen, D. Next-generation drug repurposing using human genetics and network biology., Curr. Opin. Pharmacol., 2020.S1471-4892(19)30123-7.
[http://dx.doi.org/10.1016/j.coph.2019.12.004] [PMID: 31982325]
[7]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[8]
Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res., 2016, 44(D1), D1075-D1079.
[http://dx.doi.org/10.1093/nar/gkv1075] [PMID: 26481350]
[9]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[10]
Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; Sayeeda, Z.; Lo, E.; Assempour, N.; Berjanskii, M.; Singhal, S.; Arndt, D.; Liang, Y.; Badran, H.; Grant, J.; Serra-Cayuela, A.; Liu, Y.; Mandal, R.; Neveu, V.; Pon, A.; Knox, C.; Wilson, M.; Manach, C.; Scalbert, A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res., 2018, 46(D1), D608-D617.
[http://dx.doi.org/10.1093/nar/gkx1089] [PMID: 29140435]
[11]
Nguyen, D-T.; Mathias, S.; Bologa, C.; Brunak, S.; Fernandez, N.; Gaulton, A.; Hersey, A.; Holmes, J.; Jensen, L.J.; Karlsson, A.; Liu, G.; Ma’ayan, A.; Mandava, G.; Mani, S.; Mehta, S.; Overington, J.; Patel, J.; Rouillard, A.D.; Schürer, S.; Sheils, T.; Simeonov, A.; Sklar, L.A.; Southall, N.; Ursu, O.; Vidovic, D.; Waller, A.; Yang, J.; Jadhav, A.; Oprea, T.I.; Guha, R. Pharos: collating protein information to shed light on the druggable genome. Nucleic Acids Res., 2017, 45(D1), D995-D1002.
[http://dx.doi.org/10.1093/nar/gkw1072] [PMID: 27903890]
[12]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[13]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[14]
Keenan, A.B.; Jenkins, S.L.; Jagodnik, K.M.; Koplev, S.; He, E.; Torre, D.; Wang, Z.; Dohlman, A.B.; Silverstein, M.C.; Lachmann, A.; Kuleshov, M.V.; Ma’ayan, A.; Stathias, V.; Terryn, R.; Cooper, D.; Forlin, M.; Koleti, A.; Vidovic, D.; Chung, C.; Schürer, S.C.; Vasiliauskas, J.; Pilarczyk, M.; Shamsaei, B.; Fazel, M.; Ren, Y.; Niu, W.; Clark, N.A.; White, S.; Mahi, N.; Zhang, L.; Kouril, M.; Reichard, J.F.; Sivaganesan, S.; Medvedovic, M.; Meller, J.; Koch, R.J.; Birtwistle, M.R.; Iyengar, R.; Sobie, E.A.; Azeloglu, E.U.; Kaye, J.; Osterloh, J.; Haston, K.; Kalra, J.; Finkbiener, S.; Li, J.; Milani, P.; Adam, M.; Escalante-Chong, R.; Sachs, K.; Lenail, A.; Ramamoorthy, D.; Fraenkel, E.; Daigle, G.; Hussain, U.; Coye, A.; Rothstein, J.; Sareen, D.; Ornelas, L.; Banuelos, M.; Mandefro, B.; Ho, R.; Svendsen, C.N.; Lim, R.G.; Stocksdale, J.; Casale, M.S.; Thompson, T.G.; Wu, J.; Thompson, L.M.; Dardov, V.; Venkatraman, V.; Matlock, A.; Van Eyk, J.E.; Jaffe, J.D.; Papanastasiou, M.; Subramanian, A.; Golub, T.R.; Erickson, S.D.; Fallahi-Sichani, M.; Hafner, M.; Gray, N.S.; Lin, J.R.; Mills, C.E.; Muhlich, J.L.; Niepel, M.; Shamu, C.E.; Williams, E.H.; Wrobel, D.; Sorger, P.K.; Heiser, L.M.; Gray, J.W.; Korkola, J.E.; Mills, G.B.; LaBarge, M.; Feiler, H.S.; Dane, M.A.; Bucher, E.; Nederlof, M.; Sudar, D.; Gross, S.; Kilburn, D.F.; Smith, R.; Devlin, K.; Margolis, R.; Derr, L.; Lee, A.; Pillai, A. The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst., 2018, 6(1), 13-24.
[http://dx.doi.org/10.1016/j.cels.2017.11.001] [PMID: 29199020]
[15]
Li, L.; Hu, M.; Wang, T.; Chen, H.; Xu, L. Repositioning aspirin to treat lung and breast cancers and overcome acquired resistance to targeted therapy. Front. Oncol., 2020, 9, 1503.
[http://dx.doi.org/10.3389/fonc.2019.01503] [PMID: 31993373]
[16]
Lee, H-J.; Dang, T.C.; Lee, H.; Park, J.C. OncoSearch: cancer gene search engine with literature evidence., . Nucleic Acids Res., 2014, 42(Web Server issue), W416-21..
[http://dx.doi.org/10.1093/nar/gku368] [PMID: 24813447]
[17]
Baker, S.; Ali, I.; Silins, I.; Pyysalo, S.; Guo, Y.; Högberg, J.; Stenius, U.; Korhonen, A. Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics, 2017, 33(24), 3973-3981.
[http://dx.doi.org/10.1093/bioinformatics/btx454] [PMID: 29036271]
[18]
Pyysalo, S.; Baker, S.; Ali, I.; Haselwimmer, S.; Shah, T.; Young, A.; Guo, Y.; Högberg, J.; Stenius, U.; Narita, M.; Korhonen, A. LION LBD: a literature-based discovery system for cancer biology. Bioinformatics, 2019, 35(9), 1553-1561.
[http://dx.doi.org/10.1093/bioinformatics/bty845] [PMID: 30304355]
[19]
Zhang, S-D.; Gant, T.W. sscMap: an extensible Java application for connecting small-molecule drugs using gene-expression signatures. BMC Bioinformatics, 2009, 10, 236.
[http://dx.doi.org/10.1186/1471-2105-10-236] [PMID: 19646231]
[20]
Setoain, J.; Franch, M.; Martínez, M.; Tabas-Madrid, D.; Sorzano, C.O.; Bakker, A.; Gonzalez-Couto, E.; Elvira, J.; Pascual-Montano, A. NFFinder: an online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning. Nucleic Acids Res., 2015, 43(W1)W193-9
[http://dx.doi.org/10.1093/nar/gkv445] [PMID: 25940629]
[21]
Jia, Z.; Liu, Y.; Guan, N.; Bo, X.; Luo, Z.; Barnes, M.R. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genomics, 2016, 17, 414.
[http://dx.doi.org/10.1186/s12864-016-2737-8] [PMID: 27234029]
[22]
Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 2016, 44(D1), D457-D462.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[23]
Chan, J.; Wang, X.; Turner, J.A.; Baldwin, N.E.; Gu, J. Breaking the paradigm: Dr Insight empowers signature-free, enhanced drug repurposing. Bioinformatics, 2019, 35(16), 2818-2826.
[http://dx.doi.org/10.1093/bioinformatics/btz006] [PMID: 30624606]
[24]
Iorio, F.; Bosotti, R.; Scacheri, E.; Belcastro, V.; Mithbaokar, P.; Ferriero, R.; Murino, L.; Tagliaferri, R.; Brunetti-Pierri, N.; Isacchi, A.; di Bernardo, D. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14621-14626.
[http://dx.doi.org/10.1073/pnas.1000138107] [PMID: 20679242]
[25]
Carrella, D.; Napolitano, F.; Rispoli, R.; Miglietta, M.; Carissimo, A.; Cutillo, L.; Sirci, F.; Gregoretti, F.; Di Bernardo, D. Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics, 2014, 30(12), 1787-1788.
[http://dx.doi.org/10.1093/bioinformatics/btu058] [PMID: 24558125]
[26]
El-Hachem, N.; Gendoo, D.M.A.; Ghoraie, L.S.; Safikhani, Z.; Smirnov, P.; Chung, C.; Deng, K.; Fang, A.; Birkwood, E.; Ho, C.; Isserlin, R.; Bader, G.D.; Goldenberg, A.; Haibe-Kains, B. Integrative cancer pharmacogenomics to infer large-scale drug taxonomy. Cancer Res., 2017, 77(11), 3057-3069.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0096] [PMID: 28314784]
[27]
Seashore-Ludlow, B.; Rees, M.G.; Cheah, J.H.; Cokol, M.; Price, E.V.; Coletti, M.E.; Jones, V.; Bodycombe, N.E.; Soule, C.K.; Gould, J.; Alexander, B.; Li, A.; Montgomery, P.; Wawer, M.J.; Kuru, N.; Kotz, J.D.; Hon, C.S.; Munoz, B.; Liefeld, T.; Dančík, V.; Bittker, J.A.; Palmer, M.; Bradner, J.E.; Shamji, A.F.; Clemons, P.A.; Schreiber, S.L. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov., 2015, 5(11), 1210-1223.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0235] [PMID: 26482930]
[28]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[29]
Peyvandipour, A.; Saberian, N.; Shafi, A.; Donato, M.; Draghici, S. A novel computational approach for drug repurposing using systems biology. Bioinformatics, 2018, 34(16), 2817-2825.
[http://dx.doi.org/10.1093/bioinformatics/bty133] [PMID: 29534151]
[30]
Nelson, M.R.; Tipney, H.; Painter, J.L.; Shen, J.; Nicoletti, P.; Shen, Y.; Floratos, A.; Sham, P.C.; Li, M.J.; Wang, J.; Cardon, L.R.; Whittaker, J.C.; Sanseau, P. The support of human genetic evidence for approved drug indications. Nat. Genet., 2015, 47(8), 856-860.
[http://dx.doi.org/10.1038/ng.3314] [PMID: 26121088]
[31]
King, E.A.; Davis, J.W.; Degner, J.F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet., 2019, 15(12)e1008489
[http://dx.doi.org/10.1371/journal.pgen.1008489] [PMID: 31830040]
[32]
Denny, J.C.; Ritchie, M.D.; Basford, M.A.; Pulley, J.M.; Bastarache, L.; Brown-Gentry, K.; Wang, D.; Masys, D.R.; Roden, D.M.; Crawford, D.C. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics, 2010, 26(9), 1205-1210.
[http://dx.doi.org/10.1093/bioinformatics/btq126] [PMID: 20335276]
[33]
Khosravi, A.; Jayaram, B.; Goliaei, B.; Masoudi-Nejad, A. Active repurposing of drug candidates for melanoma based on GWAS, PheWAS and a wide range of omics data. Mol. Med., 2019, 25(1), 30.
[http://dx.doi.org/10.1186/s10020-019-0098-x] [PMID: 31221082]
[34]
Michailidou, K.; Lindström, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemaçon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; Bolla, M.K.; Wang, Q.; Tyrer, J.; Dicks, E.; Lee, A.; Wang, Z.; Allen, J.; Keeman, R.; Eilber, U.; French, J.D.; Qing, Chen X.; Fachal, L.; McCue, K.; McCart Reed, A.E.; Ghoussaini, M.; Carroll, J.S.; Jiang, X.; Finucane, H.; Adams, M.; Adank, M.A.; Ahsan, H.; Aittomäki, K.; Anton-Culver, H.; Antonenkova, N.N.; Arndt, V.; Aronson, K.J.; Arun, B.; Auer, P.L.; Bacot, F.; Barrdahl, M.; Baynes, C.; Beckmann, M.W.; Behrens, S.; Benitez, J.; Bermisheva, M.; Bernstein, L.; Blomqvist, C.; Bogdanova, N.V.; Bojesen, S.E.; Bonanni, B.; Børresen-Dale, A.L.; Brand, J.S.; Brauch, H.; Brennan, P.; Brenner, H.; Brinton, L.; Broberg, P.; Brock, I.W.; Broeks, A.; Brooks-Wilson, A.; Brucker, S.Y.; Brüning, T.; Burwinkel, B.; Butterbach, K.; Cai, Q.; Cai, H.; Caldés, T.; Canzian, F.; Carracedo, A.; Carter, B.D.; Castelao, J.E.; Chan, T.L.; David Cheng, T.Y.; Seng Chia, K.; Choi, J.Y.; Christiansen, H.; Clarke, C.L.; Collée, M.; Conroy, D.M.; Cordina-Duverger, E.; Cornelissen, S.; Cox, D.G.; Cox, A.; Cross, S.S.; Cunningham, J.M.; Czene, K.; Daly, M.B.; Devilee, P.; Doheny, K.F.; Dörk, T.; Dos-Santos-Silva, I.; Dumont, M.; Durcan, L.; Dwek, M.; Eccles, D.M.; Ekici, A.B.; Eliassen, A.H.; Ellberg, C.; Elvira, M.; Engel, C.; Eriksson, M.; Fasching, P.A.; Figueroa, J.; Flesch-Janys, D.; Fletcher, O.; Flyger, H.; Fritschi, L.; Gaborieau, V.; Gabrielson, M.; Gago-Dominguez, M.; Gao, Y.T.; Gapstur, S.M.; García-Sáenz, J.A.; Gaudet, M.M.; Georgoulias, V.; Giles, G.G.; Glendon, G.; Goldberg, M.S.; Goldgar, D.E.; González-Neira, A.; Grenaker Alnæs, G.I.; Grip, M.; Gronwald, J.; Grundy, A.; Guénel, P.; Haeberle, L.; Hahnen, E.; Haiman, C.A.; Håkansson, N.; Hamann, U.; Hamel, N.; Hankinson, S.; Harrington, P.; Hart, S.N.; Hartikainen, J.M.; Hartman, M.; Hein, A.; Heyworth, J.; Hicks, B.; Hillemanns, P.; Ho, D.N.; Hollestelle, A.; Hooning, M.J.; Hoover, R.N.; Hopper, J.L.; Hou, M.F.; Hsiung, C.N.; Huang, G.; Humphreys, K.; Ishiguro, J.; Ito, H.; Iwasaki, M.; Iwata, H.; Jakubowska, A.; Janni, W.; John, E.M.; Johnson, N.; Jones, K.; Jones, M.; Jukkola-Vuorinen, A.; Kaaks, R.; Kabisch, M.; Kaczmarek, K.; Kang, D.; Kasuga, Y.; Kerin, M.J.; Khan, S.; Khusnutdinova, E.; Kiiski, J.I.; Kim, S.W.; Knight, J.A.; Kosma, V.M.; Kristensen, V.N.; Krüger, U.; Kwong, A.; Lambrechts, D.; Le Marchand, L.; Lee, E.; Lee, M.H.; Lee, J.W.; Neng Lee, C.; Lejbkowicz, F.; Li, J.; Lilyquist, J.; Lindblom, A.; Lissowska, J.; Lo, W.Y.; Loibl, S.; Long, J.; Lophatananon, A.; Lubinski, J.; Luccarini, C.; Lux, M.P.; Ma, E.S.K.; MacInnis, R.J.; Maishman, T.; Makalic, E.; Malone, K.E.; Kostovska, I.M.; Mannermaa, A.; Manoukian, S.; Manson, J.E.; Margolin, S.; Mariapun, S.; Martinez, M.E.; Matsuo, K.; Mavroudis, D.; McKay, J.; McLean, C.; Meijers-Heijboer, H.; Meindl, A.; Menéndez, P.; Menon, U.; Meyer, J.; Miao, H.; Miller, N.; Taib, N.A.M.; Muir, K.; Mulligan, A.M.; Mulot, C.; Neuhausen, S.L.; Nevanlinna, H.; Neven, P.; Nielsen, S.F.; Noh, D.Y.; Nordestgaard, B.G.; Norman, A.; Olopade, O.I.; Olson, J.E.; Olsson, H.; Olswold, C.; Orr, N.; Pankratz, V.S.; Park, S.K.; Park-Simon, T.W.; Lloyd, R.; Perez, J.I.A.; Peterlongo, P.; Peto, J.; Phillips, K.A.; Pinchev, M.; Plaseska-Karanfilska, D.; Prentice, R.; Presneau, N.; Prokofyeva, D.; Pugh, E.; Pylkäs, K.; Rack, B.; Radice, P.; Rahman, N.; Rennert, G.; Rennert, H.S.; Rhenius, V.; Romero, A.; Romm, J.; Ruddy, K.J.; Rüdiger, T.; Rudolph, A.; Ruebner, M.; Rutgers, E.J.T.; Saloustros, E.; Sandler, D.P.; Sangrajrang, S.; Sawyer, E.J.; Schmidt, D.F.; Schmutzler, R.K.; Schneeweiss, A.; Schoemaker, M.J.; Schumacher, F.; Schürmann, P.; Scott, R.J.; Scott, C.; Seal, S.; Seynaeve, C.; Shah, M.; Sharma, P.; Shen, C.Y.; Sheng, G.; Sherman, M.E.; Shrubsole, M.J.; Shu, X.O.; Smeets, A.; Sohn, C.; Southey, M.C.; Spinelli, J.J.; Stegmaier, C.; Stewart-Brown, S.; Stone, J.; Stram, D.O.; Surowy, H.; Swerdlow, A.; Tamimi, R.; Taylor, J.A.; Tengström, M.; Teo, S.H.; Beth Terry, M.; Tessier, D.C.; Thanasitthichai, S.; Thöne, K.; Tollenaar, R.A.E.M.; Tomlinson, I.; Tong, L.; Torres, D.; Truong, T.; Tseng, C.C.; Tsugane, S.; Ulmer, H.U.; Ursin, G.; Untch, M.; Vachon, C.; van Asperen, C.J.; Van Den Berg, D.; van den Ouweland, A.M.W.; van der Kolk, L.; van der Luijt, R.B.; Vincent, D.; Vollenweider, J.; Waisfisz, Q.; Wang-Gohrke, S.; Weinberg, C.R.; Wendt, C.; Whittemore, A.S.; Wildiers, H.; Willett, W.; Winqvist, R.; Wolk, A.; Wu, A.H.; Xia, L.; Yamaji, T.; Yang, X.R.; Har Yip, C.; Yoo, K.Y.; Yu, J.C.; Zheng, W.; Zheng, Y.; Zhu, B.; Ziogas, A.; Ziv, E.; Lakhani, S.R.; Antoniou, A.C.; Droit, A.; Andrulis, I.L.; Amos, C.I.; Couch, F.J.; Pharoah, P.D.P.; Chang-Claude, J.; Hall, P.; Hunter, D.J.; Milne, R.L.; García-Closas, M.; Schmidt, M.K.; Chanock, S.J.; Dunning, A.M.; Edwards, S.L.; Bader, G.D.; Chenevix-Trench, G.; Simard, J.; Kraft, P.; Easton, D.F. NBCS Collaborators; ABCTB Investigators; ConFab/AOCS Investigators. Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551(7678), 92-94.
[http://dx.doi.org/10.1038/nature24284] [PMID: 29059683]
[35]
Medina-Gomez, C.; Kemp, J.P.; Trajanoska, K.; Luan, J.; Chesi, A.; Ahluwalia, T.S.; Mook-Kanamori, D.O.; Ham, A.; Hartwig, F.P.; Evans, D.S.; Joro, R.; Nedeljkovic, I.; Zheng, H.F.; Zhu, K.; Atalay, M.; Liu, C.T.; Nethander, M.; Broer, L.; Porleifsson, G.; Mullin, B.H.; Handelman, S.K.; Nalls, M.A.; Jessen, L.E.; Heppe, D.H.M.; Richards, J.B.; Wang, C.; Chawes, B.; Schraut, K.E.; Amin, N.; Wareham, N.; Karasik, D.; Van der Velde, N.; Ikram, M.A.; Zemel, B.S.; Zhou, Y.; Carlsson, C.J.; Liu, Y.; McGuigan, F.E.; Boer, C.G.; Bønnelykke, K.; Ralston, S.H.; Robbins, J.A.; Walsh, J.P.; Zillikens, M.C.; Langenberg, C.; Li-Gao, R.; Williams, F.M.K.; Harris, T.B.; Akesson, K.; Jackson, R.D.; Sigurdsson, G.; den Heijer, M.; van der Eerden, B.C.J.; van de Peppel, J.; Spector, T.D.; Pennell, C.; Horta, B.L.; Felix, J.F.; Zhao, J.H.; Wilson, S.G.; de Mutsert, R.; Bisgaard, H.; Styrkársdóttir, U.; Jaddoe, V.W.; Orwoll, E.; Lakka, T.A.; Scott, R.; Grant, S.F.A.; Lorentzon, M.; van Duijn, C.M.; Wilson, J.F.; Stefansson, K.; Psaty, B.M.; Kiel, D.P.; Ohlsson, C.; Ntzani, E.; van Wijnen, A.J.; Forgetta, V.; Ghanbari, M.; Logan, J.G.; Williams, G.R.; Bassett, J.H.D.; Croucher, P.I.; Evangelou, E.; Uitterlinden, A.G.; Ackert-Bicknell, C.L.; Tobias, J.H.; Evans, D.M.; Rivadeneira, F. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am. J. Hum. Genet., 2018, 102(1), 88-102.
[http://dx.doi.org/10.1016/j.ajhg.2017.12.005] [PMID: 29304378]
[36]
The I, of Whole TP-CA, Genomes Consortium. Pan-cancer analysis of whole genomes. Nature, 2020, 578(7793), 82-93.
[http://dx.doi.org/10.1038/s41586-020-1969-6]
[37]
Rheinbay, E.; Nielsen, M.M.; Abascal, F.; Wala, J.A.; Shapira, O.; Tiao, G.; Hornshøj, H.; Hess, J.M.; Juul, R.I.; Lin, Z.; Feuerbach, L.; Sabarinathan, R.; Madsen, T.; Kim, J.; Mularoni, L.; Shuai, S.; Lanzós, A.; Herrmann, C.; Maruvka, Y.E.; Shen, C.; Amin, S.B.; Bandopadhayay, P.; Bertl, J.; Boroevich, K.A.; Busanovich, J.; Carlevaro-Fita, J.; Chakravarty, D.; Chan, C.W.Y.; Craft, D.; Dhingra, P.; Diamanti, K.; Fonseca, N.A.; Gonzalez-Perez, A.; Guo, Q.; Hamilton, M.P.; Haradhvala, N.J.; Hong, C.; Isaev, K.; Johnson, T.A.; Juul, M.; Kahles, A.; Kahraman, A.; Kim, Y.; Komorowski, J.; Kumar, K.; Kumar, S.; Lee, D.; Lehmann, K.V.; Li, Y.; Liu, E.M.; Lochovsky, L.; Park, K.; Pich, O.; Roberts, N.D.; Saksena, G.; Schumacher, S.E.; Sidiropoulos, N.; Sieverling, L.; Sinnott-Armstrong, N.; Stewart, C.; Tamborero, D.; Tubio, J.M.C.; Umer, H.M.; Uusküla-Reimand, L.; Wadelius, C.; Wadi, L.; Yao, X.; Zhang, C.Z.; Zhang, J.; Haber, J.E.; Hobolth, A.; Imielinski, M.; Kellis, M.; Lawrence, M.S.; von Mering, C.; Nakagawa, H.; Raphael, B.J.; Rubin, M.A.; Sander, C.; Stein, L.D.; Stuart, J.M.; Tsunoda, T.; Wheeler, D.A.; Johnson, R.; Reimand, J.; Gerstein, M.; Khurana, E.; Campbell, P.J.; López-Bigas, N.; Weischenfeldt, J.; Beroukhim, R.; Martincorena, I.; Pedersen, J.S.; Getz, G. PCAWG Drivers and Functional Interpretation Working Group. PCAWG Structural Variation Working Group; PCAWG Consortium. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature, 2020, 578(7793), 102-111.
[http://dx.doi.org/10.1038/s41586-020-1965-x] [PMID: 32025015]
[38]
Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; Islam, S.M.A.; Lopez-Bigas, N.; Klimczak, L.J.; McPherson, J.R.; Morganella, S.; Sabarinathan, R.; Wheeler, D.A.; Mustonen, V.; Getz, G.; Rozen, S.G.; Stratton, M.R. PCAWG Mutational Signatures Working Group. PCAWG Consortium. The repertoire of mutational signatures in human cancer. Nature, 2020, 578(7793), 94-101.
[http://dx.doi.org/10.1038/s41586-020-1943-3] [PMID: 32025018]
[39]
Li, Y.; Roberts, N.D.; Wala, J.A.; Shapira, O.; Schumacher, S.E.; Kumar, K.; Khurana, E.; Waszak, S.; Korbel, J.O.; Haber, J.E.; Imielinski, M.; Weischenfeldt, J.; Beroukhim, R.; Campbell, P.J. PCAWG Structural Variation Working Group. PCAWG Consortium. Patterns of somatic structural variation in human cancer genomes. Nature, 2020, 578(7793), 112-121.
[http://dx.doi.org/10.1038/s41586-019-1913-9] [PMID: 32025012]
[40]
Gerstung, M. Jolly. C.; Leshchiner, I.; Dentro, S.C.; Gonzalez, S.; Rosebrock, D.; Mitchell, T.J.; Rubanova, Y.; Anur, P.; Yu, K.; Tarabichi, M.; Deshwar, A.; Wintersinger, J.; Kleinheinz, K.; Vázquez-García, I.; Haase, K.; Jerman, L.; Sengupta, S.; Macintyre, G.; Malikic, S.; Donmez, N.; Livitz, D.G.; Cmero, M.; Demeulemeester, J.; Schumacher, S.; Fan, Y.; Yao, X.; Lee, J.; Schlesner, M.; Boutros, P.C.; Bowtell, D.D.; Zhu, H.; Getz, G.; Imielinski, M.; Beroukhim, R.; Sahinalp, S.C.; Ji, Y.; Peifer, M.; Markowetz, F.; Mustonen, V.; Yuan, K.; Wang, W.; Morris, Q.D.; PCAWG Evolution & Heterogeneity Working Group, Spellman, P.T.; Wedge, D.C.; Van Loo, P.; PCAWG Consortium. The evolutionary history of 2,658 cancers. bioRxiv, 2018, 578(7793), 122-128.
[http://dx.doi.org/doi.org/10.1038/s41586-019-1907-7] [PMID: 32025013 ]
[41]
Calabrese, C.; Davidson, N.R.; Demircioğlu, D.; Fonseca, N.A.; He, Y.; Kahles, A.; Lehmann, K.V.; Liu, F.; Shiraishi, Y.; Soulette, C.M.; Urban, L.; Greger, L.; Li, S.; Liu, D.; Perry, M.D.; Xiang, Q.; Zhang, F.; Zhang, J.; Bailey, P.; Erkek, S.; Hoadley, K.A.; Hou, Y.; Huska, M.R.; Kilpinen, H.; Korbel, J.O.; Marin, M.G.; Markowski, J.; Nandi, T.; Pan-Hammarström, Q.; Pedamallu, C.S.; Siebert, R.; Stark, S.G.; Su, H.; Tan, P.; Waszak, S.M.; Yung, C.; Zhu, S.; Awadalla, P.; Creighton, C.J.; Meyerson, M.; Ouellette, B.F.F.; Wu, K.; Yang, H.; Brazma, A.; Brooks, A.N.; Göke, J.; Rätsch, G.; Schwarz, R.F.; Stegle, O.; Zhang, Z. PCAWG Transcriptome Core Group. PCAWG Transcriptome Working Group; PCAWG Consortium. Genomic basis for RNA alterations in cancer. Nature, 2020, 578(7793), 129-136.
[http://dx.doi.org/10.1038/s41586-020-1970-0] [PMID: 32025019]
[42]
Napolitano, F.; Zhao, Y.; Moreira, V.M.; Tagliaferri, R.; Kere, J.; D’Amato, M.; Greco, D. Drug repositioning: a machine-learning approach through data integration. J. Cheminform., 2013, 5(1), 30.
[http://dx.doi.org/10.1186/1758-2946-5-30] [PMID: 23800010]
[43]
Lee, H.; Kang, S.; Kim, W. Drug repositioning for cancer therapy based on large-scale drug-induced transcriptional signatures. PLoS One, 2016, 11(3)e0150460
[http://dx.doi.org/10.1371/journal.pone.0150460] [PMID: 26954019]
[44]
Hameed, P.N.; Verspoor, K.; Kusljic, S.; Halgamuge, S. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration. BMC Bioinformatics, 2018, 19(1), 129.
[http://dx.doi.org/10.1186/s12859-018-2123-4] [PMID: 29642848]
[45]
Sawada, R.; Iwata, M.; Tabei, Y.; Yamato, H.; Yamanishi, Y. Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sci. Rep., 2018, 8(1), 156.
[http://dx.doi.org/10.1038/s41598-017-18315-9] [PMID: 29317676]
[46]
Saberian, N.; Peyvandipour, A.; Donato, M.; Ansari, S.; Draghici, S. A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics, 2019, 35(19), 3672-3678.
[http://dx.doi.org/10.1093/bioinformatics/btz156] [PMID: 30840053]
[47]
Haas, J.; Manro, J.; Shannon, H.; Anderson, W.; Brozinick, J.; Chakravartty, A.; Chambers, M.; Du, J.; Eastwood, B.; Heuer, J.; Iturria, S.; Iversen, P.; Johnson, D.B.S.; Johnson, K.; O’Neill, M.; Qian, H-R.; Sindelar, D.; Svensson, K. In vivo assay guidelines; Assay Guid Man Internet; Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2012.
[48]
Ertekin, E.; Gencturk, E.; Kasim, M.; Ulgen, K.O. A Drug repurposing and protein-protein interaction network study of ribosomopathies using yeast as a model system. OMICS, 2020, 24(2), 96-109.
[http://dx.doi.org/10.1089/omi.2019.0096] [PMID: 31895625]
[49]
Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev., 2011, 63(2), 411-436.
[http://dx.doi.org/10.1124/pr.110.003293] [PMID: 21415126]
[50]
Ziehm, M.; Kaur, S.; Ivanov, D.K.; Ballester, P.J.; Marcus, D.; Partridge, L.; Thornton, J.M. Drug repurposing for aging research using model organisms. Aging Cell, 2017, 16(5), 1006-1015.
[http://dx.doi.org/10.1111/acel.12626] [PMID: 28620943]
[51]
Perlman, R.L. Mouse models of human disease: an evolutionary perspective. Evol. Med. Public Health, 2016, 2016(1), 170-176.
[http://dx.doi.org/10.1093/emph/eow014] [PMID: 27121451]
[52]
Moser, A.R.; Luongo, C.; Gould, K.A.; McNeley, M.K.; Shoemaker, A.R.; Dove, W.F. ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur. J. Cancer, 1995, 31A(7-8), 1061-1064.
[http://dx.doi.org/10.1016/0959-8049(95)00181-H] [PMID: 7576992]
[53]
Grisolano, J.L.; Wesselschmidt, R.L.; Pelicci, P.G.; Ley, T.J. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR α under control of cathepsin G regulatory sequences. Blood, 1997, 89(2), 376-387.
[http://dx.doi.org/10.1182/blood.V89.2.376] [PMID: 9002938]
[54]
Andrechek, E.R.; Hardy, W.R.; Siegel, P.M.; Rudnicki, M.A.; Cardiff, R.D.; Muller, W.J. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3444-3449.
[http://dx.doi.org/10.1073/pnas.97.7.3444] [PMID: 10716706]
[55]
Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; Jaffe, E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 2016, 127(20), 2375-2390.
[http://dx.doi.org/10.1182/blood-2016-01-643569] [PMID: 26980727]
[56]
Miller, M.T. Thalidomide embryopathy: a model for the study of congenital incomitant horizontal strabismus. Trans. Am. Ophthalmol. Soc., 1991, 89, 623-674.
[PMID: 1808819]
[57]
Gandhi, A.K.; Kang, J.; Havens, C.G.; Conklin, T.; Ning, Y.; Wu, L.; Ito, T.; Ando, H.; Waldman, M.F.; Thakurta, A.; Klippel, A.; Handa, H.; Daniel, T.O.; Schafer, P.H.; Chopra, R. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br. J. Haematol., 2014, 164(6), 811-821.
[http://dx.doi.org/10.1111/bjh.12708] [PMID: 24328678]
[58]
Chamberlain, P.P.; Lopez-Girona, A.; Miller, K.; Carmel, G.; Pagarigan, B.; Chie-Leon, B.; Rychak, E.; Corral, L.G.; Ren, Y.J.; Wang, M.; Riley, M.; Delker, S.L.; Ito, T.; Ando, H.; Mori, T.; Hirano, Y.; Handa, H.; Hakoshima, T.; Daniel, T.O.; Cathers, B.E. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol., 2014, 21(9), 803-809.
[http://dx.doi.org/10.1038/nsmb.2874] [PMID: 25108355]
[59]
Fischer, E.S.; Böhm, K.; Lydeard, J.R.; Yang, H.; Stadler, M.B.; Cavadini, S.; Nagel, J.; Serluca, F.; Acker, V.; Lingaraju, G.M.; Tichkule, R.B.; Schebesta, M.; Forrester, W.C.; Schirle, M.; Hassiepen, U.; Ottl, J.; Hild, M.; Beckwith, R.E.; Harper, J.W.; Jenkins, J.L.; Thomä, N.H. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512(7512), 49-53.
[http://dx.doi.org/10.1038/nature13527] [PMID: 25043012]
[60]
Lu, G.; Middleton, R.E.; Sun, H.; Naniong, M.; Ott, C.J.; Mitsiades, C.S.; Wong, K.K.; Bradner, J.E.; Kaelin, W.G. Jr. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 2014, 343(6168), 305-309.
[http://dx.doi.org/10.1126/science.1244917] [PMID: 24292623]
[61]
Fink, E.C.; McConkey, M.; Adams, D.N.; Haldar, S.D.; Kennedy, J.A.; Guirguis, A.A.; Udeshi, N.D.; Mani, D.R.; Chen, M.; Liddicoat, B.; Svinkina, T.; Nguyen, A.T.; Carr, S.A.; Ebert, B.L. CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood, 2018, 132(14), 1535-1544.
[http://dx.doi.org/10.1182/blood-2018-05-852798] [PMID: 30064974]
[62]
Mitka, M. Viagra leads as rivals are moving up. JAMA, 1998, 280(2), 119-120.
[http://dx.doi.org/10.1001/jama.2012.7422] [PMID: 9669771]
[63]
Food and drug administration. FDA approves impotence pill, Viagra. Science Daily. Available at:; www.sciencedaily.com/releases/1998/04/980401074901.htm(Accessed date: May 21,. 2020.
[64]
Zhu, B.; Strada, S.J. The novel functions of cGMP-specific phosphodiesterase 5 and its inhibitors in carcinoma cells and pulmonary/cardiovascular vessels. Curr. Top. Med. Chem., 2007, 7(4), 437-454.
[http://dx.doi.org/10.2174/156802607779941198] [PMID: 17305584]
[65]
Aversa, F.; Velardi, A.; Tabilio, A.; Reisner, Y.; Martelli, M.F. Haploidentical stem cell transplantation in leukemia. Blood Rev., 2001, 15(3), 111-119.
[http://dx.doi.org/10.1054/blre.2001.0157] [PMID: 11735159]
[66]
Smith-Berdan, S.; Bercasio, A.; Rajendiran, S.; Forsberg, E.C. Viagra enables efficient, single-day hematopoietic stem cell mobilization. Stem Cell Reports, 2019, 13(5), 787-792.
[http://dx.doi.org/10.1016/j.stemcr.2019.09.004] [PMID: 31607567]
[67]
Ricken, R.; Ulrich, S.; Schlattmann, P.; Adli, M. Tranylcypromine in mind (Part II): Review of clinical pharmacology and meta-analysis of controlled studies in depression. Eur. Neuropsychopharmacol., 2017, 27(8), 714-731.
[http://dx.doi.org/10.1016/j.euroneuro.2017.04.003] [PMID: 28579071]
[68]
Magliulo, D.; Bernardi, R.; Messina, S. Lysine-specific demethylase 1A as a promising target in acute myeloid leukemia. Front. Oncol., 2018, 8, 255.
[http://dx.doi.org/10.3389/fonc.2018.00255] [PMID: 30073149]
[69]
Barth, J.; Abou-El-Ardat, K.; Dalic, D.; Kurrle, N.; Maier, A.M.; Mohr, S.; Schütte, J.; Vassen, L.; Greve, G.; Schulz-Fincke, J.; Schmitt, M.; Tosic, M.; Metzger, E.; Bug, G.; Khandanpour, C.; Wagner, S.A.; Lübbert, M.; Jung, M.; Serve, H.; Schüle, R.; Berg, T. LSD1 inhibition by tranylcypromine derivatives interferes with GFI1-mediated repression of PU.1 target genes and induces differentiation in AML. Leukemia, 2019, 33(6), 1411-1426.
[http://dx.doi.org/10.1038/s41375-018-0375-7] [PMID: 30679800]
[70]
Ravasio, R.; Ceccacci, E.; Nicosia, L.; Hosseini, A.; Rossi, P.L.; Barozzi, I.; Fornasari, L.; Zuffo, R.D.; Valente, S.; Fioravanti, R.; Mercurio, C.; Varasi, M.; Mattevi, A.; Mai, A.; Pavesi, G.; Bonaldi, T.; Minucci, S. Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid-induced differentiation. Sci. Adv., 2020, 6(15)eaax2746
[http://dx.doi.org/10.1126/sciadv.aax2746] [PMID: 32284990]
[71]
Fodde, R. The APC gene in colorectal cancer. Eur. J. Cancer, 2002, 38(7), 867-871.
[http://dx.doi.org/10.1016/S0959-8049(02)00040-0] [PMID: 11978510]
[72]
Venuto, C.; Butler, M.; Ashley, E.D.; Brown, J. Alternative therapies for Clostridium difficile infections. Pharmacotherapy, 2010, 30(12), 1266-1278.
[http://dx.doi.org/10.1592/phco.30.12.1266] [PMID: 21114394]
[73]
Qu, Y.; Olsen, J.R.; Yuan, X.; Cheng, P.F.; Levesque, M.P.; Brokstad, K.A.; Hoffman, P.S.; Oyan, A.M.; Zhang, W.; Kalland, K.H.; Ke, X. Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nat. Chem. Biol., 2018, 14(1), 94-101.
[http://dx.doi.org/10.1038/nchembio.2510] [PMID: 29083417]
[74]
Davis, A.; Robson, J. The dangers of NSAIDs: look both ways. Br. J. Gen. Pract., 2016, 66(645), 172-173.
[http://dx.doi.org/10.3399/bjgp16X684433] [PMID: 27033477]
[75]
Lichtenberger, L.M.; Phan, T.; Fang, D.; Dial, E.J. Chemoprevention with phosphatidylcholine non-steroidal anti-inflammatory drugs in vivo and in vitro. Oncol. Lett., 2018, 15(5), 6688-6694.
[http://dx.doi.org/10.3892/ol.2018.8098] [PMID: 29616131]
[76]
Russnes, H.G.; Lingjærde, O.C.; Børresen-Dale, A-L.; Caldas, C. Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am. J. Pathol., 2017, 187(10), 2152-2162.
[http://dx.doi.org/10.1016/j.ajpath.2017.04.022] [PMID: 28733194]
[77]
Wright, C.; Moore, R.D. Disulfiram treatment of alcoholism. Am. J. Med., 1990, 88(6), 647-655.
[http://dx.doi.org/10.1016/0002-9343(90)90534-K] [PMID: 2189310]
[78]
Liu, P.; Wang, Z.; Brown, S.; Kannappan, V.; Tawari, P.E.; Jiang, W.; Irache, J.M.; Tang, J.Z.; Armesilla, A.L.; Darling, J.L.; Tang, X.; Wang, W. Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget, 2014, 5(17), 7471-7485.
[http://dx.doi.org/10.18632/oncotarget.2166] [PMID: 25277186]
[79]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[80]
Viollet, B.; Guigas, B.; Sanz Garcia, N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.), 2012, 122(6), 253-270.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[81]
Wang, J-C.; Li, G-Y.; Wang, B.; Han, S.X.; Sun, X.; Jiang, Y.N.; Shen, Y.W.; Zhou, C.; Feng, J.; Lu, S.Y.; Liu, J.L.; Wang, M.D.; Liu, P.J. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. J. Exp. Clin. Cancer Res., 2019, 38(1), 235.
[http://dx.doi.org/10.1186/s13046-019-1211-2] [PMID: 31164151]
[82]
Inamura, K. Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front. Oncol., 2017, 7, 193.
[http://dx.doi.org/10.3389/fonc.2017.00193] [PMID: 28894699]
[83]
Stancu, C.; Sima, A. Statins: mechanism of action and effects. J. Cell. Mol. Med., 2001, 5(4), 378-387.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[84]
Alizadeh, J.; Zeki, A.A.; Mirzaei, N.; Tewary, S.; Rezaei Moghadam, A.; Glogowska, A.; Nagakannan, P.; Eftekharpour, E.; Wiechec, E.; Gordon, J.W.; Xu, F.Y.; Field, J.T.; Yoneda, K.Y.; Kenyon, N.J.; Hashemi, M.; Hatch, G.M.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci. Rep., 2017, 7, 44841.
[http://dx.doi.org/10.1038/srep44841] [PMID: 28344327]
[85]
Wang, F.; Liu, W.; Ning, J.; Wang, J.; Lang, Y.; Jin, X.; Zhu, K.; Wang, X.; Li, X.; Yang, F.; Ma, J.; Xu, S. Simvastatin suppresses proliferation and migration in non-small cell lung cancer via pyroptosis. Int. J. Biol. Sci., 2018, 14(4), 406-417.
[http://dx.doi.org/10.7150/ijbs.23542] [PMID: 29725262]
[86]
Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 2008, 99(7), 989-994.
[http://dx.doi.org/10.1038/sj.bjc.6604554] [PMID: 18766181]
[87]
Tataranni, T.; Piccoli, C. Dichloroacetate (DCA) and cancer: an overview towards clinical applications; Singh, K., Ed.; Oxid. Med. Cell Longev, 2019.
[http://dx.doi.org/10.1155/2019/8201079]] [PMID: 31827705]
[88]
Korga, A.; Ostrowska, M.; Iwan, M.; Herbet, M.; Dudka, J. Inhibition of glycolysis disrupts cellular antioxidant defense and sensitizes HepG2 cells to doxorubicin treatment. FEBS Open Bio, 2019, 9(5), 959-972.
[http://dx.doi.org/10.1002/2211-5463.12628] [PMID: 30973680]
[89]
Sun, H.; Zhu, A.; Zhou, X.; Wang, F. Suppression of pyruvate dehydrogenase kinase-2 re-sensitizes paclitaxel-resistant human lung cancer cells to paclitaxel. Oncotarget, 2017, 8(32), 52642-52650.
[http://dx.doi.org/10.18632/oncotarget.16991] [PMID: 28881758]
[90]
Woolbright, B.L.; Choudhary, D.; Mikhalyuk, A.; Trammel, C.; Shanmugam, S.; Abbott, E.; Pilbeam, C.C.; Taylor, J.A. III. The role of pyruvate dehydrogenase kinase-4 (PDK4) in bladder cancer and chemoresistance. Mol. Cancer Ther., 2018, 17(9), 2004-2012.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0063] [PMID: 29907593]
[91]
Lu, X.; Zhou, D.; Hou, B.; Liu, Q.X.; Chen, Q.; Deng, X.F.; Yu, Z.B.; Dai, J.G.; Zheng, H. Dichloroacetate enhances the antitumor efficacy of chemotherapeutic agents via inhibiting autophagy in non-small-cell lung cancer. Cancer Manag. Res., 2018, 10, 1231-1241.
[http://dx.doi.org/10.2147/CMAR.S156530] [PMID: 29844702]
[92]
Johnson, D.R.; O’Neill, B.P. Glioblastoma survival in the United States before and during the temozolomide era. J. Neurooncol., 2012, 107(2), 359-364.
[http://dx.doi.org/10.1007/s11060-011-0749-4] [PMID: 22045118]
[93]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups. National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352, 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330 ] [PMID: 15758009]
[94]
Hothi, P.; Martins, T.J.; Chen, L.; Deleyrolle, L.; Yoon, J.G.; Reynolds, B.; Foltz, G. High-throughput chemical screens identify disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget, 2012, 3(10), 1124-1136.
[http://dx.doi.org/10.18632/oncotarget.707] [PMID: 23165409]
[95]
Triscott, J.; Lee, C.; Hu, K.; Fotovati, A.; Berns, R.; Pambid, M.; Luk, M.; Kast, R.E.; Kong, E.; Toyota, E.; Yip, S.; Toyota, B.; Dunn, S.E. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. Oncotarget, 2012, 3(10), 1112-1123.
[http://dx.doi.org/10.18632/oncotarget.604] [PMID: 23047041]
[96]
Liu, P.; Brown, S.; Goktug, T.; Channathodiyil, P.; Kannappan, V.; Hugnot, J.P.; Guichet, P-O.; Bian, X.; Armesilla, A.L.; Darling, J.L.; Wang, W. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br. J. Cancer, 2012, 107(9), 1488-1497.
[http://dx.doi.org/10.1038/bjc.2012.442] [PMID: 23033007]
[97]
Verbaanderd, C.; Maes, H.; Schaaf, M.B. Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.
[http://dx.doi.org/doi.org/10.3332/ecancer.2017.781] [PMID: 29225688 ]
[98]
Sotelo, J.; Briceño, E.; López-González, M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med., 2006, 144(5), 337-343.
[http://dx.doi.org/10.7326/0003-4819-144-5-200603070-00008] [PMID: 16520474]
[99]
Gilbert, M.R. New treatments for malignant gliomas: careful evaluation and cautious optimism required. Ann. Intern. Med., 2006, 144(5), 371-373.
[http://dx.doi.org/10.7326/0003-4819-144-5-200603070-00015] [PMID: 16520480]
[100]
Bilger, A.; Bittner, M-I.; Grosu, A-L.; Wiedenmann, N.; Meyer, P.T.; Firat, E.; Niedermann, G.; Weber, W.A.; Milanović, D. FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma: first tolerability and feasibility results. Strahlenther. Onkol., 2014, 190(10), 957-961.
[http://dx.doi.org/10.1007/s00066-014-0693-2] [PMID: 24928248]
[101]
Rojas-Puentes, L.L.; Gonzalez-Pinedo, M.; Crismatt, A.; Ortega-Gomez, A.; Gamboa-Vignolle, C.; Nuñez-Gomez, R.; Dorantes-Gallareta, Y.; Arce-Salinas, C.; Arrieta, O. Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. Radiat. Oncol., 2013, 8, 209.
[http://dx.doi.org/10.1186/1748-717X-8-209] [PMID: 24010771]
[102]
Gianni, L.; Eiermann, W.; Semiglazov, V.; Manikhas, A.; Lluch, A.; Tjulandin, S.; Zambetti, M.; Vazquez, F.; Byakhow, M.; Lichinitser, M.; Climent, M.A.; Ciruelos, E.; Ojeda, B.; Mansutti, M.; Bozhok, A.; Baronio, R.; Feyereislova, A.; Barton, C.; Valagussa, P.; Baselga, J. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet, 2010, 375(9712), 377-384.
[http://dx.doi.org/10.1016/S0140-6736(09)61964-4] [PMID: 20113825]
[103]
Zekri, J.; Mansour, M.; Karim, S.M. The anti-tumour effects of zoledronic acid. J. Bone Oncol., 2014, 3(1), 25-35.
[http://dx.doi.org/10.1016/j.jbo.2013.12.001] [PMID: 26909294]
[104]
Crocamo, S.; Binato, R.; de Paula, B.; Vignal, G.; Magalhães, L.; Sarmento, R.; Accioly, M.T.; Small, I.; Gioia, S.; Maroun, P.; Moutinho, P.; Freitas, V.; Catein, K.; Abdelhay, E. Neoadjuvant zoledronic acid for HER2-positive breast cancer: the Zo-NAnTax trial. Ther. Adv. Med. Oncol., 2019, 111758835919853971
[http://dx.doi.org/10.1177/1758835919853971] [PMID: 31210800]
[105]
Drell, T.L., IV; Joseph, J.; Lang, K.; Niggemann, B.; Zaenker, K.S.; Entschladen, F. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res. Treat., 2003, 80(1), 63-70.
[http://dx.doi.org/10.1023/A:1024491219366] [PMID: 12889599]
[106]
Barron, T.I.; Connolly, R.M.; Sharp, L.; Bennett, K.; Visvanathan, K. Beta blockers and breast cancer mortality: a population- based study. J. Clin. Oncol., 2011, 29(19), 2635-2644.
[http://dx.doi.org/10.1200/JCO.2010.33.5422] [PMID: 21632503]
[107]
Aljada, A.; Mousa, S.A. Metformin and neoplasia: implications and indications. Pharmacol. Ther., 2012, 133(1), 108-115.
[http://dx.doi.org/10.1016/j.pharmthera.2011.09.004] [PMID: 21924289]
[108]
Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1809-1814.
[http://dx.doi.org/10.1073/pnas.1417636112] [PMID: 25624476]
[109]
Memmott, R.M.; Mercado, J.R.; Maier, C.R.; Kawabata, S.; Fox, S.D.; Dennis, P.A. Metformin prevents tobacco carcinogen--induced lung tumorigenesis. Cancer Prev. Res. (Phila.), 2010, 3(9), 1066-1076.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0055] [PMID: 20810672]
[110]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J. Jr.; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[111]
Arrieta, O.; Barrón, F.; Padilla, M.S.; Avilés-Salas, A.; Ramírez-Tirado, L.A.; Arguelles Jiménez, M.J.; Vergara, E.; Zatarain-Barrón, Z.L.; Hernández-Pedro, N.; Cardona, A.F.; Cruz-Rico, G.; Barrios-Bernal, P.; Yamamoto Ramos, M.; Rosell, R. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol., 2019, 5(11)e192553
[http://dx.doi.org/10.1001/jamaoncol.2019.2553] [PMID: 31486833]
[112]
Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol., 2009, 19(5), 329-337.
[http://dx.doi.org/doi.org/10.1016/j.semcancer.2009.05.003] [PMID: 19482086]
[113]
Raica, M.; Cimpean, A.M.; Ribatti, D. Angiogenesis in pre-malignant conditions. Eur. J. Cancer, 2009, 45(11), 1924-1934.
[http://dx.doi.org/10.1016/j.ejca.2009.04.007] [PMID: 19406633]
[114]
Kozloff, M.F.; Martin, L.P.; Krzakowski, M.; Samuel, T.A.; Rado, T.A.; Arriola, E.; De Castro Carpeño, J.; Herbst, R.S.; Tarazi, J.; Kim, S.; Rosbrook, B.; Tortorici, M.; Olszanski, A.J.; Cohen, R.B. Phase I trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours. Br. J. Cancer, 2012, 107(8), 1277-1285.
[http://dx.doi.org/10.1038/bjc.2012.406] [PMID: 22990652]
[115]
Garon, E.B.; Ciuleanu, T-E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[http://dx.doi.org/10.1016/S0140-6736(14)60845-X] [PMID: 24933332]
[116]
Herbst, R.S.; Ansari, R.; Bustin, F.; Flynn, P.; Hart, L.; Otterson, G.A.; Vlahovic, G.; Soh, C.H.; O’Connor, P.; Hainsworth, J. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet, 2011, 377(9780), 1846-1854.
[http://dx.doi.org/10.1016/S0140-6736(11)60545-X] [PMID: 21621716]
[117]
Tuyaerts, S.; Van Nuffel, A.M.T.; Naert, E.; Van Dam, P.A.; Vuylsteke, P.; De Caluwé, A.; Aspeslagh, S.; Dirix, P.; Lippens, L.; De Jaeghere, E.; Amant, F.; Vandecasteele, K.; Denys, H. PRIMMO study protocol: a phase II study combining PD-1 blockade, radiation and immunomodulation to tackle cervical and uterine cancer. BMC Cancer, 2019, 19(1), 506.
[http://dx.doi.org/10.1186/s12885-019-5676-3] [PMID: 31138229]
[118]
Breems, D.A.; Van Putten, W.L.; Huijgens, P.C.; Ossenkoppele, G.J.; Verhoef, G.E.; Verdonck, L.F.; Vellenga, E.; De Greef, G.E.; Jacky, E.; Van der Lelie, J.; Boogaerts, M.A.; Löwenberg, B. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J. Clin. Oncol., 2005, 23(9), 1969-1978.
[http://dx.doi.org/10.1200/JCO.2005.06.027] [PMID: 15632409]
[119]
Green, A.S.; Chapuis, N.; Maciel, T.T.; Willems, L.; Lambert, M.; Arnoult, C.; Boyer, O.; Bardet, V.; Park, S.; Foretz, M.; Viollet, B.; Ifrah, N.; Dreyfus, F.; Hermine, O.; Moura, I.C.; Lacombe, C.; Mayeux, P.; Bouscary, D.; Tamburini, J. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood, 2010, 116(20), 4262-4273.
[http://dx.doi.org/10.1182/blood-2010-02-269837] [PMID: 20668229]
[120]
Wojcicki, A.V.; Kadapakkam, M.; Frymoyer, A.; Lacayo, N.; Chae, H.D.; Sakamoto, K.M. Repurposing drugs for acute myeloid leukemia: a worthy cause or a futile pursuit? Cancers (Basel), 2020, 12(2), 441.
[http://dx.doi.org/10.3390/cancers12020441] [PMID: 32069925]
[121]
Schenk, T.; Chen, W.C.; Göllner, S.; Howell, L.; Jin, L.; Hebestreit, K.; Klein, H.U.; Popescu, A.C.; Burnett, A.; Mills, K.; Casero, R.A. Jr.; Marton, L.; Woster, P.; Minden, M.D.; Dugas, M.; Wang, J.C.; Dick, J.E.; Müller-Tidow, C.; Petrie, K.; Zelent, A. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med., 2012, 18(4), 605-611.
[http://dx.doi.org/10.1038/nm.2661] [PMID: 22406747]
[122]
Gatenby, R.; Brown, J. the evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med., 2018, 8(3)a033415
[http://dx.doi.org/10.1101/cshperspect.a033415] [PMID: 28710258]
[123]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[124]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/doi.org/10.3332/ecancer.2014.442] [PMID: 25075216 ]
[125]
Kuczynski, E.A.; Sargent, D.J.; Grothey, A.; Kerbel, R.S. Drug rechallenge and treatment beyond progression--implications for drug resistance. Nat. Rev. Clin. Oncol., 2013, 10(10), 571-587.
[http://dx.doi.org/10.1038/nrclinonc.2013.158] [PMID: 23999218]
[126]
Browder, T.; Butterfield, C.E.; Kräling, B.M.; Shi, B.; Marshall, B.; O’Reilly, M.S.; Folkman, J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res., 2000, 60(7), 1878-1886.
[PMID: 10766175]
[127]
Kerbel, R.S.; Kamen, B.A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer, 2004, 4(6), 423-436.
[http://dx.doi.org/10.1038/nrc1369] [PMID: 15170445]
[128]
Bertolini, F.; Shaked, Y.; Mancuso, P.; Kerbel, R.S. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer, 2006, 6(11), 835-845.
[http://dx.doi.org/10.1038/nrc1971] [PMID: 17036040]
[129]
De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474.
[http://dx.doi.org/10.1038/nrc.2017.51] [PMID: 28706266]
[130]
André, N.; Tsai, K.; Carré, M.; Pasquier, E. Metronomic chemotherapy: direct targeting of cancer cells after all? Trends Cancer, 2017, 3(5), 319-325.
[http://dx.doi.org/10.1016/j.trecan.2017.03.011] [PMID: 28718409]
[131]
Chan, T-S.; Hsu, C-C.; Pai, V.C.; Liao, W.Y.; Huang, S.S.; Tan, K.T.; Yen, C.J.; Hsu, S.C.; Chen, W.Y.; Shan, Y.S.; Li, C.R.; Lee, M.T.; Jiang, K.Y.; Chu, J.M.; Lien, G.S.; Weaver, V.M.; Tsai, K.K. Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. J. Exp. Med., 2016, 213(13), 2967-2988.
[http://dx.doi.org/10.1084/jem.20151665] [PMID: 27881732]
[132]
Ghiringhelli, F.; Menard, C.; Puig, P.E.; Ladoire, S.; Roux, S.; Martin, F.; Solary, E.; Le Cesne, A.; Zitvogel, L.; Chauffert, B. Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother., 2007, 56(5), 641-648.
[http://dx.doi.org/10.1007/s00262-006-0225-8] [PMID: 16960692]
[133]
Lawlor, D.; Wills, A.; Fraser, A. Investment in cancer studies in countries of low and middle income. Lancet Oncol., 2013, 382(9893), 684.
[http://dx.doi.org/doi.org/10.1016/S0140-6736(13)61777-8] [PMID: 23972812]
[134]
Banavali, S.; Pasquier, E.; Andre, N. Targeted therapy with propranolol and metronomic chemotherapy combination: sustained complete response of a relapsing metastatic angiosarcoma. Ecancermedicalscience, 2015, 9, 499.
[http://dx.doi.org/10.3332/ecancer.2015.499] [PMID: 25624880]
[135]
Rico, M.; Baglioni, M.; Bondarenko, M.; Laluce, N.C.; Rozados, V.; André, N.; Carré, M.; Scharovsky, O.G.; Menacho Márquez, M. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget, 2017, 8(2), 2874-2889.
[http://dx.doi.org/10.18632/oncotarget.13760] [PMID: 27926515]
[136]
Munoz, R.; Shaked, Y.; Bertolini, F.; Emmenegger, U.; Man, S.; Kerbel, R.S. Anti-angiogenic treatment of breast cancer using metronomic low-dose chemotherapy. Breast, 2005, 14(6), 466-479.
[http://dx.doi.org/10.1016/j.breast.2005.08.026] [PMID: 16199161]
[137]
Kong, D-H.; Kim, M.R.; Jang, J.H.; Na, H.J.; Lee, S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci., 2017, 18(8), 1786.
[http://dx.doi.org/10.3390/ijms18081786] [PMID: 28817103]
[138]
Chen, Q.; Xia, R.; Zheng, W.; Zhang, L.; Li, P.; Sun, X.; Shi, J. Metronomic paclitaxel improves the efficacy of PD-1 monoclonal antibodies in breast cancer by transforming the tumor immune microenvironment. Am. J. Transl. Res., 2020, 12(2), 519-530.
[PMID: 32194900]
[139]
Peereboom, D.M.; Alban, T.J.; Grabowski, M.M.; Alvarado, A.G.; Otvos, B.; Bayik, D.; Roversi, G.; McGraw, M.; Huang, P.; Mohammadi, A.M.; Kornblum, H.I.; Radivoyevitch, T.; Ahluwalia, M.S.; Vogelbaum, M.A.; Lathia, J.D. Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight, 2019, 4(22), 4.
[http://dx.doi.org/10.1172/jci.insight.130748] [PMID: 31600167]
[140]
Wu, J.; Waxman, D.J. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett., 2018, 419, 210-221.
[http://dx.doi.org/10.1016/j.canlet.2018.01.050] [PMID: 29414305]
[141]
Orecchioni, S.; Talarico, G.; Labanca, V.; Calleri, A.; Mancuso, P.; Bertolini, F. Vinorelbine, cyclophosphamide and 5-FU effects on the circulating and intratumoural landscape of immune cells improve anti-PD-L1 efficacy in preclinical models of breast cancer and lymphoma. Br. J. Cancer, 2018, 118(10), 1329-1336.
[http://dx.doi.org/10.1038/s41416-018-0076-z] [PMID: 29695766]
[142]
Sheng, J.; Li, F.; Wong, S.T. Optimal drug prediction from personal genomics profiles. IEEE J. Biomed. Health Inform., 2015, 19(4), 1264-1270.
[http://dx.doi.org/10.1109/JBHI.2015.2412522] [PMID: 25781964]
[143]
Maeda, H.; Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med., 2018, 7(1), 11.
[http://dx.doi.org/10.1186/s40169-018-0185-6] [PMID: 29541939]
[144]
Tiriveedhi, V. Impact of precision medicine on drug repositioning and pricing: a too small to thrive crisis. J. Pers. Med., 2018, 8(4), 36.
[http://dx.doi.org/10.3390/jpm8040036] [PMID: 30400625]
[145]
Li, Y.Y.; Jones, S.J. Drug repositioning for personalized medicine. Genome Med., 2012, 4(3), 27.
[http://dx.doi.org/10.1186/gm326] [PMID: 22494857]
[146]
Dagogo-Jack, I.; Shaw, A.T. Crizotinib resistance: implications for therapeutic strategies. Ann. Oncol., 2016, 27(Suppl. 3), iii42-iii50.
[http://dx.doi.org/10.1093/annonc/mdw305] [PMID: 27573756]
[147]
Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H. Bevacizumab. Oncologist, 2010, 15(8), 819-825.
[http://dx.doi.org/10.1634/theoncologist.2009-0317] [PMID: 20688807]
[148]
Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44e40
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[149]
Nurieva, R.; Wang, J.; Sahoo, A. T-cell tolerance in cancer. Immunotherapy, 2013, 5(5), 513-531.
[http://dx.doi.org/10.2217/imt.13.33] [PMID: 23638746]
[150]
de Charette, M.; Marabelle, A.; Houot, R. Turning tumour cells into antigen presenting cells: the next step to improve cancer immunotherapy? Eur. J. Cancer, 2016, 68, 134-147.
[http://dx.doi.org/10.1016/j.ejca.2016.09.010] [PMID: 27755997]
[151]
Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 2018, 32(19-20), 1267-1284.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[152]
Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; Signori, E.; Honoki, K.; Georgakilas, A.G.; Amin, A.; Helferich, W.G.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Chen, S.; Mohammed, S.I.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; Aquilano, K.; Ashraf, S.S.; Nowsheen, S.; Yang, X.; Choi, B.K.; Kwon, B.S. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, pp. S185-S198.
[http://dx.doi.org/doi.org/10.1016/j.semcancer.2015.03.004] [PMID: 25818339]
[153]
Tuccitto, A.; Shahaj, E.; Vergani, E.; Ferro, S.; Huber, V.; Rodolfo, M.; Castelli, C.; Rivoltini, L.; Vallacchi, V. Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Arch., 2019, 474(4), 407-420.
[http://dx.doi.org/10.1007/s00428-018-2477-z] [PMID: 30374798]
[154]
Tormoen, G.W.; Crittenden, M.R.; Gough, M.J. Role of the immunosuppressive microenvironment in immunotherapy. Adv. Radiat. Oncol., 2018, 3(4), 520-526.
[http://dx.doi.org/10.1016/j.adro.2018.08.018] [PMID: 30370351]
[155]
Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage polarization: different gene signatures in M1 (LPS+) versus classically and M2 (LPS-) versus alternatively activated macrophages. Front. Immunol., 2019, 10, 1084.
[http://dx.doi.org/10.3389/fimmu.2019.01084] [PMID: 31178859]
[156]
Tamura, R.; Tanaka, T.; Yamamoto, Y.; Akasaki, Y.; Sasaki, H. Dual role of macrophage in tumor immunity. Immunotherapy, 2018, 10(10), 899-909.
[http://dx.doi.org/10.2217/imt-2018-0006] [PMID: 30073897]
[157]
Zheng, X.; Turkowski, K.; Mora, J.; Brüne, B.; Seeger, W.; Weigert, A.; Savai, R. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget, 2017, 8(29), 48436-48452.
[http://dx.doi.org/10.18632/oncotarget.17061] [PMID: 28467800]
[158]
Brown, J.M.; Recht, L.; Strober, S. The promise of targeting macrophages in cancer therapy. Clin. Cancer Res., 2017, 23(13), 3241-3250.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3122] [PMID: 28341752]
[159]
Shiratori, H.; Feinweber, C.; Luckhardt, S.; Wallner, N.; Geisslinger, G.; Weigert, A.; Parnham, M.J. An in vitro test system for compounds that modulate human inflammatory macrophage polarization. Eur. J. Pharmacol., 2018, 833, 328-338.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.017] [PMID: 29920284]
[160]
Yu, T.; Gan, S.; Zhu, Q.; Dai, D.; Li, N.; Wang, H.; Chen, X.; Hou, D.; Wang, Y.; Pan, Q.; Xu, J.; Zhang, X.; Liu, J.; Pei, S.; Peng, C.; Wu, P.; Romano, S.; Mao, C.; Huang, M.; Zhu, X.; Shen, K.; Qin, J.; Xiao, Y. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat. Commun., 2019, 10(1), 4353.
[http://dx.doi.org/10.1038/s41467-019-12384-2] [PMID: 31554795]
[161]
Domínguez-Soto, Á.; Usategui, A.; Casas-Engel, M.L.; Simón-Fuentes, M.; Nieto, C.; Cuevas, V.D.; Vega, M.A.; Luis Pablos, J.; Corbí, Á.L. Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Sci. Rep., 2017, 7(1), 14761.
[http://dx.doi.org/10.1038/s41598-017-15348-y] [PMID: 29116249]
[162]
Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; Setty, M.; Leslie, C.S.; Oei, Y.; Pedraza, A.; Zhang, J.; Brennan, C.W.; Sutton, J.C.; Holland, E.C.; Daniel, D.; Joyce, J.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med., 2013, 19(10), 1264-1272.
[http://dx.doi.org/10.1038/nm.3337] [PMID: 24056773]
[163]
Issa, N.T.; Stathias, V.; Schürer, S.; Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol., 2021, 68, 132-142.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.011] [PMID: 31904426]
[164]
Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res., 2017, 27(1), 109-118.
[http://dx.doi.org/10.1038/cr.2016.151] [PMID: 27995907]
[165]
Hughes, E.; Scurr, M.; Campbell, E.; Jones, E.; Godkin, A.; Gallimore, A. T-cell modulation by cyclophosphamide for tumour therapy. Immunology, 2018, 154(1), 62-68.
[http://dx.doi.org/10.1111/imm.12913] [PMID: 29460448]
[166]
Scurr, M.; Pembroke, T.; Bloom, A.; Roberts, D.; Thomson, A.; Smart, K.; Bridgeman, H.; Adams, R.; Brewster, A.; Jones, R.; Gwynne, S.; Blount, D.; Harrop, R.; Hills, R.; Gallimore, A.; Godkin, A. Low-dose cyclophosphamide induces antitumor T-cell responses, which associate with survival in metastatic colorectal cancer. Clin. Cancer Res., 2017, 23(22), 6771-6780.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0895] [PMID: 28855352]
[167]
Belizário, J.; Destro Rodrigues, M.F. Checkpoint inhibitor blockade and epigenetic reprogrammability in CD8+ T-cell activation and exhaustion. Ther. Adv. Vaccines Immunother, 2020, 82515135520904238
[http://dx.doi.org/10.1177/2515135520904238] [PMID: 32206744]
[168]
Im, S.J.; Ha, S-J. Re-defining T-cell exhaustion: subset, function, and regulation. Immune Netw., 2020, 20(1)e2
[http://dx.doi.org/10.4110/in.2020.20.e2] [PMID: 32158590]
[169]
Zhang, Z.; Liu, S.; Zhang, B.; Qiao, L.; Zhang, Y.; Zhang, Y. T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol., 2020, 8, 17.
[http://dx.doi.org/10.3389/fcell.2020.00017] [PMID: 32117960]
[170]
Marro, B.S.; Zak, J.; Zavareh, R.B.; Teijaro, J.R.; Lairson, L.L.; Oldstone, M.B.A. Discovery of small molecules for the reversal of T cell exhaustion. Cell Rep., 2019, 29(10), 3293-3302.e3.
[http://dx.doi.org/10.1016/j.celrep.2019.10.119] [PMID: 31801090]
[171]
Kampan, N.C.; Xiang, S.D.; McNally, O.M.; Stephens, A.N.; Quinn, M.A.; Plebanski, M. Immunotherapeutic Interleukin-6 or Interleukin-6 receptor blockade in cancer: challenges and opportunities. Curr. Med. Chem., 2018, 25(36), 4785-4806.
[http://dx.doi.org/10.2174/0929867324666170712160621] [PMID: 28707587]
[172]
Xiao, H.; Bid, H.K.; Chen, X.; Wu, X.; Wei, J.; Bian, Y.; Zhao, C.; Li, H.; Li, C.; Lin, J. Repositioning bazedoxifene as a novel IL-6/GP130 signaling antagonist for human rhabdomyosarcoma therapy. PLoS One, 2017, 12(7)e0180297
[http://dx.doi.org/10.1371/journal.pone.0180297] [PMID: 28672024]
[173]
Tian, J.; Chen, X.; Fu, S.; Zhang, R.; Pan, L.; Cao, Y.; Wu, X.; Xiao, H.; Lin, H.J.; Lo, H.W.; Zhang, Y.; Lin, J. Bazedoxifene is a novel IL-6/GP130 inhibitor for treating triple-negative breast cancer. Breast Cancer Res. Treat., 2019, 175(3), 553-566.
[http://dx.doi.org/10.1007/s10549-019-05183-2] [PMID: 30852762]
[174]
Huang, J.; Campian, J.L.; Gujar, A.D.; Tran, D.D.; Lockhart, A.C.; DeWees, T.A.; Tsien, C.I.; Kim, A.H. A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy. J. Neurooncol., 2016, 128(2), 259-266.
[http://dx.doi.org/10.1007/s11060-016-2104-2 ] [PMID: 26966095]
[175]
Parikh, A.B.; Kozuch, P.; Rohs, N.; Becker, D.J.; Levy, B.P. Metformin as a repurposed therapy in advanced non-small cell lung cancer (NSCLC): results of a phase II trial. Invest. New Drugs, 2017, 35(6), 813-819.
[http://dx.doi.org/doi.org/10.1007/s10637-017-0511-7] [PMID: 28936567]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy