Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Molecular Docking and Virtual Screening Based Prediction of Drugs for COVID-19

Author(s): Sekhar Talluri*

Volume 24, Issue 5, 2021

Published on: 14 August, 2020

Page: [716 - 728] Pages: 13

DOI: 10.2174/1386207323666200814132149

Price: $65

Abstract

Aims: To predict potential drugs for COVID-19 by using molecular docking for virtual screening of drugs approved for other clinical applications.

Background: SARS-CoV-2 is the betacoronavirus responsible for the COVID-19 pandemic. It was listed as a potential global health threat by the WHO due to high mortality, high basic reproduction number, and lack of clinically approved drugs and vaccines. The genome of the virus responsible for COVID-19 has been sequenced. In addition, the three-dimensional structure of the main protease has been determined experimentally.

Objective: To identify potential drugs that can be repurposed for treatment of COVID-19 by using molecular docking based virtual screening of all approved drugs.

Methods: A list of drugs approved for clinical use was obtained from the SuperDRUG2 database. The structure of the target in the apo form, as well as structures of several target-ligand complexes, were obtained from RCSB PDB. The structure of SARS-CoV-2 Mpro determined from X-ray diffraction data was used as the target. Data regarding drugs in clinical trials for COVID-19 was obtained from clinicaltrials.org. Input for molecular docking based virtual screening was prepared by using Obabel and customized python, bash, and awk scripts. Molecular docking calculations were carried out with Vina and SMINA, and the docked conformations were analyzed and visualized with PLIP, Pymol, and Rasmol.

Results: Among the drugs that are being tested in clinical trials for COVID-19, Danoprevir and Darunavir were predicted to have the highest binding affinity for the Main protease (Mpro) target of SARS-CoV-2. Saquinavir and Beclabuvir were identified as the best novel candidates for COVID-19 therapy by using Virtual Screening of drugs approved for other clinical indications.

Conclusion: Protease inhibitors approved for treatment of other viral diseases have the potential to be repurposed for treatment of COVID-19.

Keywords: Virtual screening, molecular docking, drug repurposing, drug repositioning, anti-viral drugs, coronavirus, COVID-19, 2019-nCoV, SARS-CoV-2.

[1]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y-M.; Wang, W.; Song, Z-G.; Hu, Y.; Tao, Z-W.; Tian, J-H.; Pei, Y-Y.; Yuan, M-L.; Zhang, Y-L.; Dai, F-H.; Liu, Y.; Wang, Q-M.; Zheng, J-J.; Xu, L.; Holmes, E.C.; Zhang, Y-Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[2]
Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217.
[http://dx.doi.org/10.1016/j.ijid.2020.01.050] [PMID: 32007643]
[3]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[4]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924-105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[5]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[6]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[7]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W.; Investigating, C.N.C.; Team, R. China novel coronavirus investigating and research team. a novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[8]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[9]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[10]
Fan, H-H.; Wang, L-Q.; Liu, W-L.; An, X-P.; Liu, Z-D.; He, X-Q.; Song, L-H.; Tong, Y-G. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin. Med. J. (Engl.), 2020, 133(9), 1051-1056.
[http://dx.doi.org/10.1097/CM9.0000000000000797] [PMID: 32149769]
[11]
Kruse, R.L. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000 Res., 2020, 9, 72-72.
[http://dx.doi.org/10.12688/f1000research.22211.2] [PMID: 32117569]
[12]
Li, H.; Wang, Y.M.; Xu, J.Y.; Cao, B. [Potential antiviral therapeutics for 2019 Novel Coronavirus Zhonghua Jie He He Hu Xi Za Zhi, 2020, 43(0), E002-E002.
[PMID: 32023685]
[13]
Marshall, G.R. Computer-aided drug design. Annu. Rev. Pharmacol. Toxicol., 1987, 27, 193-213.
[http://dx.doi.org/10.1146/annurev.pa.27.040187.001205] [PMID: 3555315]
[14]
Kuntz, I.D. Structure-based strategies for drug design and discovery. Science, 1992, 257(5073), 1078-1082.
[http://dx.doi.org/10.1126/science.257.5073.1078] [PMID: 1509259]
[15]
Cichero, E.; Espinoza, S.; Tonelli, M.; Franchini, S.; Gerasimov, A.S.; Sorbi, C.; Gainetdinov, R.R.; Brasili, L.; Fossa, P. A homology modelling-driven study leading to the discovery of the first mouse trace amine-associated receptor 5 (TAAR5) antagonists. MedChemComm, 2016, 7(2), 353-364.
[http://dx.doi.org/10.1039/C5MD00490J] [PMID: 30108751]
[16]
Cichero, E.; Tonelli, M.; Novelli, F.; Tasso, B.; Delogu, I.; Loddo, R.; Bruno, O.; Fossa, P. Benzimidazole-based derivatives as privileged scaffold developed for the treatment of the RSV infection: a computational study exploring the potency and cytotoxicity profiles. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 375-402.
[http://dx.doi.org/10.1080/14756366.2016.1256881] [PMID: 28276287]
[17]
Talluri, S. Computational protein design of bacteriocins based on structural scaffold of aureocin A53. Int. J. Bioinform. Res. Appl., 2019, 15(2), 129-143.
[http://dx.doi.org/10.1504/IJBRA.2019.099575]
[18]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[19]
Irwin, J.J.; Shoichet, B.K. Docking screens for novel ligands conferring new biology. J. Med. Chem., 2016, 59(9), 4103-4120.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02008] [PMID: 26913380]
[20]
Cichero, E.; D’Ursi, P.; Moscatelli, M.; Bruno, O.; Orro, A.; Rotolo, C.; Milanesi, L.; Fossa, P. Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: a computational approach for the rational design of selective inhibitors. Chem. Biol. Drug Des., 2013, 82(6), 718-731.
[http://dx.doi.org/10.1111/cbdd.12193] [PMID: 23865680]
[21]
Mohanasundaram, N.; Sekhar, T. Computational studies of molecular targets regarding the adverse effects of isoniazid drug for tuberculosis. Curr. Pharmacogenomics Person. Med., 2018, 16(3), 210-218.
[http://dx.doi.org/10.2174/1875692116666181108145230]
[22]
Textbook of drug design and discovery. Strømgaard, K.; Krogsgaard-Larsen, P.; Madsen, U. , Eds.; CRC press, 2017.
[23]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[24]
Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272.
[http://dx.doi.org/10.1016/j.tips.2013.03.004] [PMID: 23582281]
[25]
Xu, J.; Shi, P-Y.; Li, H.; Zhou, J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect. Dis., 2020, 6(5), 909-915.
[http://dx.doi.org/10.1021/acsinfecdis.0c00052] [PMID: 32125140]
[26]
Colson, P.; Rolain, J-M.; Lagier, J-C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 2020, 55(4)105932
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[27]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6, 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[28]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[29]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[30]
Gautret, P.; Lagier, J.-C.; Parola, P.; Hoang, V. T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V. E.; Dupont, H. T.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.-M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial Int. j. antimicrobial agents, 2020, 105949.
[31]
Kupferschmidt, K.; Cohen, J. Race to find COVID-19 treatments accelerates. Science, 2020, 367(6485), 1412-1413.
[http://dx.doi.org/10.1126/science.367.6485.1412] [PMID: 32217705]
[32]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[33]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[34]
Liu, S.; Zheng, Q.; Wang, Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics, 2020, 36(11), 3295-3298.
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[35]
Tong, T.R. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). Perspect. Med. Virol., 2006, 16, 43-95.
[http://dx.doi.org/10.1016/S0168-7069(06)16004-8] [PMID: 32287586]
[36]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[37]
Wang, Z.; Chen, X.; Lu, Y.; Chen, F.; Zhang, W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci. Trends, 2020, 14(1), 64-68.
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[38]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[39]
Ghosh, A.K.; Xi, K.; Grum-Tokars, V.; Xu, X.; Ratia, K.; Fu, W.; Houser, K.V.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(21), 5876-5880.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.031] [PMID: 17855091]
[40]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[41]
Xu, X.; Huang, M.; Zou, X. Docking-based inverse virtual screening: methods, applications, and challenges. Biophys. Rep., 2018, 4(1), 1-16.
[http://dx.doi.org/10.1007/s41048-017-0045-8] [PMID: 29577065]
[42]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[43]
Zhang, D-H.; Wu, K-L.; Zhang, X.; Deng, S-Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[44]
Ton, A.-T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Molecular informatics, 2020, 39(8), e2000028.
[45]
Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol., 2017, 1607, 627-641.
[http://dx.doi.org/10.1007/978-1-4939-7000-1_26] [PMID: 28573592]
[46]
Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The crystal structure of 2019-nCoV main protease in complex with an inhibitor N3 PDB ID 6LU7, http://rcsb.org2020.
[47]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[48]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[49]
Sayle, R.A.; Milner-White, E.J. RASMOL: biomolecular graphics for all. Trends Biochem. Sci., 1995, 20(9), 374.
[http://dx.doi.org/10.1016/S0968-0004(00)89080-5] [PMID: 7482707]
[50]
Zhang, Y.; Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res., 2005, 33(7), 2302-2309.
[http://dx.doi.org/10.1093/nar/gki524] [PMID: 15849316]
[51]
Siramshetty, V.B.; Eckert, O.A.; Gohlke, B-O.; Goede, A.; Chen, Q.; Devarakonda, P.; Preissner, S.; Preissner, R. SuperDRUG2: a one stop resource for approved/marketed drugs. Nucleic Acids Res., 2018, 46(D1), D1137-D1143.
[http://dx.doi.org/10.1093/nar/gkx1088] [PMID: 29140469]
[52]
Goede, A.; Dunkel, M.; Mester, N.; Frommel, C.; Preissner, R. SuperDrug: a conformational drug database. Bioinformatics, 2005, 21(9), 1751-1753.
[http://dx.doi.org/10.1093/bioinformatics/bti295] [PMID: 15691861]
[53]
Hähnke, V.D.; Kim, S.; Bolton, E.E. PubChem chemical structure standardization. J. Cheminform., 2018, 10(1), 36-76.
[http://dx.doi.org/10.1186/s13321-018-0293-8] [PMID: 30097821]
[54]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[55]
Sterling, T.; Irwin, J.J. ZINC 15--Ligand Discovery for Everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[56]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[57]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370]
[58]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: a review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[59]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1)W443-7
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[60]
Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother., 2020, 64(7), e00819-e00820.
[http://dx.doi.org/10.1128/AAC.00819-20] [PMID: 32366720]
[61]
Ko, M.; Chang, S.Y.; Byun, S.Y.; Choi, I.; Alexandry Orengiani, A-L.P.H.; Shum, D.; Min, J-Y.; Windisch, M.P. Screening of FDA-approved drugs using a MERS-CoV clinical isolate from South Korea identifies potential therapeutic options for COVID-19. bioRxiv, 2020. ••• [Online].
[http://dx.doi.org/10.1101/2020.02.25.965582]
[62]
Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol., 2020, 5(7), 811-818.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[63]
Tan, J.; Verschueren, K.H.; Anand, K.; Shen, J.; Yang, M.; Xu, Y.; Rao, Z.; Bigalke, J.; Heisen, B.; Mesters, J.R.; Chen, K.; Shen, X.; Jiang, H.; Hilgenfeld, R. pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol., 2005, 354(1), 25-40.
[http://dx.doi.org/10.1016/j.jmb.2005.09.012] [PMID: 16242152]
[64]
Leach, A.R.; Shoichet, B.K.; Peishoff, C.E. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem., 2006, 49(20), 5851-5855.
[http://dx.doi.org/10.1021/jm060999m] [PMID: 17004700]
[65]
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 2016, 18(18), 12964-12975.
[http://dx.doi.org/10.1039/C6CP01555G] [PMID: 27108770]
[66]
Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model., 2018, 58(8), 1697-1706.
[http://dx.doi.org/10.1021/acs.jcim.8b00312] [PMID: 29989806]
[67]
Masters, L.; Eagon, S.; Heying, M. Evaluation of consensus scoring methods for AutoDock Vina, smina and idock. J. Mol. Graph. Model., 2020, 96, 107532-107532.
[http://dx.doi.org/10.1016/j.jmgm.2020.107532] [PMID: 31991303]
[68]
Rismanbaf, A. Potential Treatments for COVID-19; a Narrative Literature Review. Arch Acad Emerg Med, 2020, 8(1)e29
[PMID: 32232214]
[69]
Kontoyianni, M. Docking and Virtual Screening in Drug Discovery. Methods Mol. Biol., 2017, 1647, 255-266.
[http://dx.doi.org/10.1007/978-1-4939-7201-2_18] [PMID: 28809009]
[70]
Li, J.; Fu, A.; Zhang, L. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking. Interdiscip. Sci., 2019, 11(2), 320-328.
[http://dx.doi.org/10.1007/s12539-019-00327-w] [PMID: 30877639]
[71]
Sarma, P.; Prajapat, M.; Avti, P.; Kaur, H.; Kumar, S.; Medhi, B. Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach. Indian J. Pharmacol., 2020, 52(1), 1-5.
[http://dx.doi.org/10.4103/ijp.IJP_119_20] [PMID: 32201439]
[72]
Markham, A.; Keam, S.J. Danoprevir: First Global Approval. Drugs, 2018, 78(12), 1271-1276.
[http://dx.doi.org/10.1007/s40265-018-0960-0] [PMID: 30117020]
[73]
Garimella, T.; Tao, X.; Sims, K.; Chang, Y-T.; Rana, J.; Myers, E.; Wind-Rotolo, M.; Bhatnagar, R.; Eley, T.; LaCreta, F.; AbuTarif, M. Effects of a Fixed-Dose Co-Formulation of Daclatasvir, Asunaprevir, and Beclabuvir on the Pharmacokinetics of a Cocktail of Cytochrome P450 and Drug Transporter Substrates in Healthy Subjects. Drugs R D., 2018, 18(1), 55-65.
[http://dx.doi.org/10.1007/s40268-017-0222-8] [PMID: 29255971]
[74]
Chen, C.; Qi, F.; Shi, K.; Li, Y.; Li, J.; Chen, Y.; Pan, J.; Zhou, T.; Lin, X.; Zhang, J.; Luo, Y.; Li, X.; Xia, J. Thalidomide Combined with Low-dose Glucocorticoid in the Treatment of COVID-19 Pneumonia Preprints, 2020.
[75]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[76]
Yi, Y.; Lagniton, P.N.P.; Ye, S.; Li, E.; Xu, R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci., 2020, 16(10), 1753-1766.
[http://dx.doi.org/10.7150/ijbs.45134] [PMID: 32226295]
[77]
Shang, L.; Zhao, J.; Hu, Y.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet, 2020, 395(10225), 683-684.
[http://dx.doi.org/10.1016/S0140-6736(20)30361-5] [PMID: 32122468]
[78]
Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, 20(4), 400-402.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[79]
Baden, L.R.; Rubin, E.J. Covid-19 - The Search for Effective Therapy. N. Engl. J. Med., 2020, 382(19), 1851-1852.
[http://dx.doi.org/10.1056/NEJMe2005477] [PMID: 32187463]
[80]
Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[81]
Zheng, Y-Y.; Ma, Y-T.; Zhang, J-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy