Generic placeholder image

Current Chromatography

Editor-in-Chief

ISSN (Print): 2213-2406
ISSN (Online): 2213-2414

Review Article

Strategy for Sustainable and Green Chromatographic Separation Science: Innovation, Technology and Application

Author(s): Mohammad Sharif Khan*, Jannatul Azmir, Ademario Iris da Silva Junior, Yong Foo Wong, Mamun Mollah, Jalal T. Althakafy and Md. Zaidul Islam Sarker

Volume 7, Issue 1, 2020

Page: [5 - 16] Pages: 12

DOI: 10.2174/2213240607999200813195405

Price: $65

Abstract

Green separation science involves extraction, pre-concentration and chromatographic analysis aiming at minimizing environmental impact by reducing energy and reagent usage and reducing or eliminating waste generation. However, the enrichment of trace analytes and/or the analysis of complex matrices most frequently require several steps before analysis, such as extraction, pre-concentration, clean up and preparative chromatography. Thus, alternative and greener separation techniques and solvents are replacing classical methods to diminish the carbon footprint and increase sustainability. Moreover, many innovations are also emerging to curtail the environmental impact of samples analysis; such as micro or nano analytical platforms, sensor-based systems and direct injection to high-resolution mass spectrometry. The current review provides an updated account of the green and sustainable separation science techniques. The current innovations on greener separations and their application in different fields of study are discussed.

Keywords: Sustainable chemistry, green separation science, alternative sample preparation, micro-analytical techniques, multidimensional chromatography, green chromatography.

[1]
Jessop, P. Editorial: Evidence of a significant advance in green chemistry. Green Chem., 2020, 22(1), 13-15.
[http://dx.doi.org/10.1039/C9GC90119A]
[2]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[3]
Kaljurand, M.; Koel, M. Recent advancements on greening analytical separation. Crit. Rev. Anal. Chem., 2011, 41(1), 2-20.
[http://dx.doi.org/10.1080/10408347.2011.539420]
[4]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[5]
Anastas, P.; Han, B.; Leitner, W.; Poliakoff, M. “Happy silver anniversary”: Green Chemistry at 25. Green Chem., 2016, 18(1), 12-13.
[http://dx.doi.org/10.1039/C5GC90067K]
[6]
Tucker, J.L.; Faul, M.M. Industrial research: Drug companies must adopt green chemistry. Nature, 2016, 534(7605), 27-29.
[http://dx.doi.org/10.1038/534027a] [PMID: 27251259]
[7]
Ratti, R. Industrial applications of green chemistry: Status, Challenges and Prospects. SN Applied Sciences, 2020, 2(2), 263.
[http://dx.doi.org/10.1007/s42452-020-2019-6]
[8]
Sheldon, R.A. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain. Chem.& Eng., 2018, 6(1), 32-48.
[http://dx.doi.org/10.1021/acssuschemeng.7b03505]
[9]
Veleva, V.; Cue, B.W., Jr Benchmarking green chemistry adoption by “big pharma” and generics manufacturers. Benchmarking (Bradf.), 2017.
[http://dx.doi.org/10.1108/BIJ-01-2016-0003]
[10]
Nagasawa, Y.; Samoto, H.; Ukai, H.; Okamoto, S.; Itoh, K.; Hanada, T.; Kanemaru, A.; Fukui, Y.; Kojima, S.; Moriguchi, J.; Sakuragi, S.; Ohashi, F.; Takada, S.; Kawakami, T.; Ikeda, M. Use of organic solvents in large research institutions in Japan. Environ. Health Prev. Med., 2013, 18(5), 341-348.
[http://dx.doi.org/10.1007/s12199-012-0327-1] [PMID: 23404090]
[11]
Sharif, K.; Rahman, M.; Azmir, J.; Mohamed, A.; Jahurul, M.; Sahena, F.; Zaidul, I. Experimental design of supercritical fluid extraction–A review. J. Food Eng., 2014, 124, 105-116.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.10.003]
[12]
Sharif, K.; Rahman, M.; Azmir, J.; Shamsudin, S.H.; Uddin, M.; Fahim, T.; Zaidul, I. Ethanol modified supercritical carbon dioxide extraction of antioxidant rich extract from Pereskia bleo. J. Ind. Eng. Chem., 2015, 21, 1314-1322.
[http://dx.doi.org/10.1016/j.jiec.2014.05.047]
[13]
Fekete, S.; Grand-Guillaume Perrenoud, A.; Guillarme, D. Evolution and Current Trends in Liquid and Supercritical Fluid Chromatography. Curr. Chromatogr., 2014, 1, 15-40.
[http://dx.doi.org/10.2174/22132406114019990002]
[14]
Roy, D.; Wahab, M.F.; Berger, T.A.; Armstrong, D.W. Ramifications and Insights on the Role of Water in Chiral Sub/Supercritical Fluid Chromatography. Anal. Chem., 2019, 91(22), 14672-14680.
[http://dx.doi.org/10.1021/acs.analchem.9b03908] [PMID: 31657544]
[15]
Sakai, M.; Hayakawa, Y.; Funada, Y.; Ando, T.; Fukusaki, E.; Bamba, T. Development of a practical online supercritical fluid extraction-supercritical fluid chromatography/mass spectrometry system with an integrated split-flow method. J. Chromatogr. A, 2019, 1592, 161-172.
[http://dx.doi.org/10.1016/j.chroma.2019.01.044] [PMID: 30712818]
[16]
Gil-Ramirez, A.; Al-Hamimi, S.; Rosmark, O.; Hallgren, O.; Larsson-Callerfelt, A-K.; Rodríguez-Meizoso, I. Efficient methodology for the extraction and analysis of lipids from porcine pulmonary artery by supercritical fluid chromatography coupled to mass spectrometry. J. Chromatogr. A, 2019, 1592, 173-182.
[http://dx.doi.org/10.1016/j.chroma.2019.01.064] [PMID: 30709622]
[17]
Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Sahena, F.; Jahurul, M.; Mohamed, A. Optimization of oil yield of Phaleria macrocarpa seed using response surface methodology and its fatty acids constituents. Ind. Crops Prod., 2014, 52, 405-412.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.009]
[18]
Azmir, J.; Zaidul, I.; Sharif, K.; Uddin, M.; Jahurul, M.; Jinap, S.; Hajeb, P.; Mohamed, A. Supercritical carbon dioxide extraction of highly unsaturated oil from Phaleria macrocarpa seed. Food Res. Int., 2014, 65, 394-400.
[http://dx.doi.org/10.1016/j.foodres.2014.06.049]
[19]
Berthod, A.; Ruiz-Ángel, M.J.; Carda-Broch, S. Recent advances on ionic liquid uses in separation techniques. J. Chromatogr. A, 2018, 1559, 2-16.
[http://dx.doi.org/10.1016/j.chroma.2017.09.044] [PMID: 28958758]
[20]
Zhao, X.; Cai, P.; Sun, C.; Pan, Y. Application of ionic liquids in separation and analysis of carbohydrates: State of the art and future trends. Trends Analyt. Chem., 2019, 111, 148-162.
[http://dx.doi.org/10.1016/j.trac.2018.12.008]
[21]
Ishtiaq, M.; al-Rashida, M.; Alharthy, R.D.; Hameed, A. Ionic liquid–based colloidal nanoparticles: applications in organic synthesis. In: Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Elsevier, 2020; pp. 279-299.
[http://dx.doi.org/10.1016/B978-0-12-816960-5.00015-X]
[22]
Talebi, M.; Patil, R.A.; Armstrong, D.W. Gas Chromatography Columns Using Ionic Liquids as Stationary Phase. In: Commercial Applications of Ionic Liquids; Springer, 2020; pp. 131-165.
[http://dx.doi.org/10.1007/978-3-030-35245-5_6]
[23]
Chokkareddy, R.; Niranjan, T.; Redhi, G.G. Ionic liquid based electrochemical sensors and their applications. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2020; pp. 367-387.
[http://dx.doi.org/10.1016/B978-0-12-817386-2.00013-5]
[24]
Sivapragasam, M.; Moniruzzaman, M.; Goto, M. An overview on the toxicological properties of ionic liquids toward microorganisms. Biotechnol. J., 2020, 15(4), e1900073.
[http://dx.doi.org/10.1002/biot.201900073] [PMID: 31864234]
[25]
Pojjanapornpun, S.; Nolvachai, Y.; Aryusuk, K.; Kulsing, C.; Krisnangkura, K.; Marriott, P.J. Ionic liquid phases with comprehensive two-dimensional gas chromatography of fatty acid methyl esters. Anal. Bioanal. Chem., 2018, 410(19), 4669-4677.
[http://dx.doi.org/10.1007/s00216-018-0944-7] [PMID: 29455287]
[26]
Martín-Calero, A.; Pino, V.; Ayala, J.H.; González, V.; Afonso, A.M. Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta, 2009, 79(3), 590-597.
[http://dx.doi.org/10.1016/j.talanta.2009.04.032] [PMID: 19576417]
[27]
Waichigo, M.M.; Danielson, N.D. Ethylammonium formate as an organic solvent replacement for ion-pair reversed-phase liquid chromatography. J. Chromatogr. Sci., 2006, 44(10), 607-614.
[http://dx.doi.org/10.1093/chromsci/44.10.607] [PMID: 17254370]
[28]
Zheng, J.; Row, K.H. Effects of ionic liquid on the separation of 2-chlorophenol and 2,4,6-trichlorophenol in RP-HPLC. J. Chromatogr. Sci., 2009, 47(5), 392-395.
[http://dx.doi.org/10.1093/chromsci/47.5.392] [PMID: 19476708]
[29]
Ali, I.; Suhail, M.; Sanagi, M.M.; Aboul-Enein, H.Y. Ionic liquids in HPLC and CE: a hope for future. Crit. Rev. Anal. Chem., 2017, 47(4), 332-339.
[http://dx.doi.org/10.1080/10408347.2017.1294047] [PMID: 28266865]
[30]
Wang, Q.; Chen, X.; Qiu, B.; Zhou, L.; Zhang, H.; Xie, J.; Luo, Y.; Wang, B. Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials. J. Sep. Sci., 2016, 39(7), 1242-1248.
[http://dx.doi.org/10.1002/jssc.201501050] [PMID: 26843408]
[31]
Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-phase microextraction–The different principles and configurations. Trends Analyt. Chem., 2019, 112, 264-272.
[http://dx.doi.org/10.1016/j.trac.2018.06.010]
[32]
Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun., 1998, (16), 1765-1766.
[http://dx.doi.org/10.1039/A803999B]
[33]
Rykowska, I.; Ziemblińska, J.; Nowak, I. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. J. Mol. Liq., 2018, 259, 319-339.
[http://dx.doi.org/10.1016/j.molliq.2018.03.043]
[34]
Trujillo-Rodríguez, M.J.; Rocío-Bautista, P.; Pino, V.; Afonso, A.M. Ionic liquids in dispersive liquid-liquid microextraction. Trends Analyt. Chem., 2013, 51, 87-106.
[http://dx.doi.org/10.1016/j.trac.2013.06.008]
[35]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[36]
Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. (Camb.), 2001, (19), 2010-2011.
[http://dx.doi.org/10.1039/b106357j] [PMID: 12240264]
[37]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, (1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[38]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[39]
Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci., 2016, 39(18), 3505-3520.
[http://dx.doi.org/10.1002/jssc.201600633] [PMID: 27503573]
[40]
Tang, B.; Zhang, H.; Row, K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci., 2015, 38(6), 1053-1064.
[http://dx.doi.org/10.1002/jssc.201401347] [PMID: 25581398]
[41]
Shahbaz, K.; Mjalli, F.; Hashim, M.; AlNashef, I. Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Separ. Purif. Tech., 2011, 81(2), 216-222.
[http://dx.doi.org/10.1016/j.seppur.2011.07.032]
[42]
Pang, K.; Hou, Y.; Wu, W.; Guo, W.; Peng, W.; Marsh, K.N. Efficient separation of phenols from oils via forming deep eutectic solvents. Green Chem., 2012, 14(9), 2398-2401.
[http://dx.doi.org/10.1039/c2gc35400d]
[43]
Yang, D.; Hou, M.; Ning, H.; Zhang, J.; Ma, J.; Yang, G.; Han, B. Efficient SO 2 absorption by renewable choline chloride–glycerol deep eutectic solvents. Green Chem., 2013, 15(8), 2261-2265.
[http://dx.doi.org/10.1039/c3gc40815a]
[44]
Alam, M.K.; Rana, Z.H.; Islam, S.N. Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh. Foods, 2016, 5(3), 64.
[http://dx.doi.org/10.3390/foods5030064] [PMID: 28231159]
[45]
Alam, M.K.; Rana, Z.H.; Islam, S.N.; Akhtaruzzaman, M. Comparative assessment of nutritional composition, polyphenol profile, antidiabetic and antioxidative properties of selected edible wild plant species of Bangladesh. Food Chem., 2020, 320, 126646.
[http://dx.doi.org/10.1016/j.foodchem.2020.126646] [PMID: 32229398]
[46]
Mohammad Khairul, A.; Rumana, T.; Mohammad Sharif, K.; Jannatul, A.; Abu Tareq Mohammad, A.; Maksuda, K.; Mohammad, A.; Sheikh Nazrul, I. Chromatographic Assessment of Polyphenolic Profile and Total Phenolic Content and Antioxidant Activity of Common Leafy Vegetables in Bangladesh. Curr. Chromatogr., 2020, 7, 1-11.
[47]
Tang, B.; Bi, W.; Zhang, H.; Row, K.H. Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive terpenoids in Chamaecyparis obtusa leaves. Chromatographia, 2014, 77(3-4), 373-377.
[http://dx.doi.org/10.1007/s10337-013-2607-3]
[48]
Yilmaz, E.; Soylak, M. Ultrasound assisted-deep eutectic solvent extraction of iron from sheep, bovine and chicken liver samples. Talanta, 2015, 136, 170-173.
[http://dx.doi.org/10.1016/j.talanta.2014.12.034] [PMID: 25702999]
[49]
Tang, B.; Row, K.H. Exploration of deep eutectic solvent‐based mesoporous silica spheres as high‐performance size exclusion chromatography packing materials. J. Appl. Polym. Sci., 2015, 132(27)
[http://dx.doi.org/10.1002/app.42203]
[50]
Tan, T.; Zhang, M.; Wan, Y.; Qiu, H. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta, 2016, 149, 85-90.
[http://dx.doi.org/10.1016/j.talanta.2015.11.041] [PMID: 26717817]
[51]
Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. Green Extraction Techniques: Principles, Advances and Applications, 2017, 76, 53e82.
[http://dx.doi.org/10.1016/bs.coac.2016.12.005]
[52]
Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A, 2010, 1217(16), 2484-2494.
[http://dx.doi.org/10.1016/j.chroma.2009.12.050] [PMID: 20060531]
[53]
Hassas-Roudsari, M.; Chang, P.R.; Pegg, R.B.; Tyler, R.T. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem., 2009, 114(2), 717-726.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.097]
[54]
Kim, W-J.; Kim, J.; Veriansyah, B.; Kim, J-D.; Lee, Y-W.; Oh, S-G.; Tjandrawinata, R.R. Extraction of bioactive components from Centella asiatica using subcritical water. J. Supercrit. Fluids, 2009, 48(3), 211-216.
[http://dx.doi.org/10.1016/j.supflu.2008.11.007]
[55]
Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni. J. Sep. Sci., 2009, 32(4), 613-622.
[http://dx.doi.org/10.1002/jssc.200800552] [PMID: 19160370]
[56]
Zaibunnisa, A.H.; Norashikin, S.; Mamot, S.; Osman, H. An experimental design approach for the extraction of volatile compounds from turmeric leaves (Curcuma domestica) using pressurised liquid extraction (PLE). Lebensm. Wiss. Technol., 2009, 42(1), 233-238.
[http://dx.doi.org/10.1016/j.lwt.2008.03.015]
[57]
Andersson, T.; Pihtsalmi, T.; Hartonen, K.; Hyötyläinen, T.; Riekkola, M-L. Effect of extraction vessel geometry and flow homogeneity on recoveries of polycyclic aromatic hydrocarbons in pressurised hot water extraction. Anal. Bioanal. Chem., 2003, 376(7), 1081-1088.
[http://dx.doi.org/10.1007/s00216-003-2078-8] [PMID: 12856099]
[58]
Kronholm, J.; Hartonen, K.; Riekkola, M-L. Analytical extractions with water at elevated temperatures and pressures. Trends Analyt. Chem., 2007, 26(5), 396-412.
[http://dx.doi.org/10.1016/j.trac.2007.03.004]
[59]
Hawthorne, S.B.; Yang, Y.; Miller, D.J. Extraction of organic pollutants from environmental solids with sub-and supercritical water. Anal. Chem., 1994, 66(18), 2912-2920.
[http://dx.doi.org/10.1021/ac00090a019]
[60]
Liau, B-C.; Ponnusamy, V.K.; Lee, M-R.; Jong, T-T.; Chen, J-H. Development of pressurized hot water extraction for five flavonoid glycosides from defatted Camellia oleifera seeds (byproducts). Ind. Crops Prod., 2017, 95, 296-304.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.034]
[61]
Bursać Kovačević, D.; Barba, F.J.; Granato, D.; Galanakis, C.M.; Herceg, Z.; Dragović-Uzelac, V.; Putnik, P. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem., 2018, 254, 150-157.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.192] [PMID: 29548436]
[62]
Alaşalvar, H.; Çam, M. Process for production of ready to drink iced teas from sage (Salvia officinalis L.) and linden (Tilia cordata): pressurized hot water extraction and spray drying. Food Sci. Biotechnol., 2018, 28(3), 779-785.
[http://dx.doi.org/10.1007/s10068-018-0538-3] [PMID: 31093435]
[63]
Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Chapter Seventeen - Recent Advances in the Combination of Assisted Extraction Techniques. In: Comprehensive Analytical Chemistry; Ibáñez, E.; Cifuentes, A., Eds.; Elsevier, 2017; Vol. 76, pp. 519-573.
[64]
Pereira, F.P. Miniaturization in Sample Preparation; De Gruyter, 2015.
[65]
Hu, B.; Chen, B.; He, M.; Nan, K.; Xu, Y.; Xu, C. Chapter Four - Separation methods applied to arsenic speciation. In: Comprehensive Analytical Chemistry; Duarte, A.C.; Reis, V., Eds.; Elsevier, 2019; Vol. 85, pp. 89-144.
[66]
Zgoła-Grześkowiak, A.; Kaczorek, E. Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid-liquid microextraction and liquid chromatography with tandem mass spectrometry. Talanta, 2011, 83(3), 744-750.
[http://dx.doi.org/10.1016/j.talanta.2010.10.037] [PMID: 21147315]
[67]
Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal. Chim. Acta, 2008, 624(2), 253-268.
[http://dx.doi.org/10.1016/j.aca.2008.06.050] [PMID: 18706332]
[68]
Bello-López, M.Á.; Ramos-Payán, M.; Ocaña-González, J.A.; Fernández-Torres, R.; Callejón-Mochón, M. Analytical Applications of Hollow Fiber Liquid Phase Microextraction (HF-LPME): A Review. Anal. Lett., 2012, 45(8), 804-830.
[http://dx.doi.org/10.1080/00032719.2012.655676]
[69]
Farajzadeh, M.; Sorouraddin, S. Afshar mogaddam, M., Liquid phase microextraction of pesticides: A review on current methods. Mikrochim. Acta, 2014, 181, 829-851.
[http://dx.doi.org/10.1007/s00604-013-1157-6]
[70]
Lambropoulou, D.A.; Albanis, T.A. Application of hollow fiber liquid phase microextraction for the determination of insecticides in water. J. Chromatogr. A, 2005, 1072(1), 55-61.
[http://dx.doi.org/10.1016/j.chroma.2004.11.076] [PMID: 15881459]
[71]
Pedersen-Bjergaard, S.; Rasmussen, K.E. Electrokinetic migration across artificial liquid membranes. New concept for rapid sample preparation of biological fluids. J. Chromatogr. A, 2006, 1109(2), 183-190.
[http://dx.doi.org/10.1016/j.chroma.2006.01.025] [PMID: 16445928]
[72]
Fashi, A.; Yaftian, M.R.; Zamani, A. Determination of melamine in dairy products using electromembrane-LPME followed by HPLC. Food Chem., 2015, 188, 92-98.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.132] [PMID: 26041169]
[73]
Gao, L.; Jönsson, J.Å. Determination of Melamine in Fresh Milk with Hollow Fiber Liquid Phase Microextraction Based on Ion-Pair Mechanism Combined with High Performance Liquid Chromatography. Anal. Lett., 2012, 45(16), 2310-2323.
[http://dx.doi.org/10.1080/00032719.2012.688084]
[74]
Liu, H.; Dasgupta, P.K. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem., 1996, 68(11), 1817-1821.
[http://dx.doi.org/10.1021/ac960145h] [PMID: 21619093]
[75]
Xu, L.; Basheer, C.; Lee, H.K. Developments in single-drop microextraction. J. Chromatogr. A, 2007, 1152(1-2), 184-192.
[http://dx.doi.org/10.1016/j.chroma.2006.10.073] [PMID: 17097670]
[76]
Rezaee, M.; Yamini, Y.; Shariati, S.; Esrafili, A.; Shamsipur, M. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. J. Chromatogr. A, 2009, 1216(9), 1511-1514.
[http://dx.doi.org/10.1016/j.chroma.2008.12.091] [PMID: 19167003]
[77]
Kocúrová, L.; Balogh, I.; Šandrejová, J.; Andruch, V. Recent Advances in Dispersive Liquid-Liquid Microextraction Using Organic Solvents Lighter than Water. A Review. Microchem. J., 2011, 102, 11-17.
[http://dx.doi.org/10.1016/j.microc.2011.12.002]
[78]
Jain, A.; Verma, K.K. Recent advances in applications of single-drop microextraction: a review. Anal. Chim. Acta, 2011, 706(1), 37-65.
[http://dx.doi.org/10.1016/j.aca.2011.08.022] [PMID: 21995911]
[79]
Jeannot, M.A.; Przyjazny, A.; Kokosa, J.M. Single drop microextraction--development, applications and future trends. J. Chromatogr. A, 2010, 1217(16), 2326-2336.
[http://dx.doi.org/10.1016/j.chroma.2009.10.089] [PMID: 19932482]
[80]
Fiorentini, E.F.; Canizo, B.V.; Wuilloud, R.G. Determination of As in honey samples by magnetic ionic liquid-based dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry. Talanta, 2019, 198, 146-153.
[http://dx.doi.org/10.1016/j.talanta.2019.01.091] [PMID: 30876542]
[81]
James, A.T.; Martin, A.J. Gas-liquid chromatography; a technique for the analysis and identification of volatile materials. Br. Med. Bull., 1954, 10(3), 170-176.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a069416] [PMID: 13199288]
[82]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Analyt. Chem., 2013, 50, 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[83]
Shaaban, H.; Górecki, T. Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments. Talanta, 2015, 132, 739-752.
[http://dx.doi.org/10.1016/j.talanta.2014.09.050] [PMID: 25476373]
[84]
Koel, M. Energy savings in analytical chemistry; Wiley: Chichester, UK, 2012.
[http://dx.doi.org/10.1002/9781119940722.ch15]
[85]
Houbart, V.; Fillet, M. Advances in Low Volume Sample Analysis Using Microfluidic Separation Techniques.Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences; , 2016, p. 1.
[http://dx.doi.org/10.5772/64952]
[86]
Soares da Silva Burato, J.; Vargas Medina, D.A.; de Toffoli, A.L.; Vasconcelos Soares Maciel, E.; Mauro Lanças, F. Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci., 2020, 43(1), 202-225.
[http://dx.doi.org/10.1002/jssc.201900776] [PMID: 31692234]
[87]
Rahman, M. Chapter 4 - Application of Computational Methods in Isolation of Plant Secondary Metabolites In: Computational Phytochemistry; Sarker, S. D.; Nahar, L., Eds. Elsevier:, 2018; pp. 107-139.
[88]
Munir, M.A.; Badri, K.H. The Importance of Derivatizing Reagent in Chromatography Applications for Biogenic Amine Detection in Food and Beverages. J. Anal. Methods Chem., 2020, 2020, 5814389.
[http://dx.doi.org/10.1155/2020/5814389] [PMID: 32377440]
[89]
Pagliano, E. Versatile derivatization for GC-MS and LC-MS: alkylation with trialkyloxonium tetrafluoroborates for inorganic anions, chemical warfare agent degradation products, organic acids, and proteomic analysis. Anal. Bioanal. Chem., 2020, 412(9), 1963-1971.
[http://dx.doi.org/10.1007/s00216-019-02299-8] [PMID: 31915869]
[90]
de Sousa Brandão, I.L.; Mannaerts, C.M.; de Sousa Brandão, I.W.; Queiroz, J.C.B.; Verhoef, W.; Fonseca Saraiva, A.C.; Dantas Filho, H.A. Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. Sci. Total Environ., 2019, 650(Pt 1), 394-407.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.403] [PMID: 30199684]
[91]
Chatzimichail, S.; Casey, D.; Salehi-Reyhani, A. Zero electrical power pump for portable high-performance liquid chromatography. Analyst (Lond.), 2019, 144(21), 6207-6213.
[http://dx.doi.org/10.1039/C9AN01302D] [PMID: 31573005]
[92]
Widger, P.; Haddad, A.M. Analysis of Gaseous By-Products of CF3I and CF3I-CO2 after High Voltage Arcing Using a GCMS. Molecules, 2019, 24(8), 1599.
[http://dx.doi.org/10.3390/molecules24081599] [PMID: 31018513]
[93]
El-Shaheny, R. N.; El-Maghrabey, M. H.; Belal, F. F. Micellar Liquid Chromatography from Green Analysis Perspective. Open Chemistry, 2015, (1)
[http://dx.doi.org/10.1515/chem-2015-0101]
[94]
Buse, J.; Robinson, J.L.; Shyne, R.; Chi, Q.; Affleck, D.; Duce, D.; Seiden-Long, I. Rising above helium: A hydrogen carrier gas chromatography flame ionization detection (GC-FID) method for the simultaneous quantification of toxic alcohols and ethylene glycol in human plasma specimens. Clin. Biochem., 2019, 73, 98-104.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.08.007] [PMID: 31425671]
[95]
MacNair, J.E.; Lewis, K.C.; Jorgenson, J.W. Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. Anal. Chem., 1997, 69(6), 983-989.
[http://dx.doi.org/10.1021/ac961094r] [PMID: 9075400]
[96]
Mazzeo, J. R.; Neue, D.; Kele, M.; Plumb, R. S. Advancing LC Performance with Smaller Particles and Higher Pressure Analytical Chemistry, 2005, 77(23), 460 A-467 A.
[97]
Bruner, F. The Science of Chromatography: Lectures. AJP Martin Honorary Symposium; Elsevier: Urbino, 1985.
[98]
Gerhardt, R.F.; Peretzki, A.J.; Piendl, S.K.; Belder, D. Seamless Combination of High-Pressure Chip-HPLC and Droplet Microfluidics on an Integrated Microfluidic Glass Chip. Anal. Chem., 2017, 89(23), 13030-13037.
[http://dx.doi.org/10.1021/acs.analchem.7b04331] [PMID: 29096060]
[99]
Lin, S-L.; Lin, T-Y.; Fuh, M-R. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: an update. Electrophoresis, 2014, 35(9), 1275-1284.
[http://dx.doi.org/10.1002/elps.201300415] [PMID: 24165927]
[100]
Marriott, P.J.; Haglund, P.; Ong, R.C.; Schmarr, H-G.; Bieri, S. A review of environmental toxicant analysis by using multidimensional gas chromatography and comprehensive GC. Clin. Chim. Acta, 2003, 328(1-2), 1-19.
[http://dx.doi.org/10.1016/S0009-8981(02)00382-0] [PMID: 12559594]
[101]
Seeley, J.V.; Seeley, S.K. Multidimensional gas chromatography: fundamental advances and new applications. Anal. Chem., 2013, 85(2), 557-578.
[http://dx.doi.org/10.1021/ac303195u] [PMID: 23137217]
[102]
Wong, Y.F.; Hartmann, C.; J Marriott, P. Multidimensional gas chromatography methods for bioanalytical research. Bioanalysis, 2014, 6(18), 2461-2479.
[http://dx.doi.org/10.4155/bio.14.186] [PMID: 25384596]
[103]
Sharif, K.M.; Chin, S-T.; Kulsing, C.; Marriott, P.J. The microfluidic Deans switch: 50 years of progress, innovation and application. Trends Analyt. Chem., 2016, 82, 35-54.
[http://dx.doi.org/10.1016/j.trac.2016.05.005]
[104]
Biasioli, F.; Yeretzian, C.; Märk, T.D.; Dewulf, J.; Van Langenhove, H. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends Analyt. Chem., 2011, 30(7), 1003-1017.
[http://dx.doi.org/10.1016/j.trac.2011.04.005]
[105]
Lebrón-Aguilar, R.; Soria, A.C.; Quintanilla-López, J.E. Comprehensive evaluation of direct injection mass spectrometry for the quantitative profiling of volatiles in food samples. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2016, 374(2079), 20150375.
[http://dx.doi.org/10.1098/rsta.2015.0375] [PMID: 27644978]
[106]
Jurisch, M.; de Paula, C.C.A.; Augusti, R. Distinguishing legal and illegal cigarettes by applying paper spray mass spectrometry and chemometric tools. Rapid Commun. Mass Spectrom., 2020, 34(9), e8752.
[http://dx.doi.org/10.1002/rcm.8752] [PMID: 32059068]
[107]
Höring, M.; Ejsing, C.S.; Hermansson, M.; Liebisch, G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal. Chem., 2019, 91(5), 3459-3466.
[http://dx.doi.org/10.1021/acs.analchem.8b05013] [PMID: 30707563]
[108]
King, A.C.F.; Giorio, C.; Wolff, E.; Thomas, E.; Roverso, M.; Schwikowski, M.; Tapparo, A.; Bogialli, S.; Kalberer, M. Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores. Anal. Chem., 2019, 91(8), 5051-5057.
[http://dx.doi.org/10.1021/acs.analchem.8b05224] [PMID: 30893554]
[109]
Liang, J.; Frazier, J.; Benefield, V.; Chong, N.S.; Zhang, M. Forensic Fiber Analysis by Thermal Desorption/Pyrolysis-Direct Analysis in Real Time-Mass Spectrometry. Anal. Chem., 2020, 92(2), 1925-1933.
[http://dx.doi.org/10.1021/acs.analchem.9b04167] [PMID: 31846295]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy