Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Theoretical Investigation on Structural and Magnetic Properties of Mn-doped and C co-doped Zn12Se12 Nanoclusters

Author(s): Liangyan Chen*, Chao Fang and Weihua Liu

Volume 17, Issue 2, 2021

Published on: 12 August, 2020

Page: [287 - 297] Pages: 11

DOI: 10.2174/1573413716999200812124413

Abstract

Background: Mn doped ZnSe low dimensional materials are attractive for different biological labels, gene silencing and dilute-magnetic device. ZnSe clusters are one of the basic building blocks of quantum dots and even cluster-assembled nanodevices, stable structures of undoped ZnSe clusters were established by previous pioneering work, and the Mn doped ZnSe clusters had been investigated, but the stable clusters in the ferromagnetic state have not been found yet.

Objective: Our work is mainly based on Mn doped clusters (Mn2Zn10Se12) and C codoped clusters (Mn2Zn10CSe11) structure, magnetic properties through theoretical calculations.

Methods: First principle density functional theory calculation with Dmol3 is used to execute all calculations.

Results: Mn atoms prefer to substitute the nearest neighbor Zn atom sites in the rhombi part, and C atom prefers to occupy Se atom sites with shortest Mn-C bond length in Zn12Se12 nanocluster doping. Mn doped clusters (Mn2Zn10Se12) are in antiferromagnetic states and the most stable C codoped clusters (Mn2Zn10CSe11) are in ferromagnetic states. Magnetic behavior localized at the 3d orbitals of transitional metal Mn, 4p orbital of atom Se and 2p orbital of C atom. Mn2Zn10Se12 clusters are in antiferromagnetic states as the p-d hybridization introduced Mn-Mn superexchange mechanism. For the ferromagnetism of Mn2Zn10Se12 nanocluster, hole mediated double exchange mechanism introduced by C atom p-d hole state hybridization has been suggested.

Conclusion: The codoping of C atom can stabilize the ferromagnetism of clusters through hole mediated double exchange mechanism, which may be meaningful for the exploring materials for cluster- assembled spin-electronic devices.

Keywords: ZnSe clusters, doping, magnetism, structure, hole mediated, first principle calculation.

Graphical Abstract
[1]
Pradhan, N.; Peng, X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc., 2007, 129(11), 3339-3347.
[http://dx.doi.org/10.1021/ja068360v] [PMID: 17311383]
[2]
Xie, R.; Peng, X. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc., 2009, 131(30), 10645-10651.
[http://dx.doi.org/10.1021/ja903558r] [PMID: 19588970]
[3]
Zhu, D.; Li, W.; Wen, H.M.; Zhang, J.R.; Zhu, J.J. Self-assembled Mn-doped ZnSe quantum dot-methyl viologen nanohybrids as an off-on fluorescent probe for time-resolved fluorescence detection of tiopronin. Anal. Methods, 2013, 5, 4321.
[http://dx.doi.org/10.1039/c3ay40907d]
[4]
Irvine, S.E.; Staudt, T.; Rittweger, E.; Engelhardt, J.; Hell, S.W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew. Chem. Int. Ed. Engl., 2008, 47(14), 2685-2688.
[http://dx.doi.org/10.1002/anie.200705111] [PMID: 18306194]
[5]
Akins, B.A.; Rivera, A.C.; Cook, N.C.; Smolyakov, G.A.; Osinski, M. ZnSe:Mn/ZnS high temperature nanophosphors with very high quantum efficiency for white LEDs. 2012 Conference on Lasers and Electro-Optics (CLEO); San Jose, CA, USA, 2012.
[6]
Qiao, F.; Kang, R.; Liang, Q.; Cai, Y.; Bian, J.; Hou, X. Tunability in the optical and electronic properties of znse microspheres via ag and Mn doping. ACS Omega, 2019, 4(7), 12271-12277.
[http://dx.doi.org/10.1021/acsomega.9b01539] [PMID: 31460343]
[7]
Wu, S.; Chu, H.; Xu, H.; Wang, X.; Yuan, N.; Li, Y.; Wu, Z.; Du, Z.; Schelly, Z.A. Oscillation of absorption bands of Zn(1-x)Mn(x)S clusters: an experimental and theoretical study. Nanotechnology, 2008, 19(5), 055703.
[http://dx.doi.org/10.1088/0957-4484/19/05/055703] [PMID: 21817617]
[8]
Xu, S.; Xu, X.; Wang, C.; Zhao, Z.; Wang, Z.; Cui, Y. Theoretical and experimental investigation of doping M in ZnSe (M = Cd, Mn, Ag, Cu) clusters: optical and bonding characteristics. Luminescence, 2016, 31(2), 312-316.
[http://dx.doi.org/10.1002/bio.3056] [PMID: 26553509]
[9]
Chin, P.T.; Stouwdam, J.W.; Janssen, R.A.J. Highly luminescent ultranarrow Mn doped ZnSe nanowires. Nano Lett., 2009, 9(2), 745-750.
[http://dx.doi.org/10.1021/nl8033015] [PMID: 19146460]
[10]
Plumley, J.B.; Akins, B.A.; Alas, G.J.; Fetrow, M.E.; Nguyen, J.; Jain, P.; Yang, S.; Brandt, Y.I.; Smolyakov, G.A.; Ornatowski, W.; Milligan, E.D.; Osiński, M. Non-cytotoxic Mn-doped ZnSe/ZnS quantum dots for biomedical applications. Proc. SPIE 8955. Colloidal Nanoparticles for Biomedical Applications, 2014, IX, 895513.
[http://dx.doi.org/10.1117/12.2043293]
[11]
Xu, Z.; Li, B.; Tang, W.; Chen, T.; Zhang, H.; Wang, Q. Glycopolypeptide-encapsulated Mn-doped ZnS quantum dots for drug delivery: fabrication, characterization, and in vitro assessment. Colloids Surf. B Biointerfaces, 2011, 88(1), 51-57.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.055] [PMID: 21764270]
[12]
Wu, P.; Zhao, T.; Tian, Y.; Wu, L.; Hou, X. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins. Chemistry, 2013, 19(23), 7473-7479.
[http://dx.doi.org/10.1002/chem.201204035] [PMID: 23576296]
[13]
Zhou, R.; Li, M.; Wang, S.; Wu, P.; Wu, L.; Hou, X. Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. Nanoscale, 2014, 6(23), 14319-14325.
[http://dx.doi.org/10.1039/C4NR04473H] [PMID: 25325899]
[14]
Zhou, R.; Sun, S.; Li, C.; Wu, L.; Hou, X.; Wu, P. Enriching Mn-Doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl. Mater. Interfaces, 2018, 10(40), 34060-34067.
[http://dx.doi.org/10.1021/acsami.8b14554] [PMID: 30211537]
[15]
Lai, P.Y.; Huang, C.C.; Chou, T.H.; Ou, K.L.; Chang, J.Y. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Acta Biomater., 2017, 50, 522-533.
[http://dx.doi.org/10.1016/j.actbio.2016.12.028] [PMID: 27998812]
[16]
Zhu, D.; Li, W.; Wen, H.M.; Yu, S.; Miao, Z.Y.; Kang, A.; Zhang, A. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF(165) based on Mn-doped ZnS quantum dots. Biosens. Bioelectron., 2015, 74, 1053-1060.
[http://dx.doi.org/10.1016/j.bios.2015.08.005] [PMID: 26276542]
[17]
Zhu, D.; Chen, Y.; Jiang, L.; Geng, J.; Zhang, J.; Zhu, J.J. Manganese-doped ZnSe quantum dots as a probe for time-resolved fluorescence detection of 5-fluorouracil. Anal. Chem., 2011, 83(23), 9076-9081.
[http://dx.doi.org/10.1021/ac202101u] [PMID: 22026809]
[18]
Sharma, V.K.; Gokyar, S.; Kelestemur, Y.; Erdem, T.; Unal, E.; Demir, H.V. Manganese doped fluorescent paramagnetic nanocrystals for dual-modal imaging. Small, 2014, 10(23), 4961-4966.
[http://dx.doi.org/10.1002/smll.201401143] [PMID: 25111198]
[19]
Acharya, S.; Sarma, D.D.; Jana, N.R.; Pradhan, N. An alternate route to high-quality ZnSe and Mn-doped ZnSe nanocrystals. J. Phys. Chem. Lett., 2010, 1, 485-488.
[http://dx.doi.org/10.1021/jz900291a]
[20]
Wang, Y.; Yang, C.; Hu, R.; Toh, H.T.; Liu, X.; Lin, G.; Yin, F.; Yoon, H.S.; Yong, K.T. Assembling Mn:ZnSe quantum dots-siRNA nanoplexes for gene silencing in tumor cells. Biomater. Sci., 2015, 3(1), 192-202.
[http://dx.doi.org/10.1039/C4BM00306C] [PMID: 26214202]
[21]
Löffler, W.; Tröndle, D.; Fallert, J.; Kalt, H.; Litvinov, D.; Gerthsen, D.; Schomber, J.L.; Passow, T.; Daniel, B.; Kvietkova, J.; Grün, M.; Klingshirn, C.; Hetterich, M. Electrical spin injection from ZnMnSe into InGaAs quantum wells and quantum dots. Appl. Phys. Lett., 2006, 88(06), 062105.
[http://dx.doi.org/10.1063/1.2172221]
[22]
Varalda, J.; Ribeiro, G.A.P.; Ortiz, W.A.; Oliveira, A.J.A. MoscDa, H.; Etgens, V.H.; Eddrief, M. Magnetic behavior of Fe(0 0 1)/ZnSe(0 0 1)/Fe(0 0 1) sandwiches grown on ZnSe(0 0 1) epilayer on GaAs(0 0 1). Physica B, 2002, 322(3), 312-314.
[http://dx.doi.org/10.1016/S0921-4526(02)01199-7]
[23]
Kukreja, L.M.; Rohlfing, A.; Misra, P.; Hillenkam, F.; Dreisewerd, K. Cluster formation in UV laser ablation plumes of ZnSe and ZnO studied by time-of-flight mass spectrometry. Appl. Phys., A Mater. Sci. Process., 2004, A78(5), 641-644.
[http://dx.doi.org/10.1007/s00339-003-2272-8]
[24]
Wang, X.; Xu, H.; Liu, H.; Schelly, Z.A.; Wu, S.X. Preparation and oscillation of absorption bands of ZnS clusters. Nanotechnology, 2007, 18(15), 155604.
[http://dx.doi.org/10.1088/0957-4484/18/15/155604] [PMID: 19420552]
[25]
Crampton, A.S.; Rötzer, M.D.; Ridge, C.J.; Schweinberger, F.F.; Heiz, U.; Yoon, B.; Landman, U. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters. Nat. Commun., 2016, 7, 10389.
[http://dx.doi.org/10.1038/ncomms10389] [PMID: 26817713]
[26]
Cui, Y.Q.; Yin, P.F.; Cui, X.H.; Wu, D.Y.; Yang, M.L. Stokes shifts of small ZnSe clusters from first principles calculations. Mol. Phys., 2017, 115, 3192-3198.
[http://dx.doi.org/10.1080/00268976.2017.1357857]
[27]
Huang, X.; Makmal, A.; Chelikowsky, J.R.; Kronik, L. Size-dependent spintronic properties of dilute magnetic semiconductor nanocrystals. Phys. Rev. Lett., 2005, 94(23), 236801.
[http://dx.doi.org/10.1103/PhysRevLett.94.236801] [PMID: 16090492]
[28]
Kasuya, A.; Sivamohan, R.; Barnakov, Y.A.; Dmitruk, I.M.; Nirasawa, T.; Romanyuk, V.R.; Kumar, V.; Mamykin, S.V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R.V.; Sundararajan, V.; Kawazoe, Y. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater., 2004, 3(2), 99-102.
[http://dx.doi.org/10.1038/nmat1056] [PMID: 14743211]
[29]
Wang, B.; Nagase, S.; Zhao, J.; Wand, G.H. Structural growth sequences and electronic properties of zinc oxide clusters (ZnO)n (n=2-18). J. Phys. Chem. C, 2007, 111(13), 4956-4963.
[http://dx.doi.org/10.1021/jp066548v]
[30]
Troparevsky, M.C.; Chelikowsky, J.R. Structural and electronic properties of CdS and CdSe clusters. J. Chem. Phys., 2001, 114(2), 943.
[http://dx.doi.org/10.1063/1.1329126]
[31]
Matxain, J.M.; Mercero, J.M.; Fowler, J.E.; Ugalde, J.M. Clusters of group II-VI materials: CdiOi(i≤ 15). J. Phys. Chem. A, 2003, 10(46), 9918-9923.
[http://dx.doi.org/10.1021/jp035226d]
[32]
Matxain, J.M.; Mercero, J.M.; Fowler, J.E.; Ugalde, J.M. Small clusters of group-(II-VI) materials: ZniXi, X=Se, Te, i=1-9. Phys. Rev. A, 2001, 64(05), 053201.
[http://dx.doi.org/10.1103/PhysRevA.64.053201]
[33]
Boo, B.H.; Cho, H.J.; Kang, D.E. Ab Initio and DFT investigation of structures and energies of low-lying isomers of ZnxSex (x=1-4). Clusters. J. Mol. Struct. THEOCHEM, 2007, 806(1-3), 77-83.
[http://dx.doi.org/10.1016/j.theochem.2006.11.009]
[34]
Sanville, E.; Burnin, A.; Belbruno, J.J. Experimental and computational study of small (N = 1-16) stoichiometric zinc and cadmium chalcogenide clusters. J. Phys. Chem. A, 2006, 110(7), 2378-2386.
[http://dx.doi.org/10.1021/jp056218v] [PMID: 16480297]
[35]
Matxain, J.M.; Mercero, J.M.; Fowler, J.E.; Ugalde, J.M. Electronic excitation energies of Zn(i)O(i) clusters. J. Am. Chem. Soc., 2003, 125(31), 9494-9499.
[http://dx.doi.org/10.1021/ja0264504] [PMID: 12889980]
[36]
Zhang, J.; Li, X. The geometric and spectroscopic features of (CuSe)n = 2-8 binary nanoclusters: a theoretical study. J. Nanopart. Res., 2018, 20, 292.
[http://dx.doi.org/10.1007/s11051-018-4404-2]
[37]
Zhou, C.C.; Yan, J.; Dong, R.; Jin, B. Investigation on stability and optical properties of ZnnSen(n=1~13) nanocluster in CIGS-ZnSe heterojunction interface. Adv. Mat. Res., 2014, 953-954, 991-994.
[38]
Kaur, N.; Singh, K.L.; Sharma, H. First principle investigation of the magnetic properties of transition metal doped (ZnS)n (n=1-16) clusters. J. Magn. Magn. Mater., 2015, 388, 160-166.
[http://dx.doi.org/10.1016/j.jmmm.2015.04.035]
[39]
Sharma, H.; Singh, R. First-principles investigation into ferromagnetism in c-doped zinc oxide clusters (ZnO)n: n=1-12 Int. J. Nanosci., 2011, 10(04-05), 577-580.
[40]
Chen, H.; Shi, D.; Wang, B.; Qi, J. An Unbiased Structural Optimization of Zinc Sulfide Clusters (ZnS)n (n = 2-18). J. Comput. Theor. Nanosci., 2011, 8(12), 2454-2461.
[http://dx.doi.org/10.1166/jctn.2011.1978]
[41]
Wang, J.; Ma, L.; Zhao, J.; Jackson, K.A. Structural growth behavior and polarizability of Cd(n)Te(n) (n=1-14) clusters. J. Chem. Phys., 2009, 130(21), 214307.
[http://dx.doi.org/10.1063/1.3147519] [PMID: 19508069]
[42]
Imran, M.; Saif, M.J.; Kuznetsov, A.E.; Idrees, N.; Iqbal, J.; Tahir, A.A. Computational investigations into the structural and electronic properties of CdnTen (n= 1–17) quantum dots. RSC Advances, 2019, 9, 5091.
[http://dx.doi.org/10.1039/C8RA09465A]
[43]
Jimenez-Izal, E.; Matxain, J.M.; Piris, M.; Ugalde, J.M. Second-row transition-metal doping of (ZniSi), i = 12, 16 nanoclusters: Structural and magnetic properties. Computation, 2013, 1(3), 31-45.
[http://dx.doi.org/10.3390/computation1030031]
[44]
Chen, H.X.; Shi, D.N.; Qi, J.S.; Wang, B.L. First-principles study on the magnetic properties of transition-metal atoms doped (ZnS)12 cluster. J. Magn. Magn. Mater., 2011, 323, 781-788.
[http://dx.doi.org/10.1016/j.jmmm.2010.10.044]
[45]
Singh, P.; Mookerjee, A. Effect of donor(I) or acceptor(N) co-doping on Cr doped (ZnTe)12 clusters. J. Magn. Magn. Mater., 2011, 323, 167-175.
[http://dx.doi.org/10.1016/j.jmmm.2010.08.058]
[46]
Yadav, M.K.; Sanyal, B.; Mookerjee, A. Structural, electronic and magnetic properties of Cr-doped (ZnTe)12 clusters. J. Magn. Magn. Mater., 2009, 321(4), 235-240.
[http://dx.doi.org/10.1016/j.jmmm.2008.08.092]
[47]
Kaur, N.; Singh, K.L.; Singh, K.; Sharma, H. Effect of nitrogen as codoping on transition metal doped (ZnS)12 clusters. J. Magn. Magn. Mater., 2015, 394, 397-403.
[http://dx.doi.org/10.1016/j.jmmm.2015.07.008]
[48]
Chen, L.Y.; Fang, C.; Liu, W.H.; Chen, X.Q.; Zhao, L. Structural and magnetic properties of Fe doped small ZnSe nanoclusters. AIP Conf. Proc., 2019, 2073, 020007.
[http://dx.doi.org/10.1063/1.5090661]
[49]
Zhang, D.L.; Chen, L.Y.; Zhang, J.B.; Miao, X.S. Theoretical investigation of structural and magnetic properties of ZnnSen (n=6-13) nanoclusters doped with manganese atoms. J. Am. Ceram. Soc., 2011, 94(3), 759-764.
[http://dx.doi.org/10.1111/j.1551-2916.2010.04125.x]
[50]
Wang, L.X.; Zhu, X.P.; Bai, L.; Lu, L.; Li, Y.; Qin, X.J. Study of electronic band structure and optical properties Al-F co-doped ZnO. Curr. Nanosci., 2018, 14(6), 520-527.
[http://dx.doi.org/10.2174/1573413714666180629144303]
[51]
Viswanatha, R.; Naveh, D.; Chelikowsky, J.R.; Kronik, L.; Sarma, D.D. Magnetic properties of Fe/Cu codoped ZnO nanocrystals. J. Phys. Chem. Lett., 2012, 3, 2009-2014.
[http://dx.doi.org/10.1021/jz300741z]
[52]
Behloul, M.; Salmani, E.; Ez-Zahraouy, H.; Benyoussef, A. Theoretical investigation of electronic, magnetic and optical properties of ZnSe doped TM and co-doped with MnTM (TM:Fe,Cr,Co): Ab-initio study. J. Magn. Magn. Mater., 2016, 419, 233-239.
[http://dx.doi.org/10.1016/j.jmmm.2016.06.011]
[53]
Benstaali, W.; Bentata, S.; Abbad, A.; Belaidi, A. Ab-initio study of magnetic, electronic and optical properties of ZnSe doped-transition metals. Mater. Sci. Semicond. Process., 2013, 16, 231-237.
[http://dx.doi.org/10.1016/j.mssp.2012.10.001]
[54]
Cheref, O.; Merabet, M.; Benalia, S.; Bettaher, N.; Rached, D.; Djoudi, L. Ab initio investigation of structural, electronic, and magnetic properties of Cr-doped ZnS and ZnSe in wurtzite structure. J. Supercond. Nov. Magn., 2018, 32, 413-423.
[http://dx.doi.org/10.1007/s10948-018-4731-7]
[55]
Peng, H.; Xiang, H.J.; Wei, S.H.; Li, S.S.; Xia, J.B.; Li, J. Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors. Phys. Rev. Lett., 2009, 102(1), 017201.
[http://dx.doi.org/10.1103/PhysRevLett.102.017201] [PMID: 19257233]
[56]
Pan, H.; Yi, J.B.; Shen, L.; Wu, R.Q.; Yang, J.H.; Lin, J.Y.; Feng, Y.P.; Ding, J.; Van, L.H.; Yin, J.H. Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett., 2007, 99(12), 127201.
[http://dx.doi.org/10.1103/PhysRevLett.99.127201] [PMID: 17930547]
[57]
Zhou, S.Q.; Xu, Q.Y.; Potzger, K.; Talut, G.; Grötzschel, R.; Fassbender, J.; Vinnichenk, M.; Grenzer, J.; Helm, M.; Hochmuth, H.; Lorenz, M.; Grundmann, M.; Schmidt, H. Room Temperature Ferromagnetism In Carbon-implanted ZnO. Appl. Phys. Lett., 2008, 93(23), 232507.
[http://dx.doi.org/10.1063/1.3048076]
[58]
Hsu, H.S.; Tung, Y.; Chen, Y.J.; Chen, M.G.; Lee, J.S.; Sun, S.J. Defect engineering of room-temperature ferromagnetism of carbon-doped ZnO. Phys. Status Solidi Rapid Res. Lett., 2011, 5(12), 447-449.
[http://dx.doi.org/10.1002/pssr.201105395]
[59]
Wang, Y.F.; Shao, Y.C.; Hsieh, S.H.; Chang, Y.K.; Yeh, P.H.; Hsueh, H.C.; Chiou, J.W.; Wang, H.T.; Ray, S.C.; Tsai, H.M.; Pao, C.W.; Chen, C.H.; Lin, H.J.; Lee, J.F.; Wu, C.T.; Wu, J.J.; Chang, Y.M.; Asokan, K.; Chae, K.H.; Ohigashi, T.; Takagi, Y.; Yokoyama, T.; Kosugi, N.; Pong, W.F. Origin of magnetic properties in carbon implanted ZnO nanowires. Sci. Rep., 2018, 8(1), 7758.
[http://dx.doi.org/10.1038/s41598-018-25948-x] [PMID: 29773822]
[60]
Mohammadbeigi, F.; Kumar, E.S.; Alagha, S.; Anderson, I.; Watkins, S.P. Carbon related donor bound exciton transitions in ZnO nanowires. J. Appl. Phys., 2014, 116(5), 053516.
[http://dx.doi.org/10.1063/1.4892090]
[61]
Moubah, R.; Zamani, A.; Olsson, A.; Shi, S.; Hallen, A.; Carlson, S.; Arvanitis, D.; Nordblad, P.; Hjörvarsson, B.; Jönsson, P. Soft room-temperature ferromagnetism of carbon-implanted amorphous Fe_(93)Zr_7 films. Appl. Phys. Express, 2013, 6(5), 053001.
[http://dx.doi.org/10.7567/APEX.6.053001]
[62]
Lin, X.L.; Yan, S.S.; Zhao, M.W.; Hu, S.J.; Yao, X.X.; Han, C.; Chen, Y.X.; Liu, G.L.; Dai, Y.Y.; Mei, L.M. Long-ranged and high temperature ferromagnetism in Mn,C-codoped ZnO studied by first-principles calculations. J. Appl. Phys., 2010, 107, 033903.
[http://dx.doi.org/10.1063/1.3289721]
[63]
Long, Z.; Peng-Fei, L.; Zhong-Yuan, Y.; Shi-Jia, M.; Lu, D.; Jian-Tao, L. The electronic and magnetic properties of (Mn,C)-codoped ZnO diluted magnetic semiconductor. Chin. Phys. B, 2012, 21(9), 097103.
[http://dx.doi.org/10.1088/1674-1056/21/9/097103]
[64]
Akbar, S.; Hasanain, S.K.; Abbas, M.; Ozcan, S.; Ali, B.; Shah, S.I. Defect induced ferromagnetism in carbon-doped ZnO thin films. Solid State Commun., 2011, 151(1), 17-20.
[http://dx.doi.org/10.1016/j.ssc.2010.10.035]
[65]
Hou, L.; Pan, L.; Liang, B.; Liu, Y.; Zhang, L.; Bukhtiar, A.; Shi, L.; Liu, R.; Zou, B. Bound magnetic polaron in Zn-rich cobalt-doped ZnSe nanowires. Nanotechnology, 2018, 29(5), 055707.
[http://dx.doi.org/10.1088/1361-6528/aaa1be] [PMID: 29239304]
[66]
Kumar, P.; Malik, H.K.; Asokan, K. Tuning of optical bandgap and magnetization of C-implanted ZnO thin films. EPL, 2015, 110(6), 67006.
[http://dx.doi.org/10.1209/0295-5075/110/67006]
[67]
Subramanian, M.; Akaike, Y.; Hayashi, Y.; Tanemura, M.; Ebisu, H.; Ping, D.L.S. Effect of defects in ferromagnetic C doped ZnO thin films. Phys. Status Solidi, B Basic Res., 2012, 249(6), 1254-1257.
[http://dx.doi.org/10.1002/pssb.201147609]
[68]
Li, X.L.; Guo, J.F.; Quan, Z.Y.; Xu, X.H.; Gehring, G.A. Defects inducing ferromagnetism in carbon-doped ZnO films. IEEE Trans. Magn., 2010, 46(6), 1382-1384.
[http://dx.doi.org/10.1109/TMAG.2010.2044480]
[69]
Gracia-Espino, E.; López-Urías, F.; Terrones, H.; Terrones, M. Self-assembly synthesis of decorated nitrogen-doped carbon nanotubes with ZnO nanoparticles: anchoring mechanism and the effects of sulfur. J. Phys. Chem. C, 2015, 119(1), 741-747.
[http://dx.doi.org/10.1021/jp509689h]
[70]
Zhao, C.; Xu, Z.; Wang, H.; Wei, J.K.; Wang, W.L.; Bai, X.D.; Wang, E. Carbon-doped boron nitride nanosheets with ferromagnetism above room temperature. Adv. Funct. Mater., 2014, 24(38), 5985-5992.
[http://dx.doi.org/10.1002/adfm.201401149]
[71]
Chanier, T.; Virot, F.; Hayn, R. Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab Initio calculations. Phys. Rev. B Condens. Matter Mater. Phys., 2009, 79, 205204.
[http://dx.doi.org/10.1103/PhysRevB.79.205204]
[72]
Fan, S.W.; Yao, K.L.; Liu, Z.L. Half-metallic ferromagnetism in C-doped ZnS: Density functional calculations. Appl. Phys. Lett., 2009, 94, 152506.
[http://dx.doi.org/10.1063/1.3120277]
[73]
Streltsov, S.V.; Khomskii, D.I. Covalent bonds against magnetism in transition metal compounds. Proc. Natl. Acad. Sci. USA, 2016, 113(38), 10491-10496.
[http://dx.doi.org/10.1073/pnas.1606367113] [PMID: 27601669]
[74]
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 1990, 92(1), 508-517.
[http://dx.doi.org/10.1063/1.458452]
[75]
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000, 113(18), 7756-7764.
[http://dx.doi.org/10.1063/1.1316015]
[76]
Delley, B. DMol3 DFT studies: From molecules and molecular environments to surfaces and solids. Comput. Mater. Sci., 2000, 17(2), 122-126.
[http://dx.doi.org/10.1016/S0927-0256(00)00008-2]

© 2024 Bentham Science Publishers | Privacy Policy