Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Alginate as Promising Natural Polymer for Pharmaceutical, Food, and Biomedical Applications

Author(s): Dhalendra Kothale, Utsav Verma, Nagesh Dewangan, Partha Jana, Ankit Jain* and Dharmendra Jain*

Volume 17 , Issue 9 , 2020

Page: [755 - 775] Pages: 21

DOI: 10.2174/1567201817666200810110226

Price: $65

Abstract

Alginates are biopolymers usually obtained from brown seaweed, brown algae (Ochrophyta, Phaeophyceae), and bacteria (Azatobacter vineland and Pseudomonas species) belonging to the family of polycationic copolymers. They are biocompatible, biodegradable, non-antigenic, and non-toxic biopolymer with molecular mass ranges from 32,000-40,000 g/mol in commercial grades. These can be used as edible films or coatings in food industries and also some natural or chemical additives could be incorporated into them to modify their functional, mechanical, nutritional as well as organoleptic properties. Due to their high viscosity and extraordinary shear-thinning effect, they can be used as dietary fibers, thickening, gelling and stabilizing agents. Commercial alginates have vast applications in the fields of biomedical engineering, biotechnology, environmental contaminants treatments, food processing, and pharmaceuticals. Alginates can be used in wound dressings, bone regeneration, neovascularization, protein delivery, cell delivery, theranostic agents, oral drug delivery, controlled release systems, raft formulations, immobilization of biological agents and treatment of environmental contaminants. Various carrier systems can be formulated by the use of alginates like hydrogel, tablets, microcapsules, films, matrices, microspheres, liposomes, nanoparticles, beads, cochleate, floating and supersaturated drug delivery systems. This review presents a broad range of promising applications of alginates, and it can be a great interest to scientists and industries engaged in exploring its hidden potential.

Keywords: Alginate, drug delivery, environmental applications, food applications, pharmaceuticals, tablets.

Graphical Abstract
[1]
Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym., 2012, 88(1), 1-12.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.012]
[2]
(a)Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
(b)Nakauma, M.; Funami, T.; Fang, Y.; Nishinari, K.; Draget, K.I.; Phillips, G.O. Calcium binding and calcium-induced gelation of sodium alginate modified by low molecular-weight polyuronate. Food Hydrocoll., 2016, 55, 65-76.
[http://dx.doi.org/10.1016/j.foodhyd.2015.10.021]
[3]
Jain, D.; Bar-Shalom, D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm., 2014, 40(12), 1576-1584.
[http://dx.doi.org/10.3109/03639045.2014.917657 ] [PMID: 25109399]
[4]
Qin, Y.; Jiang, J.; Zhao, L.; Zhang, J.; Wang, F. Applications of alginate as a functional food ingredient. Biopolymers Food Des; Elsevier, 2018, pp. 409-429.
[http://dx.doi.org/10.1016/B978-0-12-811449-0.00013-X]
[5]
Pawar, S.N.; Edgar, K.J. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 2012, 33(11), 3279-3305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007 ] [PMID: 22281421]
[6]
Liew, C.V.; Chan, L.W.; Ching, A.L.; Heng, P.W.S. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int. J. Pharm., 2006, 309(1-2), 25-37.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.040 ] [PMID: 16364576]
[7]
Lachowicz, D.; Karabasz, A.; Bzowska, M.; Szuwarzyński, M.; Karewicz, A.; Nowakowska, M. Blood-compatible, stable micelles of sodium alginate-curcumin bioconjugate for anti-cancer applications. Eur. Polym. J., 2019, 113, 208-219.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.058]
[8]
Deng, Z.; Wang, F.; Zhou, B.; Li, J.; Li, B.; Liang, H. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll., 2019, 89, 691-699.
[http://dx.doi.org/10.1016/j.foodhyd.2018.11.031]
[9]
Bierhalz, A.C.K.; da Silva, M.A.; Kieckbusch, T.G. Natamycin release from alginate/pectin films for food packaging applications. J. Food Eng., 2012, 110(1), 18-25.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.12.016]
[10]
Kamalaldin, N.; Yahya, B.; Nurazreena, A. Cell evaluation on alginate/hydroxyapatite block for biomedical application. Procedia Chem., 2016, 19, 297-303.
[http://dx.doi.org/10.1016/j.proche.2016.03.012]
[11]
Naghieh, S.; Sarker, M.D.; Abelseth, E.; Chen, X. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J. Mech. Behav. Biomed. Mater., 2019, 93, 183-193.
[http://dx.doi.org/10.1016/j.jmbbm.2019.02.014 ] [PMID: 30802775]
[12]
Kazi, G.A.; Yamamoto, O. Effectiveness of the sodium alginate as surgical sealant materials. Wound Med., 2019, 24(1), 18-23.
[http://dx.doi.org/10.1016/j.wndm.2019.02.001]
[13]
Podgórna, K.; Szczepanowicz, K.; Piotrowski, M.; Gajdošová, M.; Štěpánek, F.; Warszyński, P. Gadolinium alginate nanogels for theranostic applications. Colloids Surf. B Biointerfaces, 2017, 153, 183-189.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.026 ] [PMID: 28242371]
[14]
Suarez-Arnedo, A.; Narváez, D.M.; Sarmiento, P.; Bocanegra, L.; Salcedo, F.; Muñoz-Camargo, C.; Groot, H.; Cruz, J.C. Tridimensional alginate disks of tunable topologies for mammalian cell encapsulation. Anal. Biochem., 2019, 574, 31-33.
[http://dx.doi.org/10.1016/j.ab.2019.03.008 ] [PMID: 30905690]
[15]
Bae, S.B.; Nam, H.C.; Park, W.H. Electrospraying of environmentally sustainable alginate microbeads for cosmetic additives. Int. J. Biol. Macromol., 2019, 133, 278-283.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.058 ] [PMID: 30981780]
[16]
Brownlee, I.A.; Seal, C.J.; Wilcox, M.; Dettmar, P.W.; Pearson, J.P. Applications of alginates in food. Alginates: Biol. Appli; Springer, 2009, pp. 211-228.
[http://dx.doi.org/10.1007/978-3-540-92679-5_9]
[17]
de Oliveira Filho, J.G.; Rodrigues, J.M.; Valadares, A.C.F.; de Almeida, A.B.; de Lima, T.M.; Takeuchi, K.P.; Alves, C.C.F.; de Sousa Falcão, H.A.; da Silva, E.R.; Dyszy, F.H. Active food packaging: alginate films with cottonseed protein hydrolysates. Food Hydrocoll., 2019, 92, 267-275.
[http://dx.doi.org/10.1016/j.foodhyd.2019.01.052]
[18]
Rostami, Z.; Tabarsa, M.; You, S.; Rezaei, M. Relationship between molecular weights and biological properties of alginates extracted under different methods from Colpomenia peregrina. Process Biochem., 2017, 58, 289-297.
[http://dx.doi.org/10.1016/j.procbio.2017.04.037]
[19]
Donhowe, I.G.; Fennema, O. Edible films and coatings: characteristics, formation, definitions, and testing methods. Edible Coatings Films Improve Food Quality 1994, 1-24.
[20]
Skurtys, O.; Acevedo, C.; Pedreschi, F.; Enronoe, J.; Osorio, F.; Aguilera, J. Food hydrocolloid edible films and coatings. Nova Science Publishers, Incorporated Hauppauge, New York, USA,, 2014, pp. 1-34.
[21]
Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-based edible films and coatings for food packaging applications. Foods, 2018, 7(10), 170.
[http://dx.doi.org/10.3390/foods7100170 ] [PMID: 30336642]
[22]
Qin, H-M.; Miyakawa, T.; Inoue, A.; Nishiyama, R.; Nakamura, A.; Asano, A.; Ojima, T.; Tanokura, M. Structural basis for controlling the enzymatic properties of polymannuronate preferred alginate lyase FlAlyA from the PL-7 family. Chem. Commun. (Camb.), 2018, 54(5), 555-558.
[http://dx.doi.org/10.1039/C7CC06523J ] [PMID: 29292806]
[23]
Brownlee, I.A.; Allen, A.; Pearson, J.P.; Dettmar, P.W.; Havler, M.E.; Atherton, M.R.; Onsøyen, E. Alginate as a source of dietary fiber. Crit. Rev. Food Sci. Nutr., 2005, 45(6), 497-510.
[http://dx.doi.org/10.1080/10408390500285673 ] [PMID: 16183570]
[24]
Oliveira, A.F.; Bastos, R.G.; Lucimara, G. Bacillus subtilis immobilization in alginate microfluidic-based microparticles aiming to improve lipase productivity. Biochem. Eng. J., 2019, 143, 110-120.
[http://dx.doi.org/10.1016/j.bej.2018.12.014]
[25]
Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: a critical review. Crit. Rev. Environ. Sci. Technol., 2019, 49(4), 318-356.
[http://dx.doi.org/10.1080/10643389.2018.1547621]
[26]
Mohapatra, B.R. Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. Biocatal. Agric. Biotechnol., 2020, 23, e101458.
[http://dx.doi.org/10.1016/j.bcab.2019.101458]
[27]
Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.R.; Cao, X.; Pullammanappallil, P.; Yang, L. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour. Technol., 2011, 102(10), 6273-6278.
[http://dx.doi.org/10.1016/j.biortech.2011.03.006 ] [PMID: 21450461]
[28]
Nahar, K.; Hossain, M.K.; Khan, T.A. Alginate and its versatile application in drug delivery. J. Pharmaceut. Sci. Res., 2017, 9(5), 606.
[29]
Rubio-Elizalde, I.; Bernáldez-Sarabia, J.; Moreno-Ulloa, A.; Vilanova, C.; Juárez, P.; Licea-Navarro, A.; Castro-Ceseña, A.B. Scaffolds based on alginate-PEG methyl ether methacrylate-Moringa oleifera-Aloe vera for wound healing applications. Carbohydr. Polym., 2019, 206, 455-467.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.027 ] [PMID: 30553345]
[30]
Bagher, Z.; Ehterami, A.; Safdel, M.H.; Khastar, H.; Semiari, H.; Asefnejad, A.; Davachi, S.M.; Mirzaii, M.; Salehi, M. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug Deliv. Sci. Technol., 2020, 55, e101379.
[http://dx.doi.org/10.1016/j.jddst.2019.101379]
[31]
Majmudar, G.; Bole, D.; Goldstein, S.A.; Bonadio, J. Bone cell culture in a three-dimensional polymer bead stabilizes the differentiated phenotype and provides evidence that osteoblastic cells synthesize type III collagen and fibronectin. J. Bone Miner. Res., 1991, 6(8), 869-881.
[http://dx.doi.org/10.1002/jbmr.5650060813 ] [PMID: 1664648]
[32]
Kim, S.H.; Thambi, T.; Giang Phan, V.H.; Lee, D.S. Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydr. Polym., 2020, 233, 115832.
[http://dx.doi.org/10.1016/j.carbpol.2020.115832 ] [PMID: 32059885]
[33]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853 ] [PMID: 12149954]
[34]
Joseph, I.; Venkataram, S. Indomethacin sustained release from alginate-gelatin or pectin-gelatin coacervates. Int. J. Pharm., 1995, 126(1-2), 161-168.
[http://dx.doi.org/10.1016/0378-5173(95)00173-5]
[35]
Jain, A.; Prajapati, S.; Kumari, A.; Mody, N.; Bajpai, M. Engineered nanosponges as versatile biodegradable carriers: an insight. J. Drug Deliv. Sci. Technol., 2020, 57, e 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[36]
(a)Draget, K.I.; Gåserød, O.; Aune, I.; Andersen, P.O.; Storbakken, B.; Stokke, B.T.; Smidsrød, O. Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocoll., 2001, 15(4-6), 485-490.
[http://dx.doi.org/10.1016/S0268-005X(01)00046-7]
(b)Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: an insight. Chem. Phys. Lipids, 2016, 201, 28-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.005 ] [PMID: 27983957]
[37]
(a)Smidsrød, O.; Skjåk-Braek, G. Alginate as immobilization matrix for cells. Trends Biotechnol., 1990, 8(3), 71-78.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
(b)Dennis, A.; Timmins, P.; Lee, K. Buoyant controlled release powder formulation; Google Patents, 1992.
[38]
Jain, A.; Hurkat, P.; Jain, A.; Jain, A.; Jain, A.; Jain, K.S. Thiolated polymers: pharmaceutical tool in nasal drug delivery of proteins and peptides.Int. J. Pept. Res. Ther; , 2018, pp. 1-12.
[39]
(a)Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Chitosan and sodium alginate based bioadhesive tablets for intraoral drug delivery. Biol. Pharm. Bull., 1994, 17(5), 745-747.
[http://dx.doi.org/10.1248/bpb.17.745] [PMID: 7920448]
(b)Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate. Int. J. Pharm., 1995, 118(2), 257-263.
[http://dx.doi.org/10.1016/0378-5173(94)00396-M]
(c)Jain, A.; Gulbake, A.; Shilpi, S.; Jain, A.; Hurkat, P.; Jain, S.K. A new horizon in modifications of chitosan: syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(2), 91-181.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005678] [PMID: 23510147]
(d)Jain, A.; Jain, S.K. Environmentally responsive Chitosan-based Nanocarriers (CBNs). Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers, 2015, 3, pp. 105.
[40]
Savarino, E.; de Bortoli, N.; Zentilin, P.; Martinucci, I.; Bruzzone, L.; Furnari, M.; Marchi, S.; Savarino, V. Alginate controls heartburn in patients with erosive and nonerosive reflux disease. World J. Gastroenterol., 2012, 18(32), 4371-4378.
[http://dx.doi.org/10.3748/wjg.v18.i32.4371 ] [PMID: 22969201]
[41]
Katayama, H.; Nishimura, T.; Ochi, S.; Tsuruta, Y.; Yamazaki, Y.; Shibata, K.; Yoshitomi, H. Sustained release liquid preparation using sodium alginate for eradication of Helicobacter pyroli. Biol. Pharm. Bull., 1999, 22(1), 55-60.
[http://dx.doi.org/10.1248/bpb.22.55 ] [PMID: 9989662]
[42]
(a)Jain, A.; Jain, S.K. Ligand-Appended BBB-Targeted Nanocarriers (LABTNs). Crit. Rev. Ther. Drug Carrier Syst., 2015, 32(2), 149-180.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010903] [PMID: 25955883]
(b)Gulbake, A.; Jain, A.; Jain, A.; Sahu, A. Prodrugs and bioconjugate hydrogels: a valuable strategy for the prolonged-delivery of drugs. Functional Hydrogels in Drug Delivery; Taylor and Francis Group, 2017, pp. 89-113.
(c)Kumari, A.; Jain, A.; Hurkat, P.; Verma, A.; Jain, S. K. Microsponges: a pioneering tool for biomedical applications. Crit. Rev. Therapeut. Drug Carrier Syst., 2016, 33, 1.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.40]
(d)Jain, A.; Jain, S.K. Colon Targeted Liposomal Systems (CTLS): theranostic potential. Curr. Mol. Med., 2015, 15(7), 621-633.
[http://dx.doi.org/10.2174/1566524015666150831131320 ] [PMID: 26321756]
[43]
Jakaria, M.; Zaman, R.; Parvez, M.; Islam, M.; Haque, M.A.; Sayeed, M.A.; Ali, M.H. Comparative study among the different formulation of antacid tablets by using acid-base neutralization reaction. Glob. J. Pharmacol., 2015, 9(3), 278-281.
[44]
Rashaan, Z.M.; Krijnen, P.; van den Akker-van Marle, M.E.; van Baar, M.E.; Vloemans, A.F.; Dokter, J.; Tempelman, F.R.; van der Vlies, C.H.; Breederveld, R.S. Clinical effectiveness, quality of life and cost-effectiveness of Flaminal® versus Flamazine® in the treatment of partial thickness burns: study protocol for a randomized controlled trial. Trials, 2016, 17(1), 122.
[http://dx.doi.org/10.1186/s13063-016-1240-5 ] [PMID: 26945575]
[45]
Sussman, G.M. Management of the wound environment with dressings and topical agents. Wound Care: A Collaborative Practice Manual for Physical Therapists and Nurses; Aspen Publishers Incorporated, 2001, pp. 257-271.
[46]
Ausili, E.; Paolucci, V.; Triarico, S.; Maestrini, C.; Murolo, D.; Focarelli, B.; Rendeli, C. Treatment of pressure sores in spina bifida patients with calcium alginate and foam dressings. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(12), 1642-1647.
[PMID: 23832732]
[47]
Bale, S.; Baker, N.; Crook, H.; Rayman, A.; Rayman, G.; Harding, K.G. Exploring the use of an alginate dressing for diabetic foot ulcers. J. Wound Care, 2001, 10(3), 81-84.
[http://dx.doi.org/10.12968/jowc.2001.10.3.26063 ] [PMID: 11924357]
[48]
Porter, M.; Kelly, J. Pressure ulcer treatment in a patient with spina bifida. Nurs. Stand., 2014, 28(35), 60-69.
[http://dx.doi.org/10.7748/ns2014.04.28.35.60.e7943 ] [PMID: 24779845]
[49]
Abramowitz, L.; Weyandt, G.H.; Havlickova, B.; Matsuda, Y.; Didelot, J.M.; Rothhaar, A.; Sobrado, C.; Szabadi, A.; Vitalyos, T.; Wiesel, P. The diagnosis and management of haemorrhoidal disease from a global perspective. Aliment. Pharmacol. Ther., 2010, 31(Suppl. 1), 1-58.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04278.x ] [PMID: 20500735]
[50]
Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized bone matrix in bone repair: history and use. Adv. Drug Deliv. Rev., 2012, 64(12), 1063-1077.
[http://dx.doi.org/10.1016/j.addr.2012.06.008 ] [PMID: 22728914]
[51]
Barzegari, A.; Saei, A.A. An update to space biomedical research: tissue engineering in microgravity bioreactors. Bioimpacts, 2012, 2(1), 23-32.
[PMID: 23678438]
[52]
Zhang, R.; Lei, L.; Song, Q.; Li, X. Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release. Colloids Surf. B Biointerfaces, 2019, 175, 569-575.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.083 ] [PMID: 30580147]
[53]
Samanta, H.S.; Ray, S.K. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr. Polym., 2014, 99, 666-678.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.004 ] [PMID: 24274557]
[54]
Araujo, V.; Gamboa, A.; Caro, N.; Abugoch, L.; Gotteland, M.; Valenzuela, F.; Merchant, H.A.; Basit, A.W.; Tapia, C. Release of prednisolone and inulin from a new calcium-alginate chitosan-coated matrix system for colonic delivery. J. Pharm. Sci., 2013, 102(8), 2748-2759.
[http://dx.doi.org/10.1002/jps.23656 ] [PMID: 23839971]
[55]
Rudhrabatla, V.P.; Jalababu, R.; Rao, K.K.; Reddy, K.S. Fabrication and characterisation of curcumin loaded pH dependent sodium alginate-g-poly (acryloyl phenylalanine)-cl-ethylene glycol vinyl ether-co-hydroxyethyl acrylate hydrogels and their in-vitro, in-vivo and toxicological evaluation studies. J. Drug Deliv. Sci. Technol., 2019, 51, 438-453.
[http://dx.doi.org/10.1016/j.jddst.2019.03.020]
[56]
Seo, Y.; Lee, H.; Lee, J.W.; Lee, K.Y. Hyaluronate-alginate hybrid hydrogels prepared with various linkers for chondrocyte encapsulation. Carbohydr. Polym., 2019, 218, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.067 ] [PMID: 31221310]
[57]
Tuğcu-Demiröz, F.; Acartürk, F.; Takka, S.; Konuş-Boyunağa, O. Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Eur. J. Pharm. Biopharm., 2007, 67(2), 491-497.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.003 ] [PMID: 17451926]
[58]
Gennari, C.G.M.; Sperandeo, P.; Polissi, A.; Minghetti, P.; Cilurzo, F. Lysozyme mucoadhesive tablets obtained by freeze-drying. J. Pharm. Sci., 2019, 108(11), 3667-3674.
[http://dx.doi.org/10.1016/j.xphs.2019.08.011 ] [PMID: 31446146]
[59]
Mandal, S.; Basu, S.K.; Sa, B. Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydr. Polym., 2010, 82(3), 867-873.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.009]
[60]
de Matos, E.F.; Scopel, B.S.; Dettmer, A. Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. J. Environ. Chem. Eng., 2018, 6(2), 1989-1994.
[http://dx.doi.org/10.1016/j.jece.2018.03.002]
[61]
Vaziri, A.S.; Alemzadeh, I.; Vossoughi, M.; Khorasani, A.C. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr. Polym., 2018, 199, 266-275.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.002 ] [PMID: 30143129]
[62]
Boggione, D.M.G.; Batalha, L.S.; Gontijo, M.T.P.; Lopez, M.E.S.; Teixeira, A.V.N.C.; Santos, I.J.B.; Mendonça, R.C.S. Evaluation of microencapsulation of the UFV-AREG1 bacteriophage in alginate-Ca microcapsules using microfluidic devices. Colloids Surf. B Biointerfaces, 2017, 158, 182-189.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.045 ] [PMID: 28692873]
[63]
Nabavinia, M.; Khoshfetrat, A.B.; Naderi-Meshkin, H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater. Sci. Eng. C, 2019, 97, 67-77.
[http://dx.doi.org/10.1016/j.msec.2018.12.033 ] [PMID: 30678955]
[64]
Lou, R.; Yu, W.; Song, Y.; Ren, Y.; Zheng, H.; Guo, X.; Lin, Y.; Pan, G.; Wang, X.; Ma, X. Fabrication of stable galactosylated alginate microcapsules via covalent coupling onto hydroxyl groups for hepatocytes applications. Carbohydr. Polym., 2017, 155, 456-465.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.098 ] [PMID: 27702535]
[65]
Prakash, J.; Kumar, T.S.; Venkataprasanna, K.; Niranjan, R.; Kaushik, M.; Samal, D.B.; Venkatasubbu, G.D. PVA/alginate/hydroxyapatite films for controlled release of amoxicillin for the treatment of periodontal defects. Appl. Surf. Sci., 2019, 495, 143543.
[http://dx.doi.org/10.1016/j.apsusc.2019.143543]
[66]
Xing, L.; Ma, Y.; Tan, H.; Yuan, G.; Li, S.; Li, J.; Jia, Y.; Zhou, T.; Niu, X.; Hu, X. Alginate membrane dressing toughened by chitosan floccule to load antibacterial drugs for wound healing. Polym. Test., 2019, 79, 106039.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106039]
[67]
Bera, H.; Ippagunta, S.R.; Kumar, S.; Vangala, P. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery. Mater. Sci. Eng. C, 2017, 76, 715-726.
[http://dx.doi.org/10.1016/j.msec.2017.03.074 ] [PMID: 28482582]
[68]
Santos, E.L.I.; Rostro-Alanís, M.; Parra-Saldívar, R.; Alvarez, A.J. A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresour. Technol., 2018, 247, 165-173.
[http://dx.doi.org/10.1016/j.biortech.2017.09.091 ] [PMID: 28950123]
[69]
García-González, C.A.; Jin, M.; Gerth, J.; Alvarez-Lorenzo, C.; Smirnova, I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr. Polym., 2015, 117, 797-806.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.045 ] [PMID: 25498702]
[70]
Pal, D.; Nayak, A.K. Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery: in vitro-in vivo evaluation. Drug Deliv., 2012, 19(3), 123-131.
[http://dx.doi.org/10.3109/10717544.2012.657717 ] [PMID: 22352984]
[71]
Soni, M.L.; Kumar, M.; Namdeo, K. Sodium alginate microspheres for extending drug release: formulation and in vitro evaluation. Int. J. Drug Deliv., 2010, 2, 15.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02013]
[72]
Wang, Y.; Zhou, J.; Qiu, L.; Wang, X.; Chen, L.; Liu, T.; Di, W. Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials, 2014, 35(14), 4297-4309.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.035 ] [PMID: 24565522]
[73]
Istenič, K.; Cerc Korošec, R.; Poklar Ulrih, N. Encapsulation of (-)-epigallocatechin gallate into liposomes and into alginate or chitosan microparticles reinforced with liposomes. J. Sci. Food Agric., 2016, 96(13), 4623-4632.
[http://dx.doi.org/10.1002/jsfa.7691 ] [PMID: 26921243]
[74]
Manuja, A.; Kumar, S.; Dilbaghi, N.; Bhanjana, G.; Chopra, M.; Kaur, H.; Kumar, R.; Manuja, B.K.; Singh, S.K.; Yadav, S.C. Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine (Lond.), 2014, 9(11), 1625-1634.
[http://dx.doi.org/10.2217/nnm.13.148 ] [PMID: 24405513]
[75]
Almeida, H.; Amaral, M.H.; Lobão, P.; Silva, A.C.; Loboa, J.M.S. Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. J. Pharm. Pharm. Sci., 2014, 17(3), 278-293.
[http://dx.doi.org/10.18433/J3DP43 ] [PMID: 25224343]
[76]
Martínez, A.; Benito-Miguel, M.; Iglesias, I.; Teijón, J.M.; Blanco, M.D. Tamoxifen-loaded thiolated alginate-albumin nanoparticles as antitumoral drug delivery systems. J. Biomed. Mater. Res. A, 2012, 100(6), 1467-1476.
[http://dx.doi.org/10.1002/jbm.a.34051 ] [PMID: 22396108]
[77]
Guo, H.; Hong, Z.; Yi, R. Core-shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation. J. Food Sci., 2015, 80(7), N1595-N1601.
[http://dx.doi.org/10.1111/1750-3841.12912 ] [PMID: 25990921]
[78]
Raguvaran, R.; Manuja, B.K.; Chopra, M.; Thakur, R.; Anand, T.; Kalia, A.; Manuja, A. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int. J. Biol. Macromol., 2017, 96, 185-191.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.009 ] [PMID: 27939272]
[79]
Lu, T.; Xiang, T.; Huang, X-L.; Li, C.; Zhao, W-F.; Zhang, Q.; Zhao, C-S. Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. Carbohydr. Polym., 2015, 133, 587-595.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.048 ] [PMID: 26344317]
[80]
Gioumouxouzis, C.I.; Chatzitaki, A-T.; Karavasili, C.; Katsamenis, O.L.; Tzetzis, D.; Mystiridou, E.; Bouropoulos, N.; Fatouros, D.G. Controlled release of 5-fluorouracil from alginate beads encapsulated in 3d printed ph-responsive solid dosage forms. AAPS PharmSciTech, 2018, 19(8), 3362-3375.
[http://dx.doi.org/10.1208/s12249-018-1084-2 ] [PMID: 29948989]
[81]
Wang, H.; Gong, X.; Guo, X.; Liu, C.; Fan, Y-Y.; Zhang, J.; Niu, B.; Li, W. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int. J. Biol. Macromol., 2019, 121, 1118-1125.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.121 ] [PMID: 30340010]
[82]
Qureshi, D.; Nayak, S.K.; Maji, S.; Anis, A.; Kim, D.; Pal, K. Environment sensitive hydrogels for drug delivery applications. Eur. Polym. J., 2019, 1, 9220.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109220]
[83]
Leong, J.Y.; Lam, W.H.; Ho, K.W.; Voo, W.P.; Lee, M.F.X.; Lim, H.P.; Lim, S.L.; Tey, B.T.; Poncelet, D.; Chan, E.S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, 2016, 24, 44-60.
[http://dx.doi.org/10.1016/j.partic.2015.09.004]
[84]
DeVolder, R.; Antoniadou, E.; Kong, H. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization. J. Control. Release, 2013, 172(1), 30-37.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.010 ] [PMID: 23886705]
[85]
Sun, R.; Xia, Q. Nanostructured lipid carriers incorporated in alginate hydrogel: enhanced stability and modified behavior in gastrointestinal tract. Colloids Surf. Physicochem. Eng. Aspects, 2019, 574, 197-206.
[http://dx.doi.org/10.1016/j.colsurfa.2019.04.082]
[86]
Lei, L.; Zhang, Y.; He, L.; Wu, S.; Li, B.; Li, Y. Fabrication of nanoemulsion-filled alginate hydrogel to control the digestion behavior of hydrophobic nobiletin. Lebensm. Wiss. Technol., 2017, 82, 260-267.
[http://dx.doi.org/10.1016/j.lwt.2017.04.051]
[87]
Li, Y.; Liang, M.; Dou, X.; Feng, C.; Pang, J.; Cheng, X.; Liu, H.; Liu, T.; Wang, Y.; Chen, X. Development of alginate hydrogel/gum arabic/gelatin based composite capsules and their application as oral delivery carriers for antioxidant. Int. J. Biol. Macromol., 2019, 132, 1090-1097.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.103 ] [PMID: 30902715]
[88]
Wu, T.; Huang, J.; Jiang, Y.; Hu, Y.; Ye, X.; Liu, D.; Chen, J. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem., 2018, 240, 361-369.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.052 ] [PMID: 28946284]
[89]
Martínez-Gómez, F.; Guerrero, J.; Matsuhiro, B.; Pavez, J. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels. Carbohydr. Polym., 2017, 155, 182-191.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.079 ] [PMID: 27702502]
[90]
Bajpai, M.; Shukla, P.; Bajpai, S. Ca (II)+ Ba (II) ions crosslinked alginate gels prepared by a novel Diffusion Through Dialysis Tube (DTDT) approach and preliminary BSA release study. Polym. Degrad. Stabil., 2016, 134, 22-29.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.09.027]
[91]
Shoichet, M.S.; Li, R.H.; White, M.L.; Winn, S.R. Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol. Bioeng., 1996, 50(4), 374-381.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<374:AID-BIT4>3.0.CO;2-I ] [PMID: 18626986]
[92]
Schmid, W.; Picker-Freyer, K.M. Tableting and tablet properties of alginates: characterisation and potential for soft tableting. Eur. J. Pharm. Biopharm., 2009, 72(1), 165-172.
[http://dx.doi.org/10.1016/j.ejpb.2008.10.006 ] [PMID: 18992337]
[93]
Li, L.; Li, J.; Si, S.; Wang, L.; Shi, C.; Sun, Y.; Liang, Z.; Mao, S. Effect of formulation variables on in vitro release of a water-soluble drug from chitosan-sodium alginate matrix tablets. Asian J. Pharmaceut. Sci., 2015, 10(4), 314-321.
[94]
Mujtaba, A.; Kohli, K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int. J. Biol. Macromol., 2016, 89, 434-441.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.010 ] [PMID: 27155235]
[95]
Diós, P.; Nagy, S.; Pál, S.; Pernecker, T.; Kocsis, B.; Budán, F.; Horváth, I.; Szigeti, K.; Bölcskei, K.; Máthé, D.; Dévay, A. Preformulation studies and optimization of sodium alginate based floating drug delivery system for eradication of Helicobacter pylori. Eur. J. Pharm. Biopharm., 2015, 96, 196-206.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.020 ] [PMID: 26247118]
[96]
Villena, M.J.M.; Lara-Villoslada, F.; Martínez, M.A.R.; Hernández, M.E.M. Development of gastro-resistant tablets for the protection and intestinal delivery of Lactobacillus fermentum CECT 5716. Int. J. Pharm., 2015, 487(1-2), 314-319.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.078 ] [PMID: 25843758]
[97]
Venugopalarao, G.; Gowtham, M.S.; Sarada, N. Formulation evaluation and stability studies of hydrogel tablets containing Cefditoren Pivoxil. J. Pharm. Res., 2013, 7(3), 230-234.
[http://dx.doi.org/10.1016/j.jopr.2013.03.018]
[98]
Prajapati, S.T.; Mehta, A.P.; Modhia, I.P.; Patel, C.N. Formulation and optimisation of raft-forming chewable tablets containing H2 antagonist. Int. J. Pharm. Investig., 2012, 2(4), 176-182.
[http://dx.doi.org/10.4103/2230-973X.106988 ] [PMID: 23580933]
[99]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036 ] [PMID: 29288095]
[100]
Rather, S.A.; Akhter, R.; Masoodi, F.; Gani, A.; Wani, S. Effect of double alginate microencapsulation on inávitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. ácasei NCDC297. Lebensm. Wiss. Technol., 2017, 83, 50-58.
[http://dx.doi.org/10.1016/j.lwt.2017.04.036]
[101]
Arab, M.; Hosseini, S.M.; Nayebzadeh, K.; Khorshidian, N.; Yousefi, M.; Razavi, S.H.; Mortazavian, A.M. Microencapsulation of microbial canthaxanthin with alginate and high methoxyl pectin and evaluation the release properties in neutral and acidic condition. Int. J. Biol. Macromol., 2019, 121, 691-698.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.114 ] [PMID: 30336238]
[102]
Cañibano-Hernández, A.; Saenz Del Burgo, L.; Espona-Noguera, A.; Orive, G.; Hernández, R.M.; Ciriza, J.; Pedraz, J.L. Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules. Int. J. Pharm., 2019, 557, 192-198.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.062 ] [PMID: 30597265]
[103]
Estevinho, B.N.; Lopes, A.R.; Sousa, V.; Rocha, F.; Nunes, O.C. Microencapsulation of Gulosibacter molinativorax ON4T cells by a spray-drying process using different biopolymers. J. Hazard. Mater., 2017, 338, 85-92.
[http://dx.doi.org/10.1016/j.jhazmat.2017.05.018 ] [PMID: 28531662]
[104]
Costa, M.J.; Marques, A.M.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll., 2018, 81, 442-448.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.014]
[105]
Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 2012, 64, 194-205.
[http://dx.doi.org/10.1016/j.addr.2012.09.007]
[106]
Gao, C.; Pollet, E.; Avérous, L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll., 2017, 63, 414-420.
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.023]
[107]
Krishna, K.; Reddy, C.; Srikanth, S. A review on microsphere for novel drug delivery system. Int. J. Res. Pharm. Chem., 2013, 3(4), 763-767.
[108]
(a)Chawla, A.; Sharma, P.; Pawar, P. Eudragit S-100 coated sodium alginate microspheres of naproxen sodium: formulation, optimization and in vitro evaluation. Acta Pharm., 2012, 62(4), 529-545.
[http://dx.doi.org/10.2478/v10007-012-0034-x] [PMID: 23333888]
(b)Kumari, A.; Jain, A.; Hurkat, P.; Tiwari, A.; Jain, S.K. Eudragit S100 coated microsponges for colon targeting of prednisolone. Drug Dev. Ind. Pharm., 2017, 1-34.
[PMID: 29260916]
(c)Subudhi, M.B.; Jain, A.; Jain, A.; Hurkat, P.; Shilpi, S.; Gulbake, A.; Jain, S.K. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-fluorouracil. Materials (Basel), 2015, 8(3), 832-849.
[http://dx.doi.org/10.3390/ma8030832 ] [PMID: 28787974]
[109]
(a)Bardania, H.; Tarvirdipour, S.; Dorkoosh, F. Liposome-targeted delivery for highly potent drugs. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1478-1489.
[http://dx.doi.org/10.1080/21691401.2017.1290647] [PMID: 28278584]
(b)Jain, A.; Jain, S.K. Application potential of engineered liposomes in tumor targeting. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Grumezescu, A., Ed.; Elsevier - Health Sciences Division, 2017, pp. 171-192.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00009-5]
(c)Ummarino, D.; Miele, E.; Martinelli, M.; Scarpato, E.; Crocetto, F.; Sciorio, E.; Staiano, A. Effect of magnesium alginate plus simethicone on gastroesophageal reflux in infants. J. Pediatr. Gastroenterol. Nutr., 2015, 60(2), 230-235.
[http://dx.doi.org/10.1097/MPG.0000000000000521 ] [PMID: 25079477]
[110]
(a)Guimarães, D.; Noro, J.; Loureiro, A.; Cavaco-Paulo, A.; Nogueira, E. Quantification of drugs encapsulated in liposomes by 1H NMR. Colloids Surf. B Biointerfaces, 2019, 179, 414-420.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.039] [PMID: 30999120]
(b)Jain, A.J.; Sanjay, K. Liposomes in cancer therapy. Nanocarrier Systems for Drug Deliv; Carlos, J., Ed.; Nova Science Publishers: New York, 2016, pp. 1-42.
[111]
Jain, A.; Tiwari, A.; Verma, A.; Saraf, S.; Jain, S. Combination cancer therapy using multifunctional liposomes. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(2), 105-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2019026358]
[112]
(a)Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Panda, P.K.; Jain, S.K. Advances in liposomal drug delivery to cancer: an overview. J. Drug Deliv. Sci. Technol., 2020, 56, 101549.
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
(b)Jain, A.; Jain, S.K. Advances in tumor targeted liposomes. Curr. Mol. Med., 2018, 18(1), 44-57.
[http://dx.doi.org/10.2174/1566524018666180416101522 ] [PMID: 29663884]
[113]
(a)Bi, H.; Xue, J.; Jiang, H.; Gao, S.; Yang, D.; Fang, Y.; Shi, K. Current developments in drug delivery with thermosensitive liposomes. Asian J. Pharmaceut. Sci., 2019, 14(4), 365-379.
(b)Jain, A.; Hurkat, P.; Jain, S. K. J. C.; Lipids, P. O. Development of liposomes using formulation by design: basics to recent advances. Chem. Phy. Lipids, 2019, 224, 104764.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.03.017]
(c)Martín, M.J.; Calpena, A.C.; Fernández, F.; Mallandrich, M.; Gálvez, P.; Clares, B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym., 2015, 117, 140-149.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.032] [PMID: 25498619]
(d)Jain, A.; Jain, S.K. Brain targeting using surface functionalized nanocarriers in human solid tumors. In Drug Nanocarriers, Series Nanobiomedicine; B., Singh.; N.K., Jain.; O.P, Katare., Eds.; Studium Press, Houston LLC, USA,, 2014, pp. 1-62699-050-6203-255.
[114]
Draget, K.I. Alginates: fundamental properties and food applications. Prog. Polym. Sci., 2016. [Epub ahead of print].
[115]
Khatami, M.; Alijani, H.Q.; Sharifi, I. Biosynthesis of bimetallic and core-shell nanoparticles: their biomedical applications-a review. IET Nanobiotechnol., 2018, 12(7), 879-887.
[http://dx.doi.org/10.1049/iet-nbt.2017.0308]
[116]
(a)Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol., 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
(b)Jain, A.; Kumari, R.; Tiwari, A.; Verma, A.; Tripathi, A.; Shrivastava, A.; Jain, S.K. Nanocarrier based advances in drug delivery to tumor: an overview. Curr. Drug Targets, 2018, 19(13), 1498-1518.
[http://dx.doi.org/10.2174/1389450119666180131105822 ] [PMID: 29384060]
[117]
Tiwari, A.; Jain, A.; Verma, A.; Panda, P.; Jain, S.K. Alginate based composites in drug delivery application. ALGINATES Versatile Polymers in Biomedical Applications and Therapeutics; Apple Academic Press, 2019, Vol. 1, pp. 457-482.
[http://dx.doi.org/10.1201/9780429023439-15]
(b)Silva, K.M.M.N.; de Carvalho, D.É.L.; Valente, V.M.M.; Campos Rubio, J.C.; Faria, P.E.; Silva-Caldeira, P.P. Concomitant and controlled release of furazolidone and bismuth(III) incorporated in a cross-linked sodium alginate-carboxymethyl cellulose hydrogel. Int. J. Biol. Macromol., 2019, 126, 359-366.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.136] [PMID: 30572056]
[118]
Bera, H.; Kandukuri, S.G.; Nayak, A.K.; Boddupalli, S. Alginate-sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery. Carbohydr. Polym., 2015, 120, 74-84.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.009 ] [PMID: 25662690]
[119]
Yu, J.; Wang, J.; Jiang, Y. Removal of uranium from aqueous solution by alginate beads. Nucl. Eng. Technol., 2017, 49(3), 534-540.
[http://dx.doi.org/10.1016/j.net.2016.09.004]
[120]
Sankalia, M.G.; Mashru, R.C.; Sankalia, J.M.; Sutariya, V.B. Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling. AAPS PharmSciTech, 2005, 6(2), E209-E222.
[http://dx.doi.org/10.1208/pt060231 ] [PMID: 16353980]
[121]
Adebisi, A.O.; Laity, P.R.; Conway, B.R. Formulation and evaluation of floating mucoadhesive alginate beads for targeting Helicobacter pylori. J. Pharm. Pharmacol., 2015, 67(4), 511-524.
[http://dx.doi.org/10.1111/jphp.12345 ] [PMID: 25496042]
[122]
Celli, G.B.; Ghanem, A.; Brooks, M.S. Development and evaluation of floating alginate microspheres for oral delivery of anthocyanins - A preliminary investigation. Food Sci. Nutr., 2016, 5(3), 713-721.
[http://dx.doi.org/10.1002/fsn3.451 ] [PMID: 28572961]
[123]
Biswas, N.; Sahoo, R.K. Tapioca starch blended alginate mucoadhesive-floating beads for intragastric delivery of metoprolol tartrate. Int. J. Biol. Macromol., 2016, 83, 61-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.039 ] [PMID: 26592698]
[124]
Judeh, Z. Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery. J. Drug Deliv. Sci. Technol., 2019, 52, 27-36.
[http://dx.doi.org/10.1016/j.jddst.2019.04.020]
[125]
Ganesh, M.; Jeon, U.J.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Peng, M.M.; Jang, H.T. Chitosan cocrystals embedded alginate beads for enhancing the solubility and bioavailability of aceclofenac. Int. J. Biol. Macromol., 2015, 74, 310-317.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.038 ] [PMID: 25557368]
[126]
Guan, J.; Liu, Q.; Liu, J.; Cui, Z.; Zhang, X.; Mao, S. Elucidation of alginate-drug miscibility on its crystal growth inhibition effect in supersaturated drug delivery system. Carbohydr. Polym., 2020, 230, 115601.
[http://dx.doi.org/10.1016/j.carbpol.2019.115601 ] [PMID: 31887891]
[127]
Saraf, S.; Jain, A.; Hurkat, P.; Jain, S.K. Topotecan liposomes: a visit from a molecular to a therapeutic platform. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(5), 401-432.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015926 ] [PMID: 27910741]
[128]
Jain, A.; Bansal, K.K.; Tiwari, A.; Rosling, A.; Rosenholm, J.M. Role of polymers in 3D printing technology for drug delivery - An Overview. Curr. Pharm. Des., 2018, 24(42), 4979-4990.
[http://dx.doi.org/10.2174/1381612825666181226160040 ] [PMID: 30585543]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy