Mini-Review Article

Vaginitis: Review on Drug Resistance

Author(s): Graziela Vargas Rigo and Tiana Tasca*

Volume 21, Issue 16, 2020

Page: [1672 - 1686] Pages: 15

DOI: 10.2174/1389450121666200804112340

Price: $65

Abstract

Female genital tract infections have a high incidence among different age groups and represent an important impact on public health. Among them, vaginitis refers to inflammation of the vulva and/or vagina due to the presence of pathogens that cause trichomoniasis, bacterial vaginosis, and vulvovaginal candidiasis. Several discomforts are associated with these infections, as well as pregnancy complications and the facilitation of HIV transmission and acquisition. The increasing resistance of microorganisms to drugs used in therapy is remarkable, since women report the recurrence of these infections and associated comorbidities. Different resistant mechanisms already described for the drugs used in the therapy against Trichomonas vaginalis, Candida spp., and Gardnerella vaginalis, as well as aspects related to pathogenesis and treatment, are discussed in this review. This study aims to contribute to drug design, avoiding therapy ineffectiveness due to drug resistance. Effective alternative therapies to treat vaginitis will reduce the recurrence of infections and, consequently, the high costs generated in the health system, improving women’s well-being.

Keywords: Vaginitis, drug target, resistance, Trichomonas vaginalis, Gardnerella vaginalis, Candida spp.

Graphical Abstract
[1]
Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob 2020; 19(1): 5.
[http://dx.doi.org/10.1186/s12941-020-0347-4] [PMID: 31992328]
[2]
Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS 2008; 22(12): 1493-501.
[http://dx.doi.org/10.1097/QAD.0b013e3283021a37] [PMID: 18614873]
[3]
Hainer BL, Gibson MV. Vaginitis. Am Fam Physician 2011; 83(7): 807-15.
[PMID: 21524046]
[4]
Workowski KA, Bolan GA. Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 2015; 64(RR-03): 1-137.
[PMID: 26042815]
[5]
Goje O, Munoz JL. Vulvovaginitis: Find the cause to treat it. Cleve Clin J Med 2017; 84(3): 215-24.
[http://dx.doi.org/10.3949/ccjm.84a.15163] [PMID: 28322677]
[6]
Kulda J. Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol 1999; 29(2): 199-212.
[http://dx.doi.org/10.1016/S0020-7519(98)00155-6] [PMID: 10221623]
[7]
Robinson SC. Trichomonal Vaginitis Resistant to Metranidazole. Can Med Assoc J 1962; 86(14): 665.
[PMID: 20327097]
[8]
Schwebke JR, Barrientes FJ. Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother 2006; 50(12): 4209-10.
[http://dx.doi.org/10.1128/AAC.00814-06] [PMID: 17000740]
[9]
Rowley J, Vander Hoorn S, Korenromp E, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ 2019; 97(8): 548-562P.
[http://dx.doi.org/10.2471/BLT.18.228486] [PMID: 31384073]
[10]
Leitsch D, Janssen BD, Kolarich D, Johnson PJ, Duchêne M. Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance. Mol Microbiol 2014; 91(1): 198-208.
[http://dx.doi.org/10.1111/mmi.12455] [PMID: 24256032]
[11]
Kulda J, Tachezy J, Cerkasovová A. In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. J Eukaryot Microbiol 1993; 40(3): 262-9.
[http://dx.doi.org/10.1111/j.1550-7408.1993.tb04915.x] [PMID: 8508165]
[12]
Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F, Duchêne M. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Mol Microbiol 2009; 72(2): 518-36.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06675.x] [PMID: 19415801]
[13]
Yarlett N, Yarlett NC, Lloyd D. Ferredoxin-dependent reduction of nitroimidazole derivatives in drug-resistant and susceptible strains of Trichomonas vaginalis. Biochem Pharmacol 1986; 35(10): 1703-8. [a]
[http://dx.doi.org/10.1016/0006-2952(86)90327-8] [PMID: 3486660]
[14]
Ellis JE, Cole D, Lloyd D. Influence of oxygen on the fermentative metabolism of metronidazole-sensitive and resistant strains of Trichomonas vaginalis. Mol Biochem Parasitol 1992; 56(1): 79-88.
[http://dx.doi.org/10.1016/0166-6851(92)90156-E] [PMID: 1475004]
[15]
Quon DV, d’Oliveira CE, Johnson PJ. Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc Natl Acad Sci USA 1992; 89(10): 4402-6.
[http://dx.doi.org/10.1073/pnas.89.10.4402] [PMID: 1374901]
[16]
Heidari S, Bandehpour M, Seyyed-Tabaei SJ, et al. Ferredoxin gene mutation in iranian trichomonas vaginalis isolates. Iran J Parasitol 2013; 8(3): 402-7.
[PMID: 24454433]
[17]
Land KM, Delgadillo MG, Johnson PJ. In vivo expression of ferredoxin in a drug resistant trichomonad increases metronidazole susceptibility. Mol Biochem Parasitol 2002; 121(1): 153-7.
[http://dx.doi.org/10.1016/S0166-6851(02)00025-7] [PMID: 11985873]
[18]
Land KM, Delgadillo-Correa MG, Tachezy J, et al. Targeted gene replacement of a ferredoxin gene in Trichomonas vaginalis does not lead to metronidazole resistance. Mol Microbiol 2004; 51(1): 115-22.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03791.x] [PMID: 14651615]
[19]
Müller M, Gorrell TE. Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrob Agents Chemother 1983; 24(5): 667-73.
[http://dx.doi.org/10.1128/AAC.24.5.667] [PMID: 6607028]
[20]
Yarlett N, Yarlett NC, Lloyd D. Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Mol Biochem Parasitol 1986; 19(2): 111-6. [b]
[http://dx.doi.org/10.1016/0166-6851(86)90115-5] [PMID: 3487729]
[21]
Leitsch D, Kolarich D, Duchêne M. The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways. Mol Biochem Parasitol 2010; 171(1): 17-24.
[http://dx.doi.org/10.1016/j.molbiopara.2010.01.001] [PMID: 20093143]
[22]
Leitsch D, Drinić M, Kolarich D, Duchêne M. Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichomonas vaginalis. Mol Biochem Parasitol 2012; 183(2): 177-83.
[http://dx.doi.org/10.1016/j.molbiopara.2012.03.003] [PMID: 22449940]
[23]
Argáez-Correa W, Alvarez-Sánchez ME, Arana-Argáez VE, et al. The Role of Iron Status in the Early Progression of Metronidazole Resistance in Trichomonas vaginalis Under Microaerophilic Conditions. J Eukaryot Microbiol 2019; 66(2): 309-15.
[http://dx.doi.org/10.1111/jeu.12671] [PMID: 30047563]
[24]
Fernández-Martín KG, Alvarez-Sánchez ME, Arana-Argáez VE, Alvarez-Sánchez LC, Lara-Riegos JC, Torres-Romero JC. Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to Zinc and Iron. Biometals 2017; 30(5): 663-75.
[http://dx.doi.org/10.1007/s10534-017-0034-x] [PMID: 28733845]
[25]
Xiao JC, Xie LF, Fang SL, et al. Symbiosis of Mycoplasma hominis in Trichomonas vaginalis may link metronidazole resistance in vitro. Parasitol Res 2006; 100(1): 123-30.
[http://dx.doi.org/10.1007/s00436-006-0215-y] [PMID: 16847608]
[26]
Fürnkranz U, Henrich B, Walochnik J. Mycoplasma hominis impacts gene expression in Trichomonas vaginalis. Parasitol Res 2018; 117(3): 841-7.
[http://dx.doi.org/10.1007/s00436-018-5761-6] [PMID: 29368037]
[27]
Butler SE, Augostini P, Secor WE. Mycoplasma hominis infection of Trichomonas vaginalis is not associated with metronidazole-resistant trichomoniasis in clinical isolates from the United States. Parasitol Res 2010; 107(4): 1023-7.
[http://dx.doi.org/10.1007/s00436-010-1975-y] [PMID: 20652315]
[28]
da Luz Becker D, dos Santos O, Frasson AP, de Vargas Rigo G, Macedo AJ, Tasca T. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect Genet Evol 2015; 34: 181-7.
[http://dx.doi.org/10.1016/j.meegid.2015.07.005] [PMID: 26160539]
[29]
Goodman RP, Ghabrial SA, Fichorova RN, Nibert ML. Trichomonasvirus: a new genus of protozoan viruses in the family Totiviridae. Arch Virol 2011; 156(1): 171-9.
[http://dx.doi.org/10.1007/s00705-010-0832-8] [PMID: 20976609]
[30]
Fichorova R, Fraga J, Rappelli P, Fiori PL. Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res Microbiol 2017; 168(9-10): 882-91.
[http://dx.doi.org/10.1016/j.resmic.2017.03.005] [PMID: 28366838]
[31]
Snipes LJ, Gamard PM, Narcisi EM, Beard CB, Lehmann T, Secor WE. Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J Clin Microbiol 2000; 38(8): 3004-9.
[http://dx.doi.org/10.1128/JCM.38.8.3004-3009.2000] [PMID: 10921968]
[32]
Malla N, Kaul P, Sehgal R, Gupta I. The presence of dsRNA virus in Trichomonas vaginalis isolates from symptomatic and asymptomatic Indian women and its correlation with in vitro metronidazole sensitivity. Indian J Med Microbiol 2011; 29(2): 152-7.
[http://dx.doi.org/10.4103/0255-0857.81801] [PMID: 21654110]
[33]
Flegr J, Čerkasov J, Kulda J, Tachezy J, Stokrová J. The dsRNA of Trichomonas vaginalis is associated with virus-like particles and does not correlate with metronidazole resistance. Folia Microbiol (Praha) 1987; 32(4): 345-8.
[http://dx.doi.org/10.1007/BF02877224] [PMID: 3499366]
[34]
Graves KJ, Ghosh AP, Schmidt N, et al. Trichomonas vaginalis virus (TVV) among women with trichomoniasis and associations with demographics, clinical outcomes, and metronidazole resistance. Clin Infect Dis 2019; 69(12): 2170-6.
[http://dx.doi.org/10.1093/cid/ciz146] [PMID: 30768180]
[35]
Abdel-Magied AA, El-Kholya EI, Abou El-Khair SM, et al. The genetic diversity of metronidazole susceptibility in Trichomonas vaginalis clinical isolates in an Egyptian population. Parasitol Res 2017; 116(11): 3125-30.
[http://dx.doi.org/10.1007/s00436-017-5627-3] [PMID: 28956167]
[36]
Kazemi F, Hooshyar H, Zareikar B, et al. Study on ITS1 Gene of Iranian Trichomonas vaginalis by Molecular Methods. Iran J Parasitol 2010; 5(4): 9-14.
[PMID: 22347260]
[37]
Paulish-Miller TE, Augostini P, Schuyler JA, et al. Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the nitroreductase genes ntr4Tv and ntr6Tv. Antimicrob Agents Chemother 2014; 58(5): 2938-43.
[http://dx.doi.org/10.1128/AAC.02370-13] [PMID: 24550324]
[38]
Bradic M, Warring SD, Tooley GE, et al. Genetic indicators of drug resistance in the highly repetitive genome of trichomonas vaginalis. Genome Biol Evol 2017; 9(6): 1658-72.
[http://dx.doi.org/10.1093/gbe/evx110] [PMID: 28633446]
[39]
Löfmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 2010; 50(Suppl. 1): S16-23.
[http://dx.doi.org/10.1086/647939] [PMID: 20067388]
[40]
Beigi RH, Austin MN, Meyn LA, Krohn MA, Hillier SL. Antimicrobial resistance associated with the treatment of bacterial vaginosis. Am J Obstet Gynecol 2004; 191(4): 1124-9.
[http://dx.doi.org/10.1016/j.ajog.2004.05.033] [PMID: 15507930]
[41]
Schuyler JA, Chadwick SG, Mordechai E, Adelson ME, Gygax SE, Hilbert DW. Draft genome sequence of a metronidazole-resistant gardnerella vaginalis isolate. Genome Announc 2015; 3(5): e00992-15.
[http://dx.doi.org/10.1128/genomeA.00992-15] [PMID: 26337887]
[42]
Castro J, Alves P, Sousa C, et al. Using an in-vitro biofilm model to assess the virulence potential of bacterial vaginosis or non-bacterial vaginosis Gardnerella vaginalis isolates. Sci Rep 2015; 5: 11640.
[http://dx.doi.org/10.1038/srep11640] [PMID: 26113465]
[43]
Knupp de Souza DM, Diniz CG, Filho DS, et al. Antimicrobial susceptibility and vaginolysin in Gardnerella vaginalis from healthy and bacterial vaginosis diagnosed women. J Infect Dev Ctries 2016; 10(9): 913-9.
[http://dx.doi.org/10.3855/jidc.7161] [PMID: 27694723]
[44]
Cornejo OE, Hickey RJ, Suzuki H, Forney LJ. Focusing the diversity of Gardnerella vaginalis through the lens of ecotypes. Evol Appl 2017; 11(3): 312-24.
[http://dx.doi.org/10.1111/eva.12555] [PMID: 29632552]
[45]
Swidsinski A, Mendling W, Loening-Baucke V, et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol 2005; 106(5 Pt 1): 1013-23.
[http://dx.doi.org/10.1097/01.AOG.0000183594.45524.d2] [PMID: 16260520]
[46]
Swidsinski A, Mendling W, Loening-Baucke V, et al. An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol 2008; 198(1): 97.e1-6.
[http://dx.doi.org/10.1016/j.ajog.2007.06.039] [PMID: 18005928]
[47]
Muzny CA, Schwebke JR. Biofilms: an underappreciated mechanism of treatment failure and recurrence in vaginal infections. Clin Infect Dis 2015; 61(4): 601-6.
[http://dx.doi.org/10.1093/cid/civ353] [PMID: 25935553]
[48]
Castro J, França A, Bradwell KR, Serrano MG, Jefferson KK, Cerca N. Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq. NPJ Biofilms Microbiomes 2017; 3: 3.
[http://dx.doi.org/10.1038/s41522-017-0012-7] [PMID: 28649404]
[49]
Harwich MDJ Jr, Alves JM, Buck GA, et al. Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies. BMC Genomics 2010; 11: 375.
[http://dx.doi.org/10.1186/1471-2164-11-375] [PMID: 20540756]
[50]
Nurizzo D, Shewry SC, Perlin MH, et al. The crystal structure of aminoglycoside-3′-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. J Mol Biol 2003; 327(2): 491-506.
[http://dx.doi.org/10.1016/S0022-2836(03)00121-9] [PMID: 12628253]
[51]
Roberts MC, Hillier SL, Hale J, Holmes KK, Kenny GE. Tetracycline resistance and tetM in pathogenic urogenital bacteria. Antimicrob Agents Chemother 1986; 30(5): 810-2.
[http://dx.doi.org/10.1128/AAC.30.5.810] [PMID: 3800360]
[52]
Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol 2009; 10(3): 218-27.
[http://dx.doi.org/10.1038/nrm2646] [PMID: 19234479]
[53]
Lage H. ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents 2003; 22(3): 188-99.
[http://dx.doi.org/10.1016/S0924-8579(03)00203-6] [PMID: 13678820]
[54]
Marín E, Haesaert A, Padilla L, et al. Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics. Front Microbiol 2018; 9: 975.
[http://dx.doi.org/10.3389/fmicb.2018.00975] [PMID: 29867878]
[55]
Yeoman CJ, Yildirim S, Thomas SM, et al. Comparative genomics of Gardnerella vaginalis strains reveals substantial differences in metabolic and virulence potential. PLoS One 2010; 5(8)e12411
[http://dx.doi.org/10.1371/journal.pone.0012411] [PMID: 20865041]
[56]
Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 2006; 30(5): 673-91.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00024.x] [PMID: 16911039]
[57]
Ahmed A, Earl J, Retchless A, et al. Comparative genomic analyses of 17 clinical isolates of Gardnerella vaginalis provide evidence of multiple genetically isolated clades consistent with subspeciation into genovars. J Bacteriol 2012; 194(15): 3922-37.
[http://dx.doi.org/10.1128/JB.00056-12] [PMID: 22609915]
[58]
Schuyler JA, Mordechai E, Adelson ME, Sobel JD, Gygax SE, Hilbert DW. Identification of intrinsically metronidazole-resistant clades of Gardnerella vaginalis. Diagn Microbiol Infect Dis 2016; 84(1): 1-3.
[http://dx.doi.org/10.1016/j.diagmicrobio.2015.10.006] [PMID: 26514076]
[59]
Alfouzan W, Dhar R, Ashkanani H, Gupta M, Rachel C, Khan ZU. Species spectrum and antifungal susceptibility profile of vaginal isolates of Candida in Kuwait. J Mycol Med 2015; 25(1): 23-8.
[http://dx.doi.org/10.1016/j.mycmed.2014.10.021] [PMID: 25534676]
[60]
Bitew A, Abebaw Y. Vulvovaginal candidiasis: species distribution of Candida and their antifungal susceptibility pattern. BMC Womens Health 2018; 18(1): 94.
[http://dx.doi.org/10.1186/s12905-018-0607-z] [PMID: 29902998]
[61]
Boatto HF, Cavalcanti SD, Del Negro GM, et al. Candida duobushaemulonii: an emerging rare pathogenic yeast isolated from recurrent vulvovaginal candidiasis in Brazil. Mem Inst Oswaldo Cruz 2016; 111(6): 407-10.
[http://dx.doi.org/10.1590/0074-02760160166] [PMID: 27304096]
[62]
de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, et al. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 2018; 9: 1351.
[http://dx.doi.org/10.3389/fmicb.2018.01351] [PMID: 30018595]
[63]
Dalazen D, Zanrosso D, Wanderley L, et al. Comparação do perfil de suscetibilidade entre isolados clínicos de Candida spp. orais e vulvovaginais no Sul do Brasil. J Bras Patol Med Lab 2011; 47(1): 33-8.
[http://dx.doi.org/10.1590/S1676-24442011000100004]
[64]
Zhang JY, Liu JH, Liu FD, et al. Vulvovaginal candidiasis: species distribution, fluconazole resistance and drug efflux pump gene overexpression. Mycoses 2014; 57(10): 584-91.
[http://dx.doi.org/10.1111/myc.12204] [PMID: 24962255]
[65]
Brandolt TM, Klafke GB, Gonçalves CV, et al. Prevalence of Candida spp. in cervical-vaginal samples and the in vitro susceptibility of isolates. Braz J Microbiol 2017; 48(1): 145-50.
[http://dx.doi.org/10.1016/j.bjm.2016.09.006] [PMID: 27756539]
[66]
Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 2020; 75(2): 257-70.
[PMID: 31603213]
[67]
Harriott MM, Lilly EA, Rodriguez TE, Fidel PL, Noverr MC. Candida albicans forms biofilms on the vaginal mucosa. Microbiology 2010; 156(Pt 12): 3635-44.
[http://dx.doi.org/10.1099/mic.0.039354-0] [PMID: 20705667]
[68]
Nakamura-Vasconcelos SS, Fiorini A, Zanni PD, et al. Emergence of Candida glabrata in vulvovaginal candidiasis should be attributed to selective pressure or virulence ability? Arch Gynecol Obstet 2017; 296(3): 519-26.
[http://dx.doi.org/10.1007/s00404-017-4465-y] [PMID: 28730269]
[69]
Sherry L, Kean R, McKloud E, et al. Biofilms formed by isolates from recurrent vulvovaginal candidiasis patients are heterogeneous and insensitive to fluconazole. Antimicrob Agents Chemother 2017; 61(9): e01065-17.
[http://dx.doi.org/10.1128/AAC.01065-17] [PMID: 28696240]
[70]
Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, et al. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces 2019; 174: 110-25.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.011] [PMID: 30447520]
[71]
Roudbarmohammadi S, Roudbary M, Bakhshi B, Katiraee F, Mohammadi R, Falahati M. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv Biomed Res 2016; 5: 105.
[http://dx.doi.org/10.4103/2277-9175.183666] [PMID: 27376044]
[72]
Cheng G, Wozniak K, Wallig MA, Fidel PL Jr, Trupin SR, Hoyer LL. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 2005; 73(3): 1656-63.
[http://dx.doi.org/10.1128/IAI.73.3.1656-1663.2005] [PMID: 15731066]
[73]
Monroy-Pérez E, Paniagua-Contreras GL, Rodríguez-Purata P, et al. High virulence and antifungal resistance in clinical strains of candida albicans. Can J Infect Dis Med Microbiol 2016.20165930489
[http://dx.doi.org/10.1155/2016/5930489] [PMID: 28058052]
[74]
Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit Rev Microbiol 2016; 42(6): 905-27.
[http://dx.doi.org/10.3109/1040841X.2015.1091805] [PMID: 26690853]
[75]
Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 2009; 22(2): 291-321.
[http://dx.doi.org/10.1128/CMR.00051-08] [PMID: 19366916]
[76]
Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance. Front Pharmacol 2014; 5: 202.
[http://dx.doi.org/10.3389/fphar.2014.00202] [PMID: 25221515]
[77]
Kohli A, Gupta V, Krishnamurthy S, Hasnain SE, Prasad R. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans. J Biosci 2001; 26(3): 333-9.
[http://dx.doi.org/10.1007/BF02703742] [PMID: 11568478]
[78]
Khosravi Rad K, Falahati M, Roudbary M, Farahyar S, Nami S. Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis. Curr Med Mycol 2016; 2(4): 24-9.
[http://dx.doi.org/10.18869/acadpub.cmm.2.4.24] [PMID: 28959792]
[79]
Feng W, Yang J, Yang L, et al. Research of Mrr1, Cap1 and MDR1 in Candida albicans resistant to azole medications. Exp Ther Med 2018; 15(2): 1217-24.
[PMID: 29434708]
[80]
Bhattacharya S, Sobel JD, White TC. A combination fluorescence assay demonstrates increased efflux pump activity as a resistance mechanism in azole-resistant vaginal candida albicans isolates. Antimicrob Agents Chemother 2016; 60(10): 5858-66.
[http://dx.doi.org/10.1128/AAC.01252-16] [PMID: 27431223]
[81]
Cernicka J, Subik J. Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis. Int J Antimicrob Agents 2006; 27(5): 403-8.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.12.005] [PMID: 16621465]
[82]
Ribeiro MA, Paula CR, John R, Perfect JR, Cox GM. Phenotypic and genotypic evaluation of fluconazole resistance in vaginal Candida strains isolated from HIV-infected women from Brazil. Med Mycol 2005; 43(7): 647-50.
[http://dx.doi.org/10.1080/13693780500093838] [PMID: 16396250]
[83]
Kelly SL, Arnoldi A, Kelly DE. Molecular genetic analysis of azole antifungal mode of action. Biochem Soc Trans 1993; 21(4): 1034-8.
[http://dx.doi.org/10.1042/bst0211034] [PMID: 8131893]
[84]
Franz R, Kelly SL, Lamb DC, Kelly DE, Ruhnke M, Morschhäuser J. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 1998; 42(12): 3065-72.
[http://dx.doi.org/10.1128/AAC.42.12.3065] [PMID: 9835492]
[85]
Morschhäuser J. The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 2002; 1587(2-3): 240-8.
[http://dx.doi.org/10.1016/S0925-4439(02)00087-X] [PMID: 12084466]
[86]
Wu Y, Li C, Wang Z, et al. Clonal spread and azole-resistant mechanisms of non-susceptible Candida albicans isolates from vulvovaginal candidiasis patients in three Shanghai maternity hospitals. Med Mycol 2018; 56(6): 687-94.
[http://dx.doi.org/10.1093/mmy/myx099] [PMID: 29136186]
[87]
Ge SH, Wan Z, Li J, Xu J, Li RY, Bai FY. Correlation between azole susceptibilities, genotypes, and ERG11 mutations in Candida albicans isolates associated with vulvovaginal candidiasis in China. Antimicrob Agents Chemother 2010; 54(8): 3126-31.
[http://dx.doi.org/10.1128/AAC.00118-10] [PMID: 20516286]
[88]
Antonopoulou S, Aoun M, Alexopoulos EC, et al. Fenticonazole activity measured by the methods of the european committee on antimicrobial susceptibility testing and clsi against 260 candida vulvovaginitis isolates from two european regions and annotations on the prevalent genotypes. Antimicrob Agents Chemother 2009; 53(5): 2181-4.
[http://dx.doi.org/10.1128/AAC.01413-08] [PMID: 19223627]
[89]
Güzel AB, Döğen A, Aydın M, et al. Genotyping reveals no link between Candida albicans genotype and vaginitis severity in Turkish women. Mycopathologia 2013; 175(3-4): 287-94.
[http://dx.doi.org/10.1007/s11046-013-9643-2] [PMID: 23546773]
[90]
Guido RVC, Andricopulo AD, Oliva G. Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estud Av 2010; 24(70): 81-98.
[http://dx.doi.org/10.1590/S0103-40142010000300006]
[91]
Nyirjesy P, Gilbert J, Mulcahy LJ. Resistant trichomoniasis: successful treatment with combination therapy. Sex Transm Dis 2011; 38(10): 962-3.
[http://dx.doi.org/10.1097/OLQ.0b013e31822037e4] [PMID: 21934573]
[92]
Anthwal A, Rajesh UC, Rawat MS, et al. Novel metronidazole-chalcone conjugates with potential to counter drug resistance in Trichomonas vaginalis. Eur J Med Chem 2014; 79: 89-94.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.076] [PMID: 24727243]
[93]
Ghosh AP, Aycock C, Schwebke JR. In vitro study of the susceptibility of clinical isolates of trichomonas vaginalis to metronidazole and secnidazole. Antimicrob Agents Chemother 2018; 62(4): e02329-17.
[http://dx.doi.org/10.1128/AAC.02329-17] [PMID: 29439963]
[94]
Fürnkranz U, Nagl M, Gottardi W, Duchêne M, Aspöck H, Walochnik J. In vitro activity of N-chlorotaurine (NCT) in combination with NH4Cl against Trichomonas vaginalis. Int J Antimicrob Agents 2011; 37(2): 171-3.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.09.006] [PMID: 21074373]
[95]
Korosh T, Bujans E, Morada M, et al. Potential of bisbenzimidazole-analogs toward metronidazole-resistant Trichomonas vaginalis isolates. Chem Biol Drug Des 2017; 90(4): 489-95.
[http://dx.doi.org/10.1111/cbdd.12972] [PMID: 28296056]
[96]
Katiyar SK, Gordon VR, McLaughlin GL, Edlind TD. Antiprotozoal activities of benzimidazoles and correlations with beta-tubulin sequence. Antimicrob Agents Chemother 1994; 38(9): 2086-90.
[http://dx.doi.org/10.1128/AAC.38.9.2086] [PMID: 7811023]
[97]
Chacon MO, Fonseca THS, Oliveira SBV, et al. Chlorinated metronidazole as a promising alternative for treating trichomoniasis. Parasitol Res 2018; 117(5): 1333-40.
[http://dx.doi.org/10.1007/s00436-018-5813-y] [PMID: 29502297]
[98]
Jain A, Lal N, Kumar L, et al. Novel trichomonacidal spermicides. Antimicrob Agents Chemother 2011; 55(9): 4343-51.
[http://dx.doi.org/10.1128/AAC.00199-11] [PMID: 21709091]
[99]
Kumar L, Jain A, Lal N, et al. Potentiating metronidazole scaffold against resistant trichomonas: design, synthesis, biology and 3d-qsar analysis. ACS Med Chem Lett 2011; 3(2): 83-7. [b]
[http://dx.doi.org/10.1021/ml200161t] [PMID: 24900434]
[100]
Ibrahim AN. Comparison of in vitro activity of metronidazole and garlic-based product (Tomex®) on Trichomonas vaginalis. Parasitol Res 2013; 112(5): 2063-7.
[http://dx.doi.org/10.1007/s00436-013-3367-6] [PMID: 23455944]
[101]
Lal N, Jangir S, Bala V, et al. Role of disulfide linkage in action of bis(dialkylaminethiocarbonyl)disulfides as potent double-Edged microbicidal spermicide: Design, synthesis and biology. Eur J Med Chem 2016; 115: 275-90.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.012] [PMID: 27084496]
[102]
Rocha TD, de Brum Vieira P, Gnoatto SC, Tasca T, Gosmann G. Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitol Res 2012; 110(6): 2551-6.
[http://dx.doi.org/10.1007/s00436-011-2798-1] [PMID: 22218924]
[103]
Cargnin ST, Vieira Pde B, Cibulski S, et al. Anti-Trichomonas vaginalis activity of Hypericum polyanthemum extract obtained by supercritical fluid extraction and isolated compounds. Parasitol Int 2013; 62(2): 112-7.
[http://dx.doi.org/10.1016/j.parint.2012.10.006] [PMID: 23142570]
[104]
Innocente AM, Vieira Pde B, Frasson AP, et al. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitol Res 2014; 113(8): 2933-40.
[http://dx.doi.org/10.1007/s00436-014-3955-0] [PMID: 24880238]
[105]
Mahmoud MAEA, Aminou HA, Hashem HA. Are the fatty acids responsible for the higher effect of oil and alcoholic extract of Nigella sativa over its aqueous extract on Trichomonas vaginalis trophozoites? J Parasit Dis 2016; 40(1): 22-31.
[http://dx.doi.org/10.1007/s12639-014-0479-6] [PMID: 27065592]
[106]
Dai M, Peng C, Peng F, Xie C, Wang P, Sun F. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol. Pharm Biol 2016; 54(3): 445-50.
[http://dx.doi.org/10.3109/13880209.2015.1044617] [PMID: 25963227]
[107]
de Brum Vieira P, Silva NLF, Menezes CB, et al. Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula. PLoS One 2017; 12(11)e0188531
[http://dx.doi.org/10.1371/journal.pone.0188531] [PMID: 29190689]
[108]
Stringer T, Taylor D, Guzgay H, et al. Polyamine quinoline rhodium complexes: synthesis and pharmacological evaluation as antiparasitic agents against Plasmodium falciparum and Trichomonas vaginalis. Dalton Trans 2015; 44(33): 14906-17.
[http://dx.doi.org/10.1039/C5DT02378E] [PMID: 26226082]
[109]
Vilela R, Menna-Barreto RF, Benchimol M. Methyl jasmonate induces cell death and loss of hydrogenosomal membrane potential in Trichomonas vaginalis. Parasitol Int 2010; 59(3): 387-93.
[http://dx.doi.org/10.1016/j.parint.2010.05.003] [PMID: 20483382]
[110]
Mallo N, Lamas J, Leiro JM. Hydrogenosome metabolism is the key target for antiparasitic activity of resveratrol against Trichomonas vaginalis. Antimicrob Agents Chemother 2013; 57(6): 2476-84.
[http://dx.doi.org/10.1128/AAC.00009-13] [PMID: 23478970]
[111]
Giordani RB, Vieira Pde B, Weizenmann M, et al. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry 2011; 72(7): 645-50.
[http://dx.doi.org/10.1016/j.phytochem.2011.01.023] [PMID: 21324496]
[112]
Menezes CB, Rigo GV, Bridi H, et al. The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem Biol Drug Des 2017; 90(5): 811-9.
[http://dx.doi.org/10.1111/cbdd.13002] [PMID: 28390095]
[113]
Alam R, Barbarovich AT, Caravan W, et al. Druggability of the guanosine/adenosine/cytidine nucleoside hydrolase from Trichomonas vaginalis. Chem Biol Drug Des 2018; 92(4): 1736-42.
[http://dx.doi.org/10.1111/cbdd.13341] [PMID: 29808562]
[114]
Giordani RB, De Almeida MV, Fernandes E, et al. Anti-Trichomonas vaginalis activity of synthetic lipophilic diamine and amino alcohol derivatives. Biomed Pharmacother 2009; 63(8): 613-7.
[http://dx.doi.org/10.1016/j.biopha.2008.10.002] [PMID: 19013752]
[115]
Rigo GV, Trein MR, da Silva Trentin D, et al. Diamine derivative anti-Trichomonas vaginalis and anti-Tritrichomonas foetus activities by effect on polyamine metabolism. Biomed Pharmacother 2017; 95: 847-55.
[http://dx.doi.org/10.1016/j.biopha.2017.09.007] [PMID: 28903180]
[116]
Tiwari P, Singh D, Singh MM. Anti-Trichomonas activity of Sapindus saponins, a candidate for development as microbicidal contraceptive. J Antimicrob Chemother 2008; 62(3): 526-34.
[http://dx.doi.org/10.1093/jac/dkn223] [PMID: 18544604]
[117]
Kaufmann GF, Park J, Janda KD. Bacterial quorum sensing: a new target for anti-infective immunotherapy. Expert Opin Biol Ther 2008; 8(6): 719-24.
[http://dx.doi.org/10.1517/14712598.8.6.719] [PMID: 18476783]
[118]
Algburi A, Zehm S, Netrebov V, Weeks R, Zubovskiy K, Chikindas ML. Benzoyl peroxide inhibits quorum sensing and biofilm formation by gardnerella vaginalis 14018. Infect Dis Obstet Gynecol 2018.20181426109
[http://dx.doi.org/10.1155/2018/1426109] [PMID: 30057443]
[119]
Noll KS, Sinko PJ, Chikindas ML. Elucidation of the molecular mechanism of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob Proteins 2011; 3(1): 41-7.
[http://dx.doi.org/10.1007/s12602-010-9061-4] [PMID: 21949544]
[120]
Noll KS, Prichard MN, Khaykin A, Sinko PJ, Chikindas ML. The natural antimicrobial peptide subtilosin acts synergistically with glycerol monolaurate, lauric arginate, and ε-poly-L-lysine against bacterial vaginosis-associated pathogens but not human lactobacilli. Antimicrob Agents Chemother 2012; 56(4): 1756-61.
[http://dx.doi.org/10.1128/AAC.05861-11] [PMID: 22252803]
[121]
Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013; 6(12): 1451-74.
[http://dx.doi.org/10.3390/ph6121451] [PMID: 24287491]
[122]
Machado D, Gaspar C, Palmeira-de-Oliveira A, et al. Thymbra capitata essential oil as potential therapeutic agent against Gardnerella vaginalis biofilm-related infections. Future Microbiol 2017; 12: 407-16.
[http://dx.doi.org/10.2217/fmb-2016-0184] [PMID: 28339292]
[123]
Algburi A, Zhang Y, Weeks R, et al. Gemini Cationic Amphiphiles Control Biofilm Formation by Bacterial Vaginosis Pathogens. Antimicrob Agents Chemother 2017; 61(12): e00650-17.
[http://dx.doi.org/10.1128/AAC.00650-17] [PMID: 28893789]
[124]
Zhang H, Gao A, Li F, Zhang G, Ho HI, Liao W. Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps. Yakugaku Zasshi 2009; 129(5): 623-30.
[http://dx.doi.org/10.1248/yakushi.129.623] [PMID: 19420894]
[125]
Zhang H, Wang K, Zhang G, Ho HI, Gao A. Synergistic anti-candidal activity of tetrandrine on ketoconazole: an experimental study. Planta Med 2010; 76(1): 53-61.
[http://dx.doi.org/10.1055/s-0029-1185973] [PMID: 19644794]
[126]
De Seta F, Schmidt M, Vu B, Essmann M, Larsen B. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrob Chemother 2009; 63(2): 325-36.
[http://dx.doi.org/10.1093/jac/dkn486] [PMID: 19059942]
[127]
Liao H, Liu S, Wang H, Su H, Liu Z. Efficacy of Histatin5 in a murine model of vulvovaginal candidiasis caused by Candida albicans. Pathog Dis 2017; 75(6)
[http://dx.doi.org/10.1093/femspd/ftx072] [PMID: 28645176]
[128]
Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 1999; 274(27): 18872-9.
[http://dx.doi.org/10.1074/jbc.274.27.18872] [PMID: 10383383]
[129]
Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995; 59(2): 201-22.
[http://dx.doi.org/10.1128/MMBR.59.2.201-222.1995] [PMID: 7603409]
[130]
Berretta AA, de Castro PA, Cavalheiro AH, et al. Evaluation of mucoadhesive gels with propolis (epp-af) in preclinical treatment of candidiasis vulvovaginal infection. Evid Based Complement Alternat Med 2013.2013641480
[http://dx.doi.org/10.1155/2013/641480] [PMID: 23997797]
[131]
Shinobu-Mesquita CS, Bonfim-Mendonça PS, Moreira AL, et al. Cellular structural changes in candida albicans caused by the hydroalcoholic extract from sapindus saponaria l. Molecules 2015; 20(5): 9405-18.
[http://dx.doi.org/10.3390/molecules20059405] [PMID: 26007191]
[132]
İzgü F, Bayram G, Tosun K, İzgü D. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model. Int J Nanomedicine 2017; 12: 5601-11.
[http://dx.doi.org/10.2147/IJN.S141949] [PMID: 28831255]
[133]
Izgü F, Altinbay D, Sertkaya A. Enzymic activity of the K5-type yeast killer toxin and its characterization. Biosci Biotechnol Biochem 2005; 69(11): 2200-6.
[http://dx.doi.org/10.1271/bbb.69.2200] [PMID: 16306703]
[134]
Pina-Vaz C, Gonçalves Rodrigues A, Pinto E, et al. Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol 2004; 18(1): 73-8.
[http://dx.doi.org/10.1111/j.1468-3083.2004.00886.x] [PMID: 14678536]
[135]
Murina F, Vicariotto F, Di Francesco S. Thymol, eugenol and lactobacilli in a medical device for the treatment of bacterial vaginosis and vulvovaginal candidiasis. New Microbiol 2018; 41(3): 220-4.
[PMID: 29874389]
[136]
Fernandes LS, Amorim YM, da Silva EL, et al. Formulation, stability study and preclinical evaluation of a vaginal cream containing curcumin in a rat model of vulvovaginal candidiasis. Mycoses 2018; 61(10): 723-30.
[http://dx.doi.org/10.1111/myc.12762] [PMID: 29517833]
[137]
Lee W, Lee DG. An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans. IUBMB Life 2014; 66(11): 780-5.
[http://dx.doi.org/10.1002/iub.1326] [PMID: 25380239]
[138]
Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 2013; 62(Pt 8): 1175-83.
[http://dx.doi.org/10.1099/jmm.0.055467-0] [PMID: 23657528]
[139]
Saghafi N, Karjalian M, Ghazanfarpour M, et al. The effect of a vaginal suppository formulation of dill (Anethum graveolens) in comparison to clotrimazole vaginal tablet on the treatment of vulvovaginal candidiasis. J Obstet Gynaecol 2018; 38(7): 985-8.
[http://dx.doi.org/10.1080/01443615.2018.1432578] [PMID: 29553834]
[140]
Nyirjesy P, Alessio C, Jandourek A, Lee JD, Sandison T, Sobel JD. CD101 Topical Compared With Oral Fluconazole for Acute Vulvovaginal Candidiasis: A Randomized Controlled Trial. J Low Genit Tract Dis 2019; 23(3): 226-9.
[http://dx.doi.org/10.1097/LGT.0000000000000473] [PMID: 30893271]
[141]
Boikov DA, Locke JB, James KD, Bartizal K, Sobel JD. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis. J Antimicrob Chemother 2017; 72(5): 1355-8.
[http://dx.doi.org/10.1093/jac/dkx008] [PMID: 28158577]
[142]
Aguilar-Zapata D, Petraitiene R, Petraitis V. Echinocandins: The Expanding Antifungal Armamentarium. Clin Infect Dis 2015; 61(Suppl. 6): S604-11.
[http://dx.doi.org/10.1093/cid/civ814] [PMID: 26567277]
[143]
Scarsini M, Tomasinsig L, Arzese A, D’Este F, Oro D, Skerlavaj B. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 2015; 71: 211-21.
[http://dx.doi.org/10.1016/j.peptides.2015.07.023] [PMID: 26238597]
[144]
Benincasa M, Scocchi M, Pacor S, et al. Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother 2006; 58(5): 950-9.
[http://dx.doi.org/10.1093/jac/dkl382] [PMID: 17023499]
[145]
Ng SM, Yap YY, Cheong JW, et al. Antifungal peptides: a potential new class of antifungals for treating vulvovaginal candidiasis caused by fluconazole-resistant Candida albicans. J Pept Sci 2017; 23(3): 215-21.
[http://dx.doi.org/10.1002/psc.2970] [PMID: 28105725]
[146]
Andrade JT, Santos FRS, Lima WG, et al. Design, synthesis, biological activity and structure-activity relationship studies of chalcone derivatives as potential anti-Candida agents. J Antibiot (Tokyo) 2018; 71(8): 702-12.
[http://dx.doi.org/10.1038/s41429-018-0048-9] [PMID: 29674635]
[147]
Warrilow AG, Hull CM, Parker JE, et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother 2014; 58(12): 7121-7.
[http://dx.doi.org/10.1128/AAC.03707-14] [PMID: 25224009]
[148]
Brand SR, Degenhardt TP, Person K, et al. A phase 2, randomized, double-blind, placebo-controlled, dose-ranging study to evaluate the efficacy and safety of orally administered VT-1161 in the treatment of recurrent vulvovaginal candidiasis. Am J Obstet Gynecol 2018; 218(6): 624.e1-9.
[http://dx.doi.org/10.1016/j.ajog.2018.03.001] [PMID: 29534874]
[149]
Niwano Y, Koga H, Kodama H, Kanai K, Miyazaki T, Yamaguchi H. Inhibition of sterol 14 alpha-demethylation of Candida albicans with NND-502, a novel optically active imidazole antimycotic agent. Med Mycol 1999; 37(5): 351-5.
[http://dx.doi.org/10.1046/j.1365-280X.1999.00243.x] [PMID: 10520160]
[150]
Taghipour S, Kiasat N, Shafiei S, Halvaeezadeh M, Rezaei-Matehkolaei A, Zarei Mahmoudabadi A. Luliconazole, a new antifungal against Candida species isolated from different sources. J Mycol Med 2018; 28(2): 374-8.
[http://dx.doi.org/10.1016/j.mycmed.2017.11.004] [PMID: 29198426]
[151]
Kasper L, Miramón P, Jablonowski N, et al. Antifungal activity of clotrimazole against Candida albicans depends on carbon sources, growth phase and morphology. J Med Microbiol 2015; 64(7): 714-23.
[http://dx.doi.org/10.1099/jmm.0.000082] [PMID: 25976001]
[152]
Gao M, Wang H, Zhu L. Quercetin Assists Fluconazole to Inhibit Biofilm Formations of Fluconazole-Resistant Candida Albicans in In Vitro and In Vivo Antifungal Managements of Vulvovaginal Candidiasis. Cell Physiol Biochem 2016; 40(3-4): 727-42.
[http://dx.doi.org/10.1159/000453134] [PMID: 27915337]
[153]
Yang L, Wu H, Qiu W, et al. Pulsatilla decoction inhibits Candida albicans proliferation and adhesion in a mouse model of vulvovaginal candidiasis via the Dectin-1 signaling pathway. J Ethnopharmacol 2018; 223: 51-62. [a]
[http://dx.doi.org/10.1016/j.jep.2018.05.018] [PMID: 29775695]
[154]
Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F. Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. J Appl Microbiol 2008; 105(6): 2169-77.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03912.x] [PMID: 19120662]
[155]
Watson CJ, Grando D, Fairley CK, et al. The effects of oral garlic on vaginal candida colony counts: a randomised placebo controlled double-blind trial. BJOG 2014; 121(4): 498-506.
[http://dx.doi.org/10.1111/1471-0528.12518] [PMID: 24308540]
[156]
de Freitas Araújo MG, Pacífico M, Vilegas W, et al. Evaluation of Syngonanthus nitens (Bong.) Ruhl. extract as antifungal and in treatment of vulvovaginal candidiasis. Med Mycol 2013; 51(7): 673-82.
[http://dx.doi.org/10.3109/13693786.2013.795294] [PMID: 23758104]
[157]
Dos Santos Ramos MA, de Toledo LG, Calixto GM, et al. Syngonanthus nitens Bong. (Rhul.)-Loaded Nanostructured System for Vulvovaginal Candidiasis Treatment. Int J Mol Sci 2016; 17(8)E1368
[http://dx.doi.org/10.3390/ijms17081368] [PMID: 27556451]
[158]
Kato IT, Prates RA, Sabino CP, et al. Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother 2013; 57(1): 445-51.
[http://dx.doi.org/10.1128/AAC.01451-12] [PMID: 23129051]
[159]
Machado-de-Sena RM, Corrêa L, Kato IT, et al. Photodynamic therapy has antifungal effect and reduces inflammatory signals in Candida albicans-induced murine vaginitis Photodiagnosis Photodyn Ther 2014; 11(3): 275-82.
[160]
Li T, Niu X, Zhang X, Wang S, Liu Z. Baofukang suppository promotes the repair of vaginal epithelial cells in response to Candida albicans. AMB Express 2016; 6(1): 109.
[http://dx.doi.org/10.1186/s13568-016-0281-1] [PMID: 27830496]
[161]
Vrablikova A, Czernekova L, Cahlikova R, et al. Lasioglossins LLIII affect the morphogenesis of Candida albicans and reduces the duration of experimental vaginal candidiasis in mice. Microbiol Immunol 2017; 61(11): 474-81.
[http://dx.doi.org/10.1111/1348-0421.12538] [PMID: 28892177]
[162]
de Castro PA, Bom VL, Brown NA, et al. Identification of the cell targets important for propolis-induced cell death in Candida albicans. Fungal Genet Biol 2013; 60: 74-86.
[http://dx.doi.org/10.1016/j.fgb.2013.07.001] [PMID: 23856128]
[163]
Tian J, Weng LX, Zhang YQ, Wang LH. BDSF inhibits Candida albicans adherence to urinary catheters. Microb Pathog 2013; 64: 33-8.
[http://dx.doi.org/10.1016/j.micpath.2013.07.003] [PMID: 23948468]
[164]
Yang DL, Zhang YQ, Hu YL, Weng LX, Zeng GS, Wang LH. Protective Effects of cis-2-Dodecenoic Acid in an Experimental Mouse Model of Vaginal Candidiasis. Biomed Environ Sci 2018; 31(11): 816-28.
[PMID: 30558702]
[165]
Bradshaw CS, Sobel JD. Current treatment of bacterial vaginosis-limitations and need for innovation. J Infect Dis 2016; 214(Suppl. 1): S14-20.
[http://dx.doi.org/10.1093/infdis/jiw159] [PMID: 27449869]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy