Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

A Phospholipase-A Activity in Soluble Leishmania Antigens Causes Instability of Liposomes

Author(s): Omid Chavoshian, Mahdieh Arabsalmani, Mahmoud Reza Jaafari, Ali Khamesipour, Azam Abbasi, Zahra Saberi and Ali Badiee*

Volume 17 , Issue 9 , 2020

Page: [806 - 814] Pages: 9

DOI: 10.2174/1567201817666200731164002

Price: $65

Abstract

Aim: This study aimed to investigate the existence of phospholipase-A (PLA) activity in Soluble L. major Antigens (SLA) because of no reports for it so far. Liposomes were used as sensors to evaluate PLA activity.

Objectives: Liposomal SLA consisting of Egg Phosphatidylcholine (EPC) or Sphingomyelin (SM) were prepared by two different methods in different pH or temperatures and characterized by Dynamic Light Scattering (DLS) and Thin Layer Chromatography (TLC).

Methods: Lipid hydrolysis led to the disruption of EPC liposomal SLA in both methods but the Film Method (FM) produced more stable liposomes than the Detergent Removal Method (DRM).

Result: The preparation of EPC liposomal SLA at pH 6 via FM protected liposomes from hydrolysis to some extent for a short time. EPC liposomes but not SM liposomes were disrupted in the presence of SLA.

Conclusion: Therefore, a phospholipid without ester bond such as SM should be utilized in liposome formulations containing PLA as an encapsulating protein.

Keywords: Phospholipase-A, liposomes, leishmaniasis, soluble L. major antigens, Egg phosphatidylcholine, Sphingomyelin.

Graphical Abstract
[1]
Ravindran, R.; Maji, M.; Ali, N. Vaccination with liposomal leishmanial antigens adjuvanted with Monophosphoryl Lipid-Trehalose Dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. Mol. Pharm., 2012, 9(1), 59-70.
[http://dx.doi.org/10.1021/mp2002494 ] [PMID: 22133194]
[2]
Alving, C.R. Liposomes as carriers of antigens and adjuvants. J. Immunol. Methods, 1991, 140(1), 1-13.
[http://dx.doi.org/10.1016/0022-1759(91)90120-5 ] [PMID: 1712030]
[3]
Felnerova, D.; Viret, J.F.; Glück, R.; Moser, C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol., 2004, 15(6), 518-529.
[http://dx.doi.org/10.1016/j.copbio.2004.10.005 ] [PMID: 15560978]
[4]
Kahl, L.P.; Lelchuk, R.; Scott, C.A.; Beesley, J. Characterization of Leishmania major antigen-liposomes that protect BALB/c mice against cutaneous leishmaniasis. Infect. Immun., 1990, 58(10), 3233-3241.
[http://dx.doi.org/10.1128/IAI.58.10.3233-3241.1990 ] [PMID: 2401562]
[5]
Bhowmick, S.; Ravindran, R.; Ali, N. Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine, 2007, 25(35), 6544-6556.
[http://dx.doi.org/10.1016/j.vaccine.2007.05.042 ] [PMID: 17655984]
[6]
Heravi Shargh, V.; Jaafari, M.R.; Khamesipour, A.; Jalali, S.A.; Firouzmand, H.; Abbasi, A.; Badiee, A. Cationic liposomes containing Soluble Leishmania Antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. Parasitol. Res., 2012, 111(1), 105-114.
[http://dx.doi.org/10.1007/s00436-011-2806-5 ] [PMID: 22223037]
[7]
Noazin, S.; Modabber, F.; Khamesipour, A.; Smith, P.G.; Moulton, L.H.; Nasseri, K.; Sharifi, I.; Khalil, E.A.; Bernal, I.D.; Antunes, C.M.; Kieny, M.P.; Tanner, M. First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine, 2008, 26(52), 6759-6767.
[http://dx.doi.org/10.1016/j.vaccine.2008.09.085 ] [PMID: 18950671]
[8]
Alvar, J.; Croft, S.L.; Kaye, P.; Khamesipour, A.; Sundar, S.; Reed, S.G. Case study for a vaccine against leishmaniasis. Vaccine, 2013, 31(Suppl. 2), B244-B249.
[http://dx.doi.org/10.1016/j.vaccine.2012.11.080 ] [PMID: 23598489]
[9]
Scott, P.; Pearce, E.; Natovitz, P.; Sher, A. Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J. Immunol., (Baltimore, Md.: 1950), 1987, 139(1), 221-227.
[10]
Shargh, V.H.; Jaafari, M.R.; Khamesipour, A.; Jaafari, I.; Jalali, S.A.; Abbasi, A.; Badiee, A. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis. Vaccine, 2012, 30(26), 3957-3964.
[http://dx.doi.org/10.1016/j.vaccine.2012.03.040 ] [PMID: 22465747]
[11]
Belaunzarán, M.L.; Lammel, E.M.; de Isola, E.L. Phospholipases a in trypanosomatids. Enzyme Res., 2011, 2011, 392082.
[http://dx.doi.org/10.4061/2011/392082 ] [PMID: 21603263]
[12]
Richmond, G.S.; Smith, T.K. Phospholipases A1. Int. J. Mol. Sci., 2011, 12(1), 588-612.
[http://dx.doi.org/10.3390/ijms12010588 ] [PMID: 21340002]
[13]
Smith, T.K.; Milne, F.C.; Sharma, D.K.; Crossman, A.; Brimacombe, J.S.; Ferguson, M.A. Early steps in glycosylphosphatidylinositol biosynthesis in Leishmania major. Biochem. J., 1997, 326(Pt 2), 393-400.
[http://dx.doi.org/10.1042/bj3260393 ] [PMID: 9291110]
[14]
Blum, J.J.; Lehman, J.A.; Horn, J.M.; Gomez-Cambronero, J.; Phospholipase, D.; Phospholipase, D. (PLD) is present in Leishmania donovani and its activity increases in response to acute osmotic stress. J. Eukaryot. Microbiol., 2001, 48(1), 102-110.
[http://dx.doi.org/10.1111/j.1550-7408.2001.tb00421.x ] [PMID: 11249184]
[15]
Passero, L.F.; Laurenti, M.D.; Tomokane, T.Y.; Corbett, C.E.; Toyama, M.H. The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection. Parasitol. Res., 2008, 102(5), 1025-1033.
[http://dx.doi.org/10.1007/s00436-007-0871-6 ] [PMID: 18180953]
[16]
Le Pape, P.; Zidane, M.; Abdala, H.; Moré, M.T. A glycoprotein isolated from the sponge, Pachymatisma johnstonii, has anti-leishmanial activity. Cell Biol. Int., 2000, 24(1), 51-56.
[http://dx.doi.org/10.1006/cbir.1999.0450 ] [PMID: 10826772]
[17]
Henriques, C.; Atella, G.C.; Bonilha, V.L.; de Souza, W. Biochemical analysis of proteins and lipids found in parasitophorous vacuoles containing Leishmania amazonensis. Parasitol. Res., 2003, 89(2), 123-133.
[http://dx.doi.org/10.1007/s00436-002-0728-y ] [PMID: 12489012]
[18]
Shimizu, Y.; Yamakami, K.; Gomi, T.; Nakata, M.; Asanuma, H.; Tadakuma, T.; Kojima, N. Protection against Leishmania major infection by oligomannose-coated liposomes. Bioorg. Med. Chem., 2003, 11(7), 1191-1195.
[http://dx.doi.org/10.1016/S0968-0896(02)00644-2 ] [PMID: 12628646]
[19]
Sharma, S.K.; Dube, A.; Nadeem, A.; Khan, S.; Saleem, I.; Garg, R.; Mohammad, O. Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine, 2006, 24(11), 1800-1810.
[http://dx.doi.org/10.1016/j.vaccine.2005.10.025 ] [PMID: 16310900]
[20]
Jiménez, M.; Escribano, J.; Pérez-Gilabert, M.; Chazarra, S.; Cabanes, J.; García-Carmona, F. An octaethylene glycol monododecyl ether-based mixed micellar assay for determining the lipid acyl hydrolase activity of patatin. Lipids, 2001, 36(10), 1169-1174.
[http://dx.doi.org/10.1007/s11745-001-0828-z ] [PMID: 11768162]
[21]
Schubert, R. Liposome preparation by detergent removal. Methods Enzymol., 2003, 367, 46-70.
[http://dx.doi.org/10.1016/S0076-6879(03)67005-9 ] [PMID: 14611058]
[22]
Yoshino, J.; Sugiyama, Y.; Sakuda, S.; Kodama, T.; Nagasawa, H.; Ishii, M.; Igarashi, Y. Chemical structure of a novel aminophospholipid from Hydrogenobacter thermophilus strain TK-6. J. Bacteriol., 2001, 183(21), 6302-6304.
[http://dx.doi.org/10.1128/JB.183.21.6302-6304.2001 ] [PMID: 11591674]
[23]
Wang, L.; Clark, M.E.; Crossman, D.K.; Kojima, K.; Messinger, J.D.; Mobley, J.A.; Curcio, C.A. Abundant lipid and protein components of drusen. PLoS One, 2010, 5(4), e10329.
[http://dx.doi.org/10.1371/journal.pone.0010329 ] [PMID: 20428236]
[24]
Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959, 37(8), 911-917.
[http://dx.doi.org/10.1139/o59-099 ] [PMID: 13671378]
[25]
Santos, F.R.; Ferraz, D.B.; Daghastanli, K.R.; Ramalho-Pinto, F.J.; Ciancaglini, P. Mimetic membrane system to carry multiple antigenic proteins from Leishmania amazonensis. J. Membr. Biol., 2006, 210(3), 173-181.
[http://dx.doi.org/10.1007/s00232-006-0005-6 ] [PMID: 16909340]
[26]
Golali, E.; Jaafari, M.R.; Khamesipour, A.; Abbasi, A.; Saberi, Z.; Badiee, A. Comparison of in vivo Adjuvanticity of liposomal PO CpG ODN with liposomal PS CpG ODN: soluble leishmania antigens as a model. Iran. J. Basic Med. Sci., 2012, 15(5), 1032-1045.
[PMID: 23493437]
[27]
Bhowmick, S.; Mazumdar, T.; Sinha, R.; Ali, N. Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J. Controlled Release Soc., 2010, 141(2), 199-207.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.018]
[28]
Zuidam, N.J.; Gouw, H.K.; Barenholz, Y.; Crommelin, D. J. Physical (in) stability of liposomes upon chemical hydrolysis: the role of lysophospholipids and fatty acids. Biochim. Biophys. Acta, 1995, 1240(1), 101-110.
[http://dx.doi.org/10.1016/0005-2736(95)00180-5 ] [PMID: 7495841]
[29]
Grit, M.; Crommelin, D.J. The effect of aging on the physical stability of liposome dispersions. Chem. Phys. Lipids, 1992, 62(2), 113-122.
[http://dx.doi.org/10.1016/0009-3084(92)90089-8 ] [PMID: 1423806]
[30]
Weltzien, H.U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta, 1979, 559(2-3), 259-287.
[http://dx.doi.org/10.1016/0304-4157(79)90004-2 ] [PMID: 476122]
[31]
Lapré, J.A.; Termont, D.S.; Groen, A.K.; Van der Meer, R. Lytic effects of mixed micelles of fatty acids and bile acids. Am. J. Physiol., 1992, 263(3 Pt 1), G333-G337.
[PMID: 1415545]
[32]
Jespersen, H.; Andersen, J.H.; Ditzel, H.J.; Mouritsen, O.G. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes. Biochimie, 2012, 94(1), 2-10.
[http://dx.doi.org/10.1016/j.biochi.2011.07.029 ] [PMID: 21839138]
[33]
Small, D.M.; Small, D.M. The physical chemistry of lipids: from alkanes to phospholipids; Plenum Press: New York, London, 1986.
[http://dx.doi.org/10.1007/978-1-4899-5333-9]
[34]
Caroff, M.; Tacken, A.; Szabó, L. Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the “isolated lipid A” fragment of the Bordetella pertussis endotoxin. Carbohydr. Res., 1988, 175(2), 273-282.
[http://dx.doi.org/10.1016/0008-6215(88)84149-1 ] [PMID: 2900066]
[35]
Galliard, T. The enzymic deacylation of phospholipids and galactolipids in plants. Purification and properties of a lipolytic acyl-hydrolase from potato tubers. Biochem. J., 1971, 121(3), 379-390.
[http://dx.doi.org/10.1042/bj1210379 ] [PMID: 5154523]
[36]
Santangelo, R.T.; Nouri-Sorkhabi, M.H.; Sorrell, T.C.; Cagney, M.; Chen, S.C.A.; Kuchel, P.W.; Wright, L.C. Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state. J. Med. Microbiol., 1999, 48(8), 731-740.
[http://dx.doi.org/10.1099/00222615-48-8-731 ] [PMID: 10450996]
[37]
Semple, S.C.; Leone, R.; Wang, J.; Leng, E.C.; Klimuk, S.K.; Eisenhardt, M.L.; Yuan, Z.N.; Edwards, K.; Maurer, N.; Hope, M.J.; Cullis, P.R.; Ahkong, Q.F. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J. Pharm. Sci., 2005, 94(5), 1024-1038.
[http://dx.doi.org/10.1002/jps.20332 ] [PMID: 15793796]
[38]
Schmiel, D.H.; Miller, V.L. Bacterial phospholipases and pathogenesis. Microbes Infect., 1999, 1(13), 1103-1112.
[http://dx.doi.org/10.1016/S1286-4579(99)00205-1 ] [PMID: 10572314]
[39]
Six, D.A.; Dennis, E.A. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim. Biophys. Acta, 2000, 1488(1-2), 1-19.
[http://dx.doi.org/10.1016/S1388-1981(00)00105-0 ] [PMID: 11080672]
[40]
Mesquita, R.D.; Carneiro, A.B.; Bafica, A.; Gazos-Lopes, F.; Takiya, C.M.; Souto-Padron, T.; Vieira, D.P.; Ferreira-Pereira, A.; Almeida, I.C.; Figueiredo, R.T.; Porto, B.N.; Bozza, M.T.; Graça-Souza, A.V.; Lopes, A.H.; Atella, G.C.; Silva-Neto, M.A. Trypanosoma cruzi infection is enhanced by vector saliva through immunosuppressant mechanisms mediated by lysophosphatidylcholine. Infect. Immun., 2008, 76(12), 5543-5552.
[http://dx.doi.org/10.1128/IAI.00683-08 ] [PMID: 18794282]
[41]
Perrin-Cocon, L.; Agaugué, S.; Coutant, F.; Saint-Mézard, P.; Guironnet-Paquet, A.; Nicolas, J.F.; André, P.; Lotteau, V. Lysophosphatidylcholine is a natural adjuvant that initiates cellular immune responses. Vaccine, 2006, 24(9), 1254-1263.
[http://dx.doi.org/10.1016/j.vaccine.2005.09.036 ] [PMID: 16229929]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy