Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

The Nutraceuticals and White Adipose Tissue in Browning Process

Author(s): Melisa Siannoto, Gaga I. Nugraha*, Ronny Lesmana, Hanna Goenawan, Vita M. Tarawan and Astrid F. Khairani

Volume 17, Issue 3, 2021

Published on: 30 July, 2020

Page: [258 - 271] Pages: 14

DOI: 10.2174/1573401316999200731004318

Price: $65

conference banner
Abstract

Obesity has become a prominent epidemic disease since its worldwide prevalence has shown a continuous rise over the past few decades. The primary aim of obesity treatment is to effectively reduce the intake of energy, while simultaneously increasing energy expenditure. Increasing thermogenesis is one of the methods to increase energy expenditure. Thermogenesis, which primarily occurs in brown adipose tissue, can also be produced by beige adipose tissue, through a process known as browning. The browning process has recently been attracting a great deal of attention as a potential anti-obesity agent. Many well-researched inducers of the browning process are readily available, including cold exposure, agonist β3-adrenergic, agonist peroxisome proliferator activated receptor γ, fibroblast growth factor 21, irisin and several nutraceuticals (including resveratrol, curcumin, quercetin, fish oils, green tea, etc.). This mini review summarizes the current knowledge and the latest research of some nutraceuticals that are potentially involved in the browning process.

Keywords: Brown adipose tissue, browning, white adipose tissue, nutraceuticals, obesity, thermogenesis.

Graphical Abstract
[1]
World Health Organization. Obesity and Overweight 2018. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[2]
Whitlock G, Lewington S, Sherliker P, et al. Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373(9669): 1083-96.
[http://dx.doi.org/10.1016/S0140-6736(09)60318-4] [PMID: 19299006]
[3]
Bargut TCL, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Investig 2017; 31(1): 1-13.
[http://dx.doi.org/10.1515/hmbci-2016-0051] [PMID: 28099124]
[4]
Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013; 27(3): 234-50.
[http://dx.doi.org/10.1101/gad.211649.112] [PMID: 23388824]
[5]
Solas M, Milagro FI, Martínez-Urbistondo D, Ramirez MJ, Martínez JA. Precision obesity treatments including pharmacogenetic and nutrigenetic approaches. Trends Pharmacol Sci 2016; 37(7): 575-93.
[http://dx.doi.org/10.1016/j.tips.2016.04.008] [PMID: 27236593]
[6]
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360(15): 1500-8.
[http://dx.doi.org/10.1056/NEJMoa0808718] [PMID: 19357405]
[7]
Yoneshiro T, Aita S, Matsushita M, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 2011; 19(1): 13-6.
[http://dx.doi.org/10.1038/oby.2010.105]
[8]
Okla M, Kim J, Koehler K, Chung S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv Nutr 2017; 8(3): 473-83.
[http://dx.doi.org/10.3945/an.116.014332] [PMID: 28507012]
[9]
Rui L. Brown and beige adipose tissues in health and disease. Compr Physiol 2017; 7(4): 1281-306.
[http://dx.doi.org/10.1002/cphy.c170001] [PMID: 28915325]
[10]
Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab 2015; 22(4): 546-59.
[http://dx.doi.org/10.1016/j.cmet.2015.09.007] [PMID: 26445512]
[11]
Collins S, Yehuda-Shnaidman E, Wang H. Positive and negative control of UCP1 gene transcription and the role of β-adrenergic signaling networks. Int J Obes 2010; 34(S1)(Suppl. 1): S28-33.
[http://dx.doi.org/10.1038/ijo.2010.180] [PMID: 20935662]
[12]
Ravussin Y, Xiao C, Gavrilova O, Reitman ML. Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice. PLoS One 2014; 9(1): e85876.
[http://dx.doi.org/10.1371/journal.pone.0085876] [PMID: 24465761]
[13]
Richard JE, López-Ferreras L, Chanclón B, et al. CNS β3-adrenergic receptor activation regulates feeding behavior, white fat browning, and body weight. Am J Physiol Endocrinol Metab 2017; 313(3): E344-58.
[http://dx.doi.org/10.1152/ajpendo.00418.2016] [PMID: 28588096]
[14]
Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2010; 285(10): 7153-64.
[http://dx.doi.org/10.1074/jbc.M109.053942] [PMID: 20028987]
[15]
Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 2012; 15(3): 395-404.
[http://dx.doi.org/10.1016/j.cmet.2012.01.019] [PMID: 22405074]
[16]
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481(7382): 463-8.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[17]
Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014; 156(1-2): 20-44.
[http://dx.doi.org/10.1016/j.cell.2013.12.012] [PMID: 24439368]
[18]
Lo KA, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep 2013; 33(5): 711-9.
[http://dx.doi.org/10.1042/BSR20130046] [PMID: 23895241]
[19]
Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 2014; 13(17): 17.
[http://dx.doi.org/10.1186/1475-2891-13-17] [PMID: 24524207]
[20]
Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19(5): 557-66.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[21]
Hondares E, Rosell M, Díaz-Delfín J, et al. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 2011; 286(50): 43112-22.
[http://dx.doi.org/10.1074/jbc.M111.252775] [PMID: 22033933]
[22]
Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem 2010; 47(10): 69-84.
[PMID: 20533901]
[23]
Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 2011; 1813(7): 1269-78.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.019] [PMID: 20933024]
[24]
Qiang L, Wang L, Kon N, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 2012; 150(3): 620-32.
[http://dx.doi.org/10.1016/j.cell.2012.06.027] [PMID: 22863012]
[25]
Liao W, Yin X, Li Q, et al. Resveratrol-induced white adipose tissue browning in obese mice by remodeling fecal microbiota. Molecules 2018; 23(12): 1-16.
[http://dx.doi.org/10.3390/molecules23123356] [PMID: 30567366]
[26]
Zou T, Chen D, Yang Q, et al. Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol 2017; 595(5): 1547-62.
[http://dx.doi.org/10.1113/JP273478] [PMID: 27891610]
[27]
Wang S, Liang X, Yang Q, et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes 2015; 39(6): 967-76.
[http://dx.doi.org/10.1038/ijo.2015.23] [PMID: 25761413]
[28]
Konings E, Timmers S, Boekschoten MV, et al. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int J Obes 2014; 38(3): 470-3.
[http://dx.doi.org/10.1038/ijo.2013.155] [PMID: 23958793]
[29]
Kuipers EN, Dam ADV, Held NM, et al. Quercetin lowers plasma triglycerides accompanied by white adipose tissue browning in diet-induced obese mice. Int J Mol Sci 2018; 19(6): 1-14.
[http://dx.doi.org/10.3390/ijms19061786] [PMID: 29914151]
[30]
Choi H, Kim C-S, Yu R. Quercetin upregulates uncoupling protein 1 in white/brown adipose tissues through sympathetic stimulation. J Obes Metab Syndr 2018; 27(2): 102-9.
[http://dx.doi.org/10.7570/jomes.2018.27.2.102] [PMID: 31089549]
[31]
Han Y, Wu JZ, Shen JZ, et al. Pentamethylquercetin induces adipose browning and exerts beneficial effects in 3T3-L1 adipocytes and high-fat diet-fed mice. Sci Rep 2017; 7(1): 1123.
[http://dx.doi.org/10.1038/s41598-017-01206-4] [PMID: 28442748]
[32]
Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem 2017; 42: 62-71.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.018] [PMID: 28131896]
[33]
Dong J, Zhang X, Zhang L, et al. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 2014; 55(3): 363-74.
[http://dx.doi.org/10.1194/jlr.M038786] [PMID: 24465016]
[34]
Chen LH, Chien YW, Liang CT, Chan CH, Fan MH, Huang HY. Green tea extract induces genes related to browning of white adipose tissue and limits weight-gain in high energy diet-fed rat. Food Nutr Res 2017; 61(1)1347480
[http://dx.doi.org/10.1080/16546628.2017.1347480] [PMID: 28804438]
[35]
Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem 2017; 49: 15-21.
[http://dx.doi.org/10.1016/j.jnutbio.2017.07.008] [PMID: 28863365]
[36]
Yan J, Zhao Y, Zhao B. Green tea catechins prevent obesity through modulation of peroxisome proliferator-activated receptors. Sci China Life Sci 2013; 56(9): 804-10.
[http://dx.doi.org/10.1007/s11427-013-4512-2] [PMID: 23864528]
[37]
Song Z, Revelo X, Shao W, et al. Dietary curcumin intervention targets mouse white adipose tissue inflammation and brown adipose tissue UCP1 expression. Obesity (Silver Spring) 2018; 26(3): 547-8.
[http://dx.doi.org/10.1002/oby.22110]
[38]
Wang S, Wang X, Ye Z, et al. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun 2015; 466(2): 247-53.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.018] [PMID: 26362189]
[39]
Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem 2016; 27: 193-202.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.006] [PMID: 26456563]
[40]
Ejaz A, Wu D, Kwan P, Meydani M, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 2009; 139(5): 919-25.
[http://dx.doi.org/10.3945/jn.108.100966] [PMID: 19297423]
[41]
Arias N, Pico C, Macarulla MT, et al. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity (Silver Spring) 2017; 25(1): 111-21.
[http://dx.doi.org/10.1002/oby.21706]
[42]
Castrejón-Tellez V, Rodríguez-Pérez JM, Pérez-Torres I, et al. The effect of resveratrol and quercetin treatment on PPAR mediated uncoupling protein (UCP-) 1, 2, and 3 expression in visceral white adipose tissue from metabolic syndrome rats. Int J Mol Sci 2016; 17(7): 1-13.
[http://dx.doi.org/10.3390/ijms17071069] [PMID: 27399675]
[43]
Peredo-Escárcega AE, Guarner-Lans V, Pérez-Torres I, et al. The combination of resveratrol and quercetin attenuates metabolic syndrome in rats by modifying the serum fatty acid composition and by upregulating SIRT 1 and SIRT 2 expression in white adipose tissue. Evid Based Complement Alternat Med 2015; 2015474032
[http://dx.doi.org/10.1155/2015/474032] [PMID: 26609312]
[44]
Fan L, Xu H, Yang R, Zang Y, Chen J, Qin H. Combination of capsaicin and capsiate induces browning in 3T3-L1 white adipocytes via activation of the peroxisome proliferator-activated receptor γ/β3-adrenergic receptor signaling pathways. J Agric Food Chem 2019; 67(22): 6232-40.
[http://dx.doi.org/10.1021/acs.jafc.9b02191] [PMID: 31075194]
[45]
Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol 2016; 173(15): 2369-89.
[http://dx.doi.org/10.1111/bph.13514] [PMID: 27174467]
[46]
Ohyama K, Nogusa Y, Shinoda K, Suzuki K, Bannai M, Kajimura S. A synergistic anti-obesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. Diabetes 2016; 65(5): 1410-23.
[http://dx.doi.org/10.2337/db15-0662] [PMID: 26936964]
[47]
Baboota RK, Singh DP, Sarma SM, et al. Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS One 2014; 9(7): e103093.
[http://dx.doi.org/10.1371/journal.pone.0103093] [PMID: 25072597]
[48]
Wang B, Fu X, Liang X, et al. Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFR α+ adipose progenitors. Cell Discov 2017; 3(17036): 1-14.
[49]
Tourniaire F, Musinovic H, Gouranton E, et al. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes. J Lipid Res 2015; 56(6): 1100-9.
[http://dx.doi.org/10.1194/jlr.M053652] [PMID: 25914170]
[50]
Mercader J, Ribot J, Murano I, et al. Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology 2006; 147(11): 5325-32.
[http://dx.doi.org/10.1210/en.2006-0760] [PMID: 16840543]
[51]
Laiglesia LM, Lorente-Cebrián S, Prieto-Hontoria PL, et al. Eicosapentaenoic acid promotes mitochondrial biogenesis and beige- like features in subcutaneous adipocytes from overweight subjects. J Nutr Biochem 2016; 37: 76-82.
[http://dx.doi.org/10.1016/j.jnutbio.2016.07.019] [PMID: 27637001]
[52]
Kim M, Goto T, Yu R, et al. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Sci Rep 2015; 5(18013): 18013.
[PMID: 26673120]
[53]
Zhao M, Chen X. Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes. Biochem Biophys Res Commun 2014; 450(4): 1446-51.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.010] [PMID: 25017914]
[54]
Zhang Z, Zhang H, Li B, et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 2014; 5(5493): 5493.
[http://dx.doi.org/10.1038/ncomms6493] [PMID: 25423280]
[55]
Velickovic K, Wayne D, Leija HAL, et al. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Sci Rep 2019; 9(1): 9104.
[http://dx.doi.org/10.1038/s41598-019-45540-1] [PMID: 31235722]
[56]
Lombardi G, Vannini S, Blasi F, et al. In vitro safety/protection assessment of resveratrol and pterostilbene in a human hepatoma cell line (HepG2). Nat Prod Commun 2015; 10(8): 1403-8.
[http://dx.doi.org/10.1177/1934578X1501000823] [PMID: 26434128]
[57]
Andrade JM, Frade AC, Guimarães JB, et al. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr 2014; 53(7): 1503-10.
[http://dx.doi.org/10.1007/s00394-014-0655-6] [PMID: 24468941]
[58]
Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 2013; 141(2): 1530-5.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.085] [PMID: 23790948]
[59]
Chu C, Deng J, Man Y, Qu Y. Green tea extracts epigallocatechin-3-gallate for different treatments. BioMed Res Int 2017; 2017(5615647)5615647
[http://dx.doi.org/10.1155/2017/5615647] [PMID: 28884125]
[60]
Yoneshiro T, Matsushita M, Hibi M, et al. Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. Am J Clin Nutr 2017; 105(4): 873-81.
[http://dx.doi.org/10.3945/ajcn.116.144972] [PMID: 28275131]
[61]
Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur J Clin Nutr 2014; 68(10): 1075-87.
[http://dx.doi.org/10.1038/ejcn.2014.143] [PMID: 25074392]
[62]
Zhang DW, Fu M, Gao SH, Liu JL. Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med 2013; 2013(636053)636053
[PMID: 24348712]
[63]
Seale P, Conroe HM, Estall J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 2011; 121(1): 96-105.
[http://dx.doi.org/10.1172/JCI44271] [PMID: 21123942]
[64]
Chen J, Li L, Li Y, Liang X, Sun Q, Yu H, et al. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca 2+ Influx. Cardiovasc Diabetol 2015; 14(22): 1-14.
[65]
Zheng J, Zheng S, Feng Q, Zhang Q, Xiao X. Dietary capsaicin and its anti-obesity potency: from mechanism to clinical implications. Biosci Rep 2017; 37(3): 1-10.
[http://dx.doi.org/10.1042/BSR20170286] [PMID: 28424369]
[66]
Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 2012; 95(4): 845-50.
[http://dx.doi.org/10.3945/ajcn.111.018606] [PMID: 22378725]
[67]
Sun L, Camps SG, Goh HJ, et al. Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan. Am J Clin Nutr 2018; 107(1): 62-70.
[http://dx.doi.org/10.1093/ajcn/nqx025] [PMID: 29381803]
[68]
Saito M, Yoneshiro T. Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Curr Opin Lipidol 2013; 24(1): 71-7.
[http://dx.doi.org/10.1097/MOL.0b013e32835a4f40] [PMID: 23298960]
[69]
Sung HK, Doh KO, Son JE, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab 2013; 17(1): 61-72.
[http://dx.doi.org/10.1016/j.cmet.2012.12.010] [PMID: 23312284]
[70]
Sun K, Kusminski CM, Luby-Phelps K, et al. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metab 2014; 3(4): 474-83.
[http://dx.doi.org/10.1016/j.molmet.2014.03.010] [PMID: 24944907]
[71]
Berry DC, Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 2009; 29(12): 3286-96.
[http://dx.doi.org/10.1128/MCB.01742-08] [PMID: 19364826]
[72]
Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S. Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. J Biol Chem 2016; 291(39): 20551-62.
[http://dx.doi.org/10.1074/jbc.M116.721480] [PMID: 27489163]
[73]
Bargut TC, Silva-e-Silva AC, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Mice fed fish oil diet and upregulation of brown adipose tissue thermogenic markers. Eur J Nutr 2016; 55(1): 159-69.
[http://dx.doi.org/10.1007/s00394-015-0834-0] [PMID: 25612928]
[74]
Zhang J, Tang H, Deng R, et al. Berberine suppresses adipocyte differentiation via decreasing CREB transcriptional activity. PLoS One 2015; 10(4)e0125667
[http://dx.doi.org/10.1371/journal.pone.0125667] [PMID: 25928058]
[75]
Sun Y, Xia M, Yan H, et al. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol 2018; 175(2): 374-87.
[http://dx.doi.org/10.1111/bph.14079] [PMID: 29065221]
[76]
Hu X, Zhang Y, Xue Y, Zhang Z, Wang J. Berberine is a potential therapeutic agent for metabolic syndrome via brown adipose tissue activation and metabolism regulation. Am J Transl Res 2018; 10(11): 3322-9.
[PMID: 30662589]
[77]
Ferreira MA, Silva DM, de Morais AC Jr, Mota JF, Botelho PB. Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults - a review. Obes Rev 2016; 17(12): 1316-28.
[http://dx.doi.org/10.1111/obr.12452] [PMID: 27443447]
[78]
Ibrahim T, Opawale B, Oyinloye J. Antibacterial activity of herbal extracts against multi drug resistant strains of bacteria from clinical origin. Life Sci Leafl 2011; 15: 490-8.
[79]
Valente V, Jham G, Dhingra O, Ghiviriga I. Compositition and antifungal activity of the Brazilian Myristica fragrans Houtt essential oil. J Food Saf 2011; 31(2): 197-202.
[http://dx.doi.org/10.1111/j.1745-4565.2010.00285.x]
[80]
Lestari K, Hwang J, Kariadi SH, et al. Screening for PPAR gamma agonist from Myristica fragrans Houtt seeds for the treatment of type 2 diabetes by in vitro and in vivo. Med Heal Sci 2012; 12: 7-15.
[http://dx.doi.org/10.15208/mhsj.2012.37]
[81]
Lestari K, Diantini A, Barliana MI, et al. Potential natural dual agonist PPAR α/γ -induced antidiabetic and anti-dyslipidemic properties of safrole-free nutmeg seed (Myristica fragrans Houtt) extract. J Nat Prod 2019; 9: 248-53.
[82]
Han KL, Choi JS, Lee JY, et al. Therapeutic potential of PPAR-alpha/gamma dual agonist with alleviation of ER stress for the treatment of diabetes mellitus. Diabetes 2008; 57(3): 737-45.
[http://dx.doi.org/10.2337/db07-0972] [PMID: 18065517]
[83]
Veronica F, Lubis L, Arifin S, et al. A preliminary study of the effect of PPAR-γ agonist from Myristica fragrans houtt seed extract on the biogenesis of rat infant’s brain mitochondria and D1 dopamine receptor. Bali Med J 2018; 7(3): 574-7.
[http://dx.doi.org/10.15562/bmj.v7i3.1027]
[84]
Pratiwi YS, Lesmana R, Goenawan H, et al. Nutmeg extract increases skeletal muscle mass in aging rats partly via IGF1-AKT-mTOR pathway and inhibition of autophagy. Evid Based Complement Alternat Med 2018; 2018(2810840)2810840
[http://dx.doi.org/10.1155/2018/2810840] [PMID: 30647761]
[85]
Singh R, Xiang Y, Wang Y, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009; 119(11): 3329-39.
[http://dx.doi.org/10.1172/JCI39228] [PMID: 19855132]
[86]
Zhang X, Li X, Fang H, et al. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab (Lond) 2019; 16: 47.
[http://dx.doi.org/10.1186/s12986-019-0370-7] [PMID: 31346342]
[87]
Cho KW, Kim YO, Andrade JE, Burgess JR, Kim YC. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats. Eur J Nutr 2011; 50(2): 81-8.
[http://dx.doi.org/10.1007/s00394-010-0117-8] [PMID: 20567977]
[88]
Rebello CJ, Greenway FL, Lau FH, et al. Naringenin promotes thermogenic gene expression in human white adipose tissue. Obesity (Silver Spring) 2019; 27(1): 103-11.
[http://dx.doi.org/10.1002/oby.22352] [PMID: 30506905]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy