Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Liquisolid Technology: A State-of-the-Art Review on the Current State, Challenges, New and Emerging Technologies for Next Generation

Author(s): Ahmed M. Agiba*

Volume 17 , Issue 9 , 2020

Page: [736 - 754] Pages: 19

DOI: 10.2174/1567201817999200729121914

Price: $65

Abstract

Nowadays, the focus has been shifted to new technologies for improving drug solubility, permeability, and bioavailability, amid unprecedentedly increasing the number of newly discovered Active Pharmaceutical Ingredients (APIs), which are mostly categorized under Biopharmaceutical Classification System (BCS) as class-II and class IV. Traditional technologies and classical formulation strategies often fail to address most of the formulation problems associated with new APIs, particularly solubility and bioavailability. Therefore, exploring new and innovative technologies on an industrial scale is a prerequisite and requires modernization of manufacturing processes, as well as more advanced research and development. Liquisolid technology is a new, innovative industrial technology, particularly designed for either improving the release rates of poorly absorbed drugs or controlling their release pattern by achieving sustained-release profiles with zero-order release kinetics. Besides, it is a promising photoprotective system for photosensitive drugs and can further be used for modulating the drug microenvironmental pH. The next generation of liquisolid systems stems from a set of emerging technologies, such as liqui-pellet technology, which originates from combining liquisolid technology with pelletization technique, particularly extrusion-spheronization technique. This review article highlights the current state of liquisolid technology, ongoing challenges, characterization and applications, possible future prospects, the advent of new and emerging technologies, and the revolution of the next generation of liquisolid technology.

Keywords: Liquisolid technology, poorly absorbed drugs, dissolution enhancement, sustained-release, possible future prospects, emerging technologies, liqui-pellet.

Graphical Abstract
[1]
Stegemann, S.; Leveiller, F.; Franchi, D.; de Jong, H.; Lindén, H. When poor solubility becomes an issue: from early stage to proof of concept. Eur. J. Pharm. Sci., 2007, 31(5), 249-261.
[http://dx.doi.org/10.1016/j.ejps.2007.05.110 ] [PMID: 17616376]
[2]
Giliyar, C.; Fikstad, D.T.; Tyavanagimatt, S. Challenges and opportunities in oral delivery of poorly water-soluble drugs. Drug Del. Technol., 2006, 6, 57-63.
[3]
Ticehurst, M.D.; Basford, P.A.; Dallman, C.I.; Lukas, T.M.; Marshall, P.V.; Nichols, G.; Smith, D. Characterisation of the influence of micronisation on the crystallinity and physical stability of revatropate hydrobromide. Int. J. Pharm., 2000, 193(2), 247-259.
[http://dx.doi.org/10.1016/S0378-5173(99)00347-6 ] [PMID: 10606789]
[4]
Kayrak, D.; Akman, U.; Hortaçsu, Ö. Micronization of ibuprofen by RESS. J. Supercrit. Fluids, 2003, 26, 17-31.
[http://dx.doi.org/10.1016/S0896-8446(02)00248-6]
[5]
Xu, Y.; Liu, X.; Lian, R.; Zheng, S.; Yin, Z.; Lu, Y.; Wu, W. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Int. J. Pharm., 2012, 438(1-2), 287-295.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.020 ] [PMID: 22989976]
[6]
Craig, D.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm., 2002, 231(2), 131-144.
[http://dx.doi.org/10.1016/S0378-5173(01)00891-2 ] [PMID: 11755266]
[7]
Li, D.X.; Oh, Y.K.; Lim, S.J.; Kim, J.O.; Yang, H.J.; Sung, J.H.; Yong, C.S.; Choi, H.G. Novel gelatin microcapsule with bioavailability enhancement of ibuprofen using spray-drying technique. Int. J. Pharm., 2008, 355(1-2), 277-284.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.020 ] [PMID: 18243606]
[8]
Hiremath, S.N.; Raghavendra, R.K.; Sunil, F.; Danki, L.S.; Rampure, M.V.; Swamy, P.V.; Bhosale, U.V. Dissolution enhancement of gliclazide by preparation of inclusion complexes with β-cyclodextrin. Asian J. Pharm., 2014, 2, 73-76.
[http://dx.doi.org/10.4103/0973-8398.41572]
[9]
Yu, L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev., 2001, 48(1), 27-42.
[http://dx.doi.org/10.1016/S0169-409X(01)00098-9 ] [PMID: 11325475]
[10]
Hancock, B.C.; Parks, M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res., 2000, 17(4), 397-404.
[http://dx.doi.org/10.1023/A:1007516718048 ] [PMID: 10870982]
[11]
Spireas, S.; Bolton, S.M. Liquisolid systems and methods of preparing same. US-5800834-A, 1999.https://pubchem.ncbi.nlm.nih.gov
[12]
Spireas, S. Liquisolid systems and methods of preparing same. WO1997047290A1, 2002.
[13]
Vajir, S.; Sahu, V.; Ghuge, N.; Bakde, B.V. Effect of dissolution rate by liquisolid compact approach: an overview. Int. J. Pharm. Chem. Sci., 2012, 1, 1013-1018.
[14]
Pawar, J.D.; Jagtap, R.S.; Doijad, R.C.; Pol, S.V.; Desai, J.R.; Jadhav, V.V.; Jagtap, S.R. Liquisolid compacts: a promising approach for solubility enhancement. J. Drug Deliv. Ther., 2017, 7, 6-11.
[http://dx.doi.org/10.22270/jddt.v7i4.1466]
[15]
Pezzini, B.R.; Beringhs, A.O.; Ferraz, H.G.; Silva, M.A.S.; Stulzer, H.K.; Sonaglio, D. Liquisolid technology applied to pellets. 7th Int. Granulation Workshop, 2015.
[16]
Pezzini, B.R.; Beringhs, A.O.; Ferraz, H.G.; Silva, M.A.S.; Stulzer, H.K.; Sonaglio, D. Liquisolid technology applied to pellets: evaluation of the feasibility and dissolution performance using felodipine as a model drug. Chem. Eng. Res. Des., 2016, 110, 62-69.
[http://dx.doi.org/10.1016/j.cherd.2016.01.037]
[17]
Lam, M.; Ghafourian, T.; Nokhodchi, A. Liqui-pellet: the emerging next-generation oral dosage form which stems from liquisolid concept in combination with pelletization technology. AAPS PharmSciTech, 2019, 20(6), 231.
[http://dx.doi.org/10.1208/s12249-019-1441-9 ] [PMID: 31236781]
[18]
Lam, M.; Ghafourian, T.; Nokhodchi, A. Optimising the release rate of naproxen liqui-pellet: a new technology for emerging novel oral dosage form. Drug Deliv. Transl. Res., 2020, 10(1), 43-58.
[http://dx.doi.org/10.1007/s13346-019-00659-6 ] [PMID: 31286452]
[19]
Tayel, S.A.; Soliman, I.I.; Louis, D. Improvement of dissolution properties of carbamazepine through application of the liquisolid tablet technique. Eur. J. Pharm. Biopharm., 2008, 69(1), 342-347.
[http://dx.doi.org/10.1016/j.ejpb.2007.09.003 ] [PMID: 17949959]
[20]
Karmarkar, A.B.; Gonjari, I.D.; Hosmani, A.H.; Dhabale, P.N.; Bhise, S.B. Evaluation of in vitro dissolution profile comparison methods of sustained release tramadol hydrochloride liquisolid compact formulations with marketed sustained release tablets. Drug Discov. Ther., 2010, 4(1), 26-32.
[PMID: 22491149]
[21]
Lu, M.; Xing, H.; Jiang, J.; Chen, X.; Yang, T.; Wang, D.; Ding, P. Liquisolid technique and its applications in pharmaceutics. Asian J. Pharm. Sci., 2017, 12(2), 115-123.
[http://dx.doi.org/10.1016/j.ajps.2016.09.007 ] [PMID: 32104320]
[22]
Khames, A. Liquisolid technique: a promising alternative to conventional coating for improvement of drug photostability in solid dosage forms. Expert Opin. Drug Deliv., 2013, 10(10), 1335-1343.
[http://dx.doi.org/10.1517/17425247.2013.798297 ] [PMID: 23706099]
[23]
Javadzadeh, Y.; Jafari-Navimipour, B.; Nokhodchi, A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int. J. Pharm., 2007, 341(1-2), 26-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.034 ] [PMID: 17498898]
[24]
Singh, S.K.; Srinivasan, K.K.; Gowthamarajan, K.; Prakash, D.; Gaikwad, N.B.; Singare, D.S. Influence of formulation parameters on dissolution rate enhancement of glyburide using liquisolid technique. Drug Dev. Ind. Pharm., 2012, 38(8), 961-970.
[http://dx.doi.org/10.3109/03639045.2011.634810 ] [PMID: 22251080]
[25]
Spireas, S.S.; Jarowski, C.I.; Rohera, B.D. Powdered solution technology: principles and mechanism. Pharm. Res., 1992, 9(10), 1351-1358.
[http://dx.doi.org/10.1023/A:1015877905988 ] [PMID: 1448438]
[26]
Spireas, S.; Sadu, S. Enhancement of prednisolone dissolution properties using liquisolid compacts. Int. J. Pharm., 1998, 166, 177-188.
[http://dx.doi.org/10.1016/S0378-5173(98)00046-5]
[27]
Nokhodchi, A.; Hentzschel, C.M.; Leopold, C.S. Drug release from liquisolid systems: speed it up, slow it down. Expert Opin. Drug Deliv., 2011, 8(2), 191-205.
[http://dx.doi.org/10.1517/17425247.2011.548801 ] [PMID: 21222556]
[28]
Nokhodchi, A.; Javadzadeh, Y.; Siahi-Shadbad, M.R.; Barzegar-Jalali, M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J. Pharm. Pharm. Sci., 2005, 8(1), 18-25.
[PMID: 15946594]
[29]
Noyes, A.A.; Whitney, W.R. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc., 1897, 19, 930-934.
[http://dx.doi.org/10.1021/ja02086a003]
[30]
Propst, C.W. Granulation characterization. In handbook of pharmaceutical granulation technology; CRC Press, 2016, pp. 485-502.
[31]
Parikh, D.M. Handbook of pharmaceutical granulation technology; CRC Press, 2016.
[http://dx.doi.org/10.3109/9781616310035]
[32]
Patel, K.J.; Patel, Y.K. Liquisolid technique: enhancement of solubility and dissolution rate: a modern review. Int. J. Pharm. Res. Biomed. Sci., 2014, 3, 397-407.
[33]
Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA, 1921, 7(4), 115-116.
[http://dx.doi.org/10.1073/pnas.7.4.115 ] [PMID: 16576588]
[34]
Washburn, E.W. The dynamics of capillary flow. Phys. Rev., 1921, 17, 273.
[http://dx.doi.org/10.1103/PhysRev.17.273]
[35]
Carniglia, S.C. Construction of the tortuosity factor from porosimetry. J. Catal., 1986, 102, 401-418.
[http://dx.doi.org/10.1016/0021-9517(86)90176-4]
[36]
Desai, P.M.; Liew, C.V.; Heng, P.W.S. Review of disintegrants and the disintegration phenomena. J. Pharm. Sci., 2016, 105(9), 2545-2555.
[http://dx.doi.org/10.1016/j.xphs.2015.12.019 ] [PMID: 27506604]
[37]
Agiba, A.M.; Abdel-Hamid, S.; Nasr, M.; Geneidi, A.S. Geriatric oriented high dose nutraceutical ODTs: formulation and physicomechanical characterization. Curr. Drug Deliv., 2018, 15(2), 267-277.
[http://dx.doi.org/10.2174/1567201814666170320143824 ] [PMID: 28322163]
[38]
Agiba, A.M.; Eldin, A.B. Insights into formulation technologies and novel strategies for the design of orally disintegrating dosage forms: a comprehensive industrial review. Int. J. Pharm. Pharm. Sci., 2019, 11, 8-20.
[http://dx.doi.org/10.22159/ijpps.2019v119.34828]
[39]
Rumpf, H.; Schubert, H. The behavior of agglomerates under tensile strain. J. Chem. Eng. Jpn, 1974, 7, 294-298.
[http://dx.doi.org/10.1252/jcej.7.294]
[40]
Lipiniski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[http://dx.doi.org/10.1016/S0169-409X(96)00423-1]
[41]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6 ] [PMID: 11274893]
[42]
Elkordy, A.A.; Tan, X.N.; Essa, E.A. Spironolactone release from liquisolid formulations prepared with Capryol™ 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles. Eur. J. Pharm. Biopharm., 2013, 83(2), 203-223.
[http://dx.doi.org/10.1016/j.ejpb.2012.08.004 ] [PMID: 22960707]
[43]
Saeedi, M.; Akbari, J.; Morteza-Semnani, K.; Enayati-Fard, R.; Sar-Reshteh-Dar, S.; Soleymani, A. Enhancement of dissolution rate of indomethacin: using liquisolid compacts. Iran. J. Pharm. Res., 2011, 10(1), 25-34.
[PMID: 24363677]
[44]
Karmarkar, A.B.; Gonjari, I.D.; Hosmani, A.H.; Dhabale, P.N.; Bhise, S.B. Dissolution rate enhancement of fenofibrate using liquisolid tablet technique. Lat. Am. J. Pharm., 2009, 28, 219-225.
[45]
Rowe, R.C.; Sheskey, P.J.; Quinn, M. Handbook of pharmaceutical excipients, 7th ed; Pharm. Dev. Technol, 2013, p. 18.
[46]
Javadzadeh, Y.; Shariati, H.; Movahhed-Danesh, E.; Nokhodchi, A. Effect of some commercial grades of microcrystalline cellulose on flowability, compressibility, and dissolution profile of piroxicam liquisolid compacts. Drug Dev. Ind. Pharm., 2009, 35(2), 243-251.
[http://dx.doi.org/10.1080/03639040802277672 ] [PMID: 18785038]
[47]
Javadzadeh, Y.; Musaalrezaei, L.; Nokhodchi, A. Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices. Int. J. Pharm., 2008, 362(1-2), 102-108.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.022 ] [PMID: 18647643]
[48]
Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit: a technology evaluation. Expert Opin. Drug Deliv., 2013, 10(1), 131-149.
[http://dx.doi.org/10.1517/17425247.2013.736962 ] [PMID: 23102011]
[51]
Van Speybroeck, M.; Mellaerts, R.; Mols, R.; Thi, T.D.; Martens, J.A.; Van Humbeeck, J.; Annaert, P.; Van den Mooter, G.; Augustijns, P. Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica. Eur. J. Pharm. Sci., 2010, 41(5), 623-630.
[http://dx.doi.org/10.1016/j.ejps.2010.09.002 ] [PMID: 20850527]
[52]
Meyer, J.; Frahn, S.; Ettlinger, M. Lacquer formulations. CA2496936C, 2008.
[53]
Yadav, V.B.; Yadav, A.V. Improvement of solubility and dissolution of indomethacin by liquisolid and compaction granulation technique. J. Pharm. Sci. Res., 2009, 1, 44-51.
[54]
Bhise, A.S.; Ahirrao, S.; Rahane, A.D.; Kshirsagar, S. Solubility enhancement of poorly water-soluble drugs using liquisolid technique. Indian J. Drugs., 2018, 6, 152-164.
[55]
Karmarkar, A.B.; Gonjari, I.D.; Hosmani, A.H. Liquisolid technology for dissolution rate enhancement or sustained release. Expert Opin. Drug Deliv., 2010, 7(10), 1227-1234.
[http://dx.doi.org/10.1517/17425247.2010.511173 ] [PMID: 20731614]
[56]
Tiong, N.; Elkordy, A.A. Effects of liquisolid formulations on dissolution of naproxen. Eur. J. Pharm. Biopharm., 2009, 73(3), 373-384.
[http://dx.doi.org/10.1016/j.ejpb.2009.08.002 ] [PMID: 19679184]
[57]
Anil, A.N.J.A.N.A.; Thomas, L.I.T.H.A.; Sudheer, P.R.E.E.T.H.I. Liquisolid compacts: an innovative approach for dissolution enhancement. Int. J. Pharm. Pharm. Sci., 2018, 10, 1-7.
[http://dx.doi.org/10.22159/ijpps.2018v10i6.25500]
[58]
Podczeck, F. Comparison of in vitro dissolution profiles by calculating Mean Dissolution Time (MDT) or Mean Residence Time (MRT). Int. J. Pharm., 1993, 97, 93-100.
[http://dx.doi.org/10.1016/0378-5173(93)90129-4]
[59]
Khan, K.A. The concept of dissolution efficiency. J. Pharm. Pharmacol., 1975, 27(1), 48-49.
[http://dx.doi.org/10.1111/j.2042-7158.1975.tb09378.x ] [PMID: 235616]
[60]
Wagner, J.G. Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tablets and capsules. J. Pharm. Sci., 1969, 58(10), 1253-1257.
[http://dx.doi.org/10.1002/jps.2600581021 ] [PMID: 5349114]
[61]
Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci., 1961, 50, 874-875.
[http://dx.doi.org/10.1002/jps.2600501018 ] [PMID: 13907269]
[62]
Hixon, A.W.; Crowell, J.H. Dependence of reaction velocity upon surface and agitation. Ind. Eng. Chem., 1931, 23, 923-931.
[http://dx.doi.org/10.1021/ie50260a018]
[63]
Korsmeyers, R.W.; Gumy, R.; Doelker, E.M.; Buri, P.; Peppas, N.A. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm., 1983, 15, 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]
[64]
Balaji, A.; Umashankar, M.S.; Kavitha, B. Liquisolid technology- A latest review. Int. J. App. Pharm., 2014, 6, 11-19.
[65]
Hentzschel, C.M.; Sakmann, A.; Leopold, C.S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev. Ind. Pharm., 2011, 37(10), 1200-1207.
[http://dx.doi.org/10.3109/03639045.2011.564184 ] [PMID: 21449826]
[66]
Khan, A.; Iqbal, Z.; Shah, Y.; Ahmad, L. Ismail; Ullah, Z.; Ullah, A. Enhancement of dissolution rate of class II drugs (hydrochlorothiazide): a comparative study of the two novel approaches; solid dispersion and liquid-solid techniques. Saudi Pharm. J., 2015, 23, 650-657.
[http://dx.doi.org/10.1016/j.jsps.2015.01.025 ] [PMID: 26702260]
[67]
Khaled, K.A.; Asiri, Y.A.; El-Sayed, Y.M. In vivo evaluation of hydrochlorothiazide liquisolid tablets in beagle dogs. Int. J. Pharm., 2001, 222(1), 1-6.
[http://dx.doi.org/10.1016/S0378-5173(01)00633-0 ] [PMID: 11404027]
[68]
Badawy, M.A.; Kamel, A.O.; Sammour, O.A. Use of biorelevant media for assessment of a poorly soluble weakly basic drug in the form of liquisolid compacts: in vitro and in vivo study. Drug Deliv., 2016, 23(3), 818-827.
[http://dx.doi.org/10.3109/10717544.2014.917442 ] [PMID: 24892630]
[69]
Yadav, V.B.; Nighute, A.B.; Yadav, A.V.; Bhise, S.B. Aceclofenac size enlargement by non-aqueous granulation with improved solubility and dissolution. Arch. Pharm. Sci. Res., 2009, 1, 115-122.
[70]
Gubbi, S.; Jarag, R. Liquisolid technique for enhancement of dissolution properties of bromhexine hydrochloride. Res. J. Pharm. Techol., 2009, 2, 382-386.
[71]
Darwish, I.A.E.M.; El-Kamel, A.H. Dissolution enhancement of glibenclamide using liquisolid tablet technology. Acta Pharm., 2001, 51, 173-181.
[72]
Javadzadeh, Y.; Siahi, M.R.; Asnaashari, S.; Nokhodchi, A. An investigation of physicochemical properties of piroxicam liquisolid compacts. Pharm. Dev. Technol., 2007, 12(3), 337-343.
[http://dx.doi.org/10.1080/10837450701247574 ] [PMID: 17613897]
[73]
Sheth, A.; Jarowski, C.I. Use of powdered solutions to improve the dissolution rate of polythiazide tablets. Drug Dev. Ind. Pharm., 1990, 16, 769-777.
[http://dx.doi.org/10.3109/03639049009114908]
[74]
El-Houssieny, B.M.; Wahman, L.; Arafa, N.M. Bioavailability and biological activity of liquisolid compact formula of repaglinide and its effect on glucose tolerance in rabbits. Biosci. Trends, 2010, 4(1), 17-24.
[PMID: 20305340]
[75]
Fahmy, R.H.; Kassem, M.A. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm., 2008, 69(3), 993-1003.
[http://dx.doi.org/10.1016/j.ejpb.2008.02.017 ] [PMID: 18396390]
[76]
Akinlade, B.; Elkordy, A.A.; Essa, E.A.; Elhagar, S. Liquisolid systems to improve the dissolution of furosemide. Sci. Pharm., 2010, 78(2), 325-344.
[http://dx.doi.org/10.3797/scipharm.0912-23 ] [PMID: 21179350]
[77]
Chen, X.; Wen, H.; Park, K. Challenges, and new technologies of oral controlled release. Oral controlled release formulation design and drug delivery: theory to practice. JWS, 2010, 16, 257-277.
[78]
Tapaswi, R.D.; Verma, P. Matrix tablets: an approach towards oral extended release drug delivery. Int. J. Pharma. Res. Rev., 2013, 2, 12-24.
[79]
Nokhodchi, A.; Aliakbar, R.; Desai, S.; Javadzadeh, Y. Liquisolid compacts: the effect of cosolvent and HPMC on theophylline release. Colloids Surf. B Biointerfaces, 2010, 79(1), 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.008 ] [PMID: 20451361]
[80]
Khanfar, M.; Sheikh Salem, M.; Kaddour, F. Preparation of sustained-release dosage form of venlafaxine HCl using liquisolid technique. Pharm. Dev. Technol., 2014, 19(1), 103-115.
[http://dx.doi.org/10.3109/10837450.2012.757785 ] [PMID: 23347382]
[81]
Adibkia, K.; Shokri, J.; Barzegar-Jalali, M.; Solduzian, M.; Javadzadeh, Y. Effect of solvent type on retardation properties of diltiazem HCl form liquisolid tablets. Colloids Surf. B Biointerfaces, 2014, 113, 10-14.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.017 ] [PMID: 24060925]
[82]
Gonjari, I.D.; Karmarkar, A.B.; Hosmani, A.H. Evaluation of in vitro dissolution profile comparison methods of sustained release tramadol hydrochloride liquisolid compact formulations with marketed sustained release tablets. Dig. J. Nanomater. Biostruct., 2009, 4, 651-661.
[83]
El-Hammadi, M.; Awad, N. Investigating the use of liquisolid compacts technique to minimize the influence of pH variations on loratadine release. AAPS PharmSciTech, 2012, 13(1), 53-58.
[http://dx.doi.org/10.1208/s12249-011-9719-6 ] [PMID: 22101967]
[84]
Ramenskaia, G.V.; Shokhin, I.E.; Savchenko, A.Iu.; Volkova, E.A. [The dissolution test in biorelevant media as a prognostic tool for modeling of drug behavior in vivo] Biomed. Khim., 2011, 57(5), 482-489.
[http://dx.doi.org/10.18097/PBMC20115705482 ] [PMID: 22629598]
[85]
Ku, C.C.; Joshi, Y.M.; Bergum, J.S.; Jain, N.B. Bead manufacture by extrusion/spheronization—A statistical design for process optimization. Drug Dev. Ind. Pharm., 1993, 19, 1505-1519.
[http://dx.doi.org/10.3109/03639049309069323]
[86]
Pinto, J.F.; Buckton, G.; Newton, J.M. The influence of four selected processing and formulation factors on the production of spheres by extrusion and spheronization. Int. J. Pharm., 1992, 83, 187-196.
[http://dx.doi.org/10.1016/0378-5173(82)90022-9]
[87]
Wan, L.S.C.; Heng, P.W.S.; Liew, C.V. Spheronization conditions on spheroid shape and size. Int. J. Pharm., 1993, 96, 59-65.
[http://dx.doi.org/10.1016/0378-5173(93)90212-X]
[88]
Pezzini, B.R.; Beringhs, A.O.R.; Ferraz, H.G.; Silva, M.A.S.; Stulzer, H.K.; Sonaglio, D. Liquisolid pellets and liqui-pellets are not different. AAPS PharmSciTech, 2020, 21(2), 72.
[http://dx.doi.org/10.1208/s12249-019-1590-x ] [PMID: 31953566]
[89]
Lam, M.; Ghafourian, T.; Nokhodchi, A. Liquisolid system and liqui-mass system are not the same. AAPS PharmSciTech, 2020, 21(3), 105.
[http://dx.doi.org/10.1208/s12249-020-01650-y ] [PMID: 32180042]
[90]
dos Santos Fonseca, A.B.; Beringhs, A.O.R.; Ferraz, H.G.; Stulzer, H.K.; Sonaglio, D.; Pezzini, B.R. Liquisolid pellets: mixture experimental design assessment of critical quality attributes influencing the manufacturing performance via extrusion-spheronization. J. Drug Deliv. Sci. Technol., 2020, 57101630
[http://dx.doi.org/10.1016/j.jddst.2020.101630]
[91]
Valadez, J.A.R.; Robles, L.V. Compactibility assessment of direct compression excipients. Prosolv Easytab. Int. J. Pharm. Pharm. Sci., 2014, 6, 258-264.
[92]
Kumar, A.; Saharan, V.A. A Comparative study of different proportions of Superdisintegrants: formulation and evaluation of orally disintegrating tablets of salbutamol sulphate. Turk. J. Pharm. Sci., 2017, 14(1), 40-48.
[http://dx.doi.org/10.4274/tjps.74946 ] [PMID: 32454593]
[93]
Aparna, T.N.; Rao, A.S. Liquisolid compacts: an approach to enhance the dissolution rate of domperidone. World J. Pharm. Pharm. Sci., 2017, 6, 1219-1232.
[http://dx.doi.org/10.20959/wjpps20177-9529]
[94]
Tayel, S.A.; El Nabarawi, M.A.; Amin, M.M.; AbouGhaly, M.H. Comparative study between different ready-made orally disintegrating platforms for the formulation of sumatriptan succinate sublingual tablets. AAPS PharmSciTech, 2017, 18(2), 410-423.
[http://dx.doi.org/10.1208/s12249-016-0517-z ] [PMID: 27038484]
[95]
Hauschild, K.; Picker-Freyer, K.M. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation. AAPS PharmSci, 2004, 6(2)e16
[http://dx.doi.org/10.1208/ps060216 ] [PMID: 15760046]
[96]
Thulluru, A.; Madhavi, C.; Nandini, K.; Sirisha, S.; Spandana, D. Co-processed excipients: new era in pharmaceuticals. Asian J. Res. Pharm. Sci., 2019, 9, 1-5.
[http://dx.doi.org/10.5958/2231-5659.2019.00001.8]
[97]
Nadavadekar, P.; Koliyote, S. Coprocessed excipients for orally disintegrating dosage form. Int. J. Pharm. Res. Rev., 2014, 3, 95-100.
[98]
Jagtap, R.S.; Doijad, R.; Mohite, S. Enhancement of solubility and dissolution rate of nifedipine by using novel solubilizer sepitrap 80 & sepitrap 4000. J. Drug Deliv. Ther., 2018, 8, 293-300.
[http://dx.doi.org/10.22270/jddt.v8i5-s.2041]
[99]
Stella, V.J.; Rao, V.M.; Zannou, E.A. The pharmaceutical use of captisol®: some surprising observations. J. Incl. Phenom. Macrocycl. Chem., 2002, 44, 29-33.
[http://dx.doi.org/10.1023/A:1023068414272]
[100]
Gioumouxouzis, C.I.; Karavasili, C.; Fatouros, D.G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov. Today, 2019, 24(2), 636-643.
[http://dx.doi.org/10.1016/j.drudis.2018.11.019 ] [PMID: 30503803]
[101]
Chandekar, A.; Mishra, D.K.; Sharma, S.; Saraogi, G.K.; Gupta, U.; Gupta, G. 3D printing technology: a new milestone in the development of pharmaceuticals. Curr. Pharm. Des., 2019, 25(9), 937-945.
[http://dx.doi.org/10.2174/1381612825666190507115504 ] [PMID: 31339069]
[102]
Jennotte, O.; Koch, N.; Lechanteur, A.; Evrard, B. Three-dimensional printing technology as a promising tool in bioavailability enhancement of poorly water-soluble molecules: a review. Int. J. Pharm., 2020, 580119200
[http://dx.doi.org/10.1016/j.ijpharm.2020.119200 ] [PMID: 32156531]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy