Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Elucidation of S-Allylcysteine Role in Inducing Apoptosis by Inhibiting PD-L1 Expression in Human Lung Cancer Cells

Author(s): Fahad Khan, Pratibha Pandey*, Rashmi Mishra, Mohd. Arif, Ambuj Kumar, Asif Jafri and Rupa Mazumder

Volume 21, Issue 4, 2021

Published on: 28 July, 2020

Page: [532 - 541] Pages: 10

DOI: 10.2174/1871520620666200728121929

Price: $65

Abstract

Aim: The aim of this study is to explore the therapeutic potential of S-allylcysteine (SAC) organosulphur compound as a potent immune checkpoint inhibitor PD-L1.

Background: Natural compounds have been showing tremendous anticancerous potential via suppressing the expression of genes involved in the development and progression of several carcinomas. This has further motivated us to explore the therapeutic potential of organosulphur compounds as potent immune checkpoint inhibitors.

Objective: Our study was designed to elucidate the potential of S-allylcysteine (SAC) as significant PD-L1 (immune checkpoint) inhibitor in human lung cancer A549 cancer cell line by using both the in vitro and in silico approaches.

Methods: Anticancerous effect of the SAC on lung cancer cells was determined by using the MTT cell viability. Apoptotic induction was confirmed by Hoechst staining, percent caspase-3 activity as well as gene expression analysis by real time PCR. Reactive Oxygen Species (ROS) was estimated by DCFDA method. Additionally, ligand-target protein interaction was analysed by molecular docking.

Result: Cell growth and proliferation was significantly reduced in SAC treated A549 cells in a concentration and time-dependent manner. The effect of SAC on apoptotic induction was analyzed by enhanced nuclear condensation, increased percent caspase-3 activity as well as modulation of apoptotic genes. Furthermore, SAC treatment also resulted in reduced expression of PD-L1 and HIF-1α. Additionally, in silico analysis also supported the in vitro findings by showing efficient docking with PD-L1 immune checkpoint target.

Conclusion: Therefore, our results clearly suggested that SAC could serve as a novel chemotherapeutic candidate for the treatment of lung cancer by inhibiting immune checkpoint target PD-L1 in human lung cancer cells. Additionally, our study also explained a novel molecular mechanism of its antitumor activity.

Keywords: Lung cancer, immunotherapy, S-allylcysteine, apoptosis, PD-L1, ROS.

« Previous
Graphical Abstract
[1]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[2]
Miller, R.A.; Cagle, P.T. Lung Cancer Epidemiology and Demographics.Precision Molecular Pathology of Lung Cancer; Springer: NewYork, 2018, pp. 15-17.
[http://dx.doi.org/10.1007/978-3-319-62941-4_2]
[3]
Hsu, Y.L.; Kuo, P.L.; Lin, C.C. Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells. Life Sci., 2004, 75(19), 2303-2316.
[http://dx.doi.org/10.1016/j.lfs.2004.04.027] [PMID: 15350828]
[4]
Wu, Y.L.; Zhou, C.; Hu, C.P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; Xu, C.R.; Massey, D.; Kim, M.; Shi, Y.; Geater, S.L. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol., 2014, 15(2), 213-222.
[http://dx.doi.org/10.1016/S1470-2045(13)70604-1] [PMID: 24439929]
[5]
Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; O’Byrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Jänne, P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med., 2013, 368(25), 2385-2394.
[http://dx.doi.org/10.1056/NEJMoa1214886] [PMID: 23724913]
[6]
Dempke, W.C.; Suto, T.; Reck, M. Targeted therapies for non-small cell lung cancer. Lung Cancer, 2010, 67(3), 257-274.
[http://dx.doi.org/10.1016/j.lungcan.2009.10.012] [PMID: 19914732]
[7]
Toolaram, A.P.; Kümmerer, K.; Schneider, M. Environmental risk assessment of anti-cancer drugs and their transformation products: A focus on their genotoxicity characterization-state of knowledge and short comings. Mutat. Res. Rev. Mutat. Res., 2014, 760, 18-35.
[http://dx.doi.org/10.1016/j.mrrev.2014.02.001] [PMID: 24556194]
[8]
Patel, S.P.; Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther., 2015, 14(4), 847-856.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0983] [PMID: 25695955]
[9]
Mathew, M.; Safyan, R.A.; Shu, C.A. PD-L1 as a biomarker in NSCLC: Challenges and future directions. Ann. Transl. Med., 2017, 5(18), 375.
[http://dx.doi.org/10.21037/atm.2017.08.04] [PMID: 29057235]
[10]
Aguiar, P.N., Jr; De Mello, R.A.; Hall, P.; Tadokoro, H.; Lima Lopes, G. PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: Updated survival data. Immunotherapy, 2017, 9(6), 499-506.
[http://dx.doi.org/10.2217/imt-2016-0150] [PMID: 28472902]
[11]
Teng, F.; Meng, X.; Kong, L.; Yu, J. Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: A systematic review. Cancer Lett., 2018, 414, 166-173.
[http://dx.doi.org/10.1016/j.canlet.2017.11.014] [PMID: 29155348]
[12]
Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[13]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med., 2016, 8(328)328rv4
[14]
Juneja, V.R.; McGuire, K.A.; Manguso, R.T.; LaFleur, M.W.; Collins, N.; Haining, W.N.; Freeman, G.J.; Sharpe, A.H. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med., 2017, 214(4), 895-904.
[http://dx.doi.org/10.1084/jem.20160801] [PMID: 28302645]
[15]
Ancuceanu, R.V.; Istudor, V. Pharmacologically active natural compounds for lung cancer. Altern. Med. Rev., 2004, 9(4), 402-419.
[PMID: 15656712]
[16]
Bommareddy, A.; VanWert, A.L.; McCune, D.F.; Brozena, S.L.; Witczak, Z.; Singh, S.V. The role of organosulfur compounds derived from Allium vegetables in cancer prevention and therapy.Critical Dietary Factors in Cancer Chemoprevention; Springer: NewYork, 2016, pp. 111-152.
[http://dx.doi.org/10.1007/978-3-319-21461-0_6]
[17]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9(9), 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[18]
Khan, F.; Pandey, P.; Mishra, R.; Jha, N.K.; Sharma, S. An in silico study on plant-derived inhibitors against a prognostic Biomarker, Jab1. Int. J. Res. Pharmaceut. Sci., 2019, 10(2), 1058-1061.
[http://dx.doi.org/10.26452/ijrps.v10i2.382]
[19]
Liu, Z.; Zhang, C.; Zhao, Q.; Zhang, B.; Sun, W. Comparative study of evolutionary algorithms for protein-ligand docking problem on the AutoDock. International Conference on Simulation Tools and Techniques Springer NewYork, 2019, pp. 598-607.
[http://dx.doi.org/10.1007/978-3-030-32216-8_58]
[20]
Xu, H.; Yang, T.; Liu, X.; Tian, Y.; Chen, X.; Yuan, R.; Su, S.; Lin, X.; Du, G. Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci., 2016, 144, 138-147.
[http://dx.doi.org/10.1016/j.lfs.2015.12.002] [PMID: 26656468]
[21]
Kumar, D.; Basu, S.; Parija, L.; Rout, D.; Manna, S.; Dandapat, J.; Debata, P.R. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomed. Pharmacother., 2016, 81, 31-37.
[http://dx.doi.org/10.1016/j.biopha.2016.03.037] [PMID: 27261574]
[22]
Ly, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis, 2003, 8(2), 115-128.
[http://dx.doi.org/10.1023/A:1022945107762] [PMID: 12766472]
[23]
Radogna, F.; Dicato, M.; Diederich, M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem. Pharmacol., 2015, 94(1), 1-11.
[http://dx.doi.org/10.1016/j.bcp.2014.12.018] [PMID: 25562745]
[24]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[25]
Kaur, H.; Sehgal, I.S.; Bal, A.; Gupta, N.; Behera, D.; Das, A.; Singh, N. Evolving epidemiology of lung cancer in India: Reducing non-small cell lung cancer-not otherwise specified and quantifying tobacco smoke exposure are the key. Indian J. Cancer, 2017, 54(1), 285-290.
[http://dx.doi.org/10.4103/ijc.IJC_597_16] [PMID: 29199707]
[26]
Boffetta, P. Classic epidemiology of lung cancer.IASLC Thoracic Oncology; Elsevier: Amsterdam, 2018, pp. 1-8.
[27]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[28]
Herzberg, B.; Campo, M.J.; Gainor, J.F. Immune checkpoint inhibitors in non‐small cell lung cancer. Oncologist, 2017, 22(1), 81-88.
[http://dx.doi.org/10.1634/theoncologist.2016-0189] [PMID: 27534574]
[29]
Assi, H.I.; Kamphorst, A.O.; Moukalled, N.M.; Ramalingam, S.S. Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer, 2018, 124(2), 248-261.
[http://dx.doi.org/10.1002/cncr.31105] [PMID: 29211297]
[30]
Bunn, P.A., Jr Chemotherapy for advanced non-small-cell lung cancer: who, what, when, why? J. Clin. Oncol., 2002, 20(18)(Suppl.), 23S-33S.
[PMID: 12235221]
[31]
Reck, M.; Heigener, D.F.; Mok, T.; Soria, J.C.; Rabe, K.F. Management of non-small-cell lung cancer: Recent developments. Lancet, 2013, 382(9893), 709-719.
[http://dx.doi.org/10.1016/S0140-6736(13)61502-0] [PMID: 23972814]
[32]
Liang, L.; Guan, F.; Ge, Y. PD-1 antitumor immunity against murine H22 hepatocarcinoma In vivo. Int. J. Sci., 2018, 7(03), 71-76.
[http://dx.doi.org/10.18483/ijSci.1591]
[33]
Chu, Q.; Ling, M.T.; Feng, H.; Cheung, H.W.; Tsao, S.W.; Wang, X.; Wong, Y.C. A novel anticancer effect of garlic derivatives: inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis, 2006, 27(11), 2180-2189.
[http://dx.doi.org/10.1093/carcin/bgl054] [PMID: 16675472]
[34]
Chu, Q.; Lee, D.T.; Tsao, S.W.; Wang, X.; Wong, Y.C. S-allylcysteine, a water-soluble garlic derivative, suppresses the growth of a human androgen-independent prostate cancer xenograft, CWR22R, under in vivo conditions. BJU Int., 2007, 99(4), 925-932.
[http://dx.doi.org/10.1111/j.1464-410X.2006.06639.x] [PMID: 17155983]
[35]
Bernstock, J.D.; Ye, D.; Gessler, F.A.; Peruzzotti-Jametti, L.; Gilbert, M.R.; Pommier, Y.; Hallenbeck, J.M. Topotecan decreases the expression of Programmed Death-Ligand 1 in glioblastoma cell lines; implications for immunotherapy. Matters, 2017, 3(10)e201709000008
[http://dx.doi.org/10.19185/matters.201709000008]
[36]
Barsoum, I.B.; Smallwood, C.A.; Siemens, D.R.; Graham, C.H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res., 2014, 74(3), 665-674.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0992] [PMID: 24336068]
[37]
Noman, M.Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med., 2014, 211(5), 781-790.
[http://dx.doi.org/10.1084/jem.20131916] [PMID: 24778419]
[38]
Ho, J.N.; Kang, M.; Lee, S.; Oh, J.J.; Hong, S.K.; Lee, S.E.; Byun, S.S. Anticancer effect of S-allyl-L-cysteine via induction of apoptosis in human bladder cancer cells. Oncol. Lett., 2018, 15(1), 623-629.
[PMID: 29285203]
[39]
Liu, Z.; Li, M.; Chen, K.; Yang, J.; Chen, R.; Wang, T.; Liu, J.; Yang, W.; Ye, Z. S-allylcysteine induces cell cycle arrest and apoptosis in androgen-independent human prostate cancer cells. Mol. Med. Rep., 2012, 5(2), 439-443.
[PMID: 22052207]
[40]
Ariga, T.; Seki, T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: A review. Biofactors, 2006, 26(2), 93-103.
[http://dx.doi.org/10.1002/biof.5520260201] [PMID: 16823096]
[41]
Bayraktar, O.; Tekin, N.; Aydın, O.; Akyuz, F.; Musmul, A.; Burukoglu, D. Effects of S-allyl cysteine on lung and liver tissue in a rat model of lipopolysaccharide-induced sepsis. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(3), 327-335.
[http://dx.doi.org/10.1007/s00210-014-1076-z] [PMID: 25480742]
[42]
Ozben, T. Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci., 2007, 96(9), 2181-2196.
[http://dx.doi.org/10.1002/jps.20874] [PMID: 17593552]
[43]
Bragado, P.; Armesilla, A.; Silva, A.; Porras, A. Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis, 2007, 12(9), 1733-1742.
[http://dx.doi.org/10.1007/s10495-007-0082-8] [PMID: 17505786]
[44]
Ng, K.T.; Guo, D.Y.; Cheng, Q.; Geng, W.; Ling, C.C.; Li, C.X.; Liu, X.B.; Ma, Y.Y.; Lo, C.M.; Poon, R.T.; Fan, S.T.; Man, K. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One, 2012, 7(2)e31655
[http://dx.doi.org/10.1371/journal.pone.0031655] [PMID: 22389672]
[45]
Vander Heiden, M.G.; Thompson, C.B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol., 1999, 1(8), E209-E216.
[http://dx.doi.org/10.1038/70237] [PMID: 10587660]
[46]
Skommer, J.; Wlodkowic, D.; Deptala, A. Larger than life: Mitochondria and the Bcl-2 family. Leuk. Res., 2007, 31(3), 277-286.
[http://dx.doi.org/10.1016/j.leukres.2006.06.027] [PMID: 16911824]
[47]
Gross, A.; Jockel, J.; Wei, M.C.; Korsmeyer, S.J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J., 1998, 17(14), 3878-3885.
[http://dx.doi.org/10.1093/emboj/17.14.3878] [PMID: 9670005]
[48]
Salido, M.; Gonzalez, J.L.; Vilches, J. Loss of mitochondrial membrane potential is inhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma cells. Mol. Cancer Ther., 2007, 6(4), 1292-1299.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0681] [PMID: 17431107]
[49]
Koya, R.C.; Fujita, H.; Shimizu, S.; Ohtsu, M.; Takimoto, M.; Tsujimoto, Y.; Kuzumaki, N. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J. Biol. Chem., 2000, 275(20), 15343-15349.
[http://dx.doi.org/10.1074/jbc.275.20.15343] [PMID: 10809769]
[50]
Omar, S.H.; Al-Wabel, N.A. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm. J., 2010, 18(1), 51-58.
[http://dx.doi.org/10.1016/j.jsps.2009.12.007] [PMID: 23960721]
[51]
Lopez, J.; Tait, S.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer, 2015, 112(6), 957-962.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[52]
Penninger, J.M.; Kroemer, G. Mitochondria, AIF and caspases--rivaling for cell death execution. Nat. Cell Biol., 2003, 5(2), 97-99.
[http://dx.doi.org/10.1038/ncb0203-97] [PMID: 12563272]
[53]
Kuribayashi, K.; Mayes, P.A.; El-Deiry, W.S. What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol. Ther., 2006, 5(7), 763-765.
[http://dx.doi.org/10.4161/cbt.5.7.3228] [PMID: 16921264]
[54]
Velmurugan, B.; Mani, A.; Nagini, S. Combination of S-allylcysteine and lycopene induces apoptosis by modulating Bcl-2, Bax, Bim and caspases during experimental gastric carcinogenesis. Eur. J. Cancer Prev., 2005, 14(4), 387-393.
[http://dx.doi.org/10.1097/00008469-200508000-00012] [PMID: 16030430]
[55]
Baskaran, C.; Ramachandran, M. Computational molecular docking studies on anticancer drugs. Asian Pac. J. Trop. Dis., 2012, 2, S734-S738.
[http://dx.doi.org/10.1016/S2222-1808(12)60254-0]
[56]
Yadav, P.; Bandyopadhyay, A.; Chakraborty, A.; Sarkar, K. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis.Carbohydr. Polym., 2018, 182, 188-198.,
[http://dx.doi.org/10.1016/j.carbpol.2017.10.102] [PMID: 29279114]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy