Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Host-directed Therapy: A New Arsenal to Come

Author(s): Mradul Mohan* and Debapriya Bhattacharya*

Volume 24 , Issue 1 , 2021

Published on: 28 July, 2020

Page: [59 - 70] Pages: 12

DOI: 10.2174/1386207323999200728115857

Price: $65

Abstract

The emergence of drug-resistant strains among the variety of pathogens worsens the situation in today’s scenario. In such a situation, a very heavy demand for developing the new antibiotics has arisen, but unfortunately, very limited success has been achieved in this arena till now. Infectious diseases usually make their impression in the form of severe pathology. Intracellular pathogens use the host’s cell machinery for their survival. They alter the gene expression of several host’s pathways and endorse to shut down the cell’s innate defense pathway like apoptosis and autophagy. Intracellular pathogens are co-evolved with hosts and have a striking ability to manipulate the host’s factors. They also mimic the host molecules and secrete them to prevent the host’s proper immune response against them for their survival. Intracellular pathogens in chronic diseases create excessive inflammation. This excessive inflammation manifests in pathology. Host directed therapy could be alternative medicine in this situation; it targets the host factors, and abrogates the replication and persistence of pathogens inside the cell. It also provokes the anti-microbial immune response against the pathogen and reduces the exacerbation by enhancing the healing process to the site of pathology. HDT targets the host’s factor involved in a certain pathway that ultimately targets the pathogen life cycle and helps in eradication of the pathogen. In such a scenario, HDT could also play a significant role in the treatment of drugsensitive as well with drug resistance strains because it targets the host’s factors, which favors the pathogen survival inside the cell.

Keywords: Mycobacterium tuberculosis, HIV, malaria, drug resistance, host-directed-therapy (HDT), anti-microbial resistance (AMR).

[1]
Hawkey, P.M. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother., 2008, 62(Suppl. 1), i1-i9.
[http://dx.doi.org/10.1093/jac/dkn241] [PMID: 18684701]
[2]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1(1), 65-70.
[http://dx.doi.org/10.1038/nrmicro727] [PMID: 15040181]
[3]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[4]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[5]
Maeurer, M.; Rao, M.; Zumla, A. Host-directed therapies for antimicrobial resistant respiratory tract infections. Curr. Opin. Pulm. Med., 2016, 22(3), 203-211.
[http://dx.doi.org/10.1097/MCP.0000000000000271] [PMID: 26989822]
[6]
Berger, E.A.; Doms, R.W.; Fenyö, E.M.; Korber, B.T.; Littman, D.R.; Moore, J.P.; Sattentau, Q.J.; Schuitemaker, H.; Sodroski, J.; Weiss, R.A. A new classification for HIV-1. Nature, 1998, 391(6664), 240.
[http://dx.doi.org/10.1038/34571] [PMID: 9440686]
[7]
Littman, D.R. Chemokine receptors: Keys to AIDS pathogenesis? Cell, 1998, 93(5), 677-680.
[http://dx.doi.org/10.1016/S0092-8674(00)81429-4] [PMID: 9630212]
[8]
Alkhatib, G.; Combadiere, C.; Broder, C.C.; Feng, Y.; Kennedy, P.E.; Murphy, P.M.; Berger, E.A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996, 272(5270), 1955-1958.
[http://dx.doi.org/10.1126/science.272.5270.1955] [PMID: 8658171]
[9]
Deng, H.; Liu, R.; Ellmeier, W.; Choe, S.; Unutmaz, D.; Burkhart, M.; Di Marzio, P.; Marmon, S.; Sutton, R.E.; Hill, C.M.; Davis, C.B.; Peiper, S.C.; Schall, T.J.; Littman, D.R.; Landau, N.R. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381(6584), 661-666.
[http://dx.doi.org/10.1038/381661a0] [PMID: 8649511]
[10]
Doranz, B.J.; Rucker, J.; Yi, Y.; Smyth, R.J.; Samson, M.; Peiper, S.C.; Parmentier, M.; Collman, R.G.; Doms, R.W. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996, 85(7), 1149-1158.
[http://dx.doi.org/10.1016/S0092-8674(00)81314-8] [PMID: 8674120]
[11]
Vila-Coro, A.J.; Mellado, M.; Martín de Ana, A.; Lucas, P.; del Real, G.; Martínez-A, C.; Rodríguez-Frade, J.M. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3388-3393.
[http://dx.doi.org/10.1073/pnas.97.7.3388] [PMID: 10725362]
[12]
MacArthur, R.D.; Novak, R.M. Reviews of anti-infective agents: maraviroc: the first of a new class of antiretroviral agents. Clin. Infect. Dis., 2008, 47(2), 236-241.
[http://dx.doi.org/10.1086/589289] [PMID: 18532888]
[13]
Qian, K.; Morris-Natschke, S.L.; Lee, K.H. HIV entry inhibitors and their potential in HIV therapy. Med. Res. Rev., 2009, 29(2), 369-393.
[http://dx.doi.org/10.1002/med.20138] [PMID: 18720513]
[14]
Gupta, R.K.; Abdul-Jawad, S.; McCoy, L.E.; Mok, H.P.; Peppa, D.; Salgado, M.; Martinez-Picado, J.; Nijhuis, M.; Wensing, A.M.J.; Lee, H.; Grant, P.; Nastouli, E.; Lambert, J.; Pace, M.; Salasc, F.; Monit, C.; Innes, A.J.; Muir, L.; Waters, L.; Frater, J.; Lever, A.M.L.; Edwards, S.G.; Gabriel, I.H.; Olavarria, E. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature, 2019, 568(7751), 244-248.
[http://dx.doi.org/10.1038/s41586-019-1027-4] [PMID: 30836379]
[15]
Malakhov, M.P.; Aschenbrenner, L.M.; Smee, D.F.; Wandersee, M.K.; Sidwell, R.W.; Gubareva, L.V.; Mishin, V.P.; Hayden, F.G.; Kim, D.H.; Ing, A.; Campbell, E.R.; Yu, M.; Fang, F. Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob. Agents Chemother., 2006, 50(4), 1470-1479.
[http://dx.doi.org/10.1128/AAC.50.4.1470-1479.2006] [PMID: 16569867]
[16]
Belser, J.A.; Lu, X.; Szretter, K.J.; Jin, X.; Aschenbrenner, L.M.; Lee, A.; Hawley, S.; Kim, D.H.; Malakhov, M.P.; Yu, M.; Fang, F.; Katz, J.M. DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection. J. Infect. Dis., 2007, 196(10), 1493-1499.
[http://dx.doi.org/10.1086/522609] [PMID: 18008229]
[17]
Triana-Baltzer, G.B.; Gubareva, L.V.; Klimov, A.I.; Wurtman, D.F.; Moss, R.B.; Hedlund, M.; Larson, J.L.; Belshe, R.B.; Fang, F. Inhibition of neuraminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase fusion protein. PLoS One, 2009, 4(11)e7838
[http://dx.doi.org/10.1371/journal.pone.0007838] [PMID: 19893749]
[18]
Triana-Baltzer, G.B.; Gubareva, L.V.; Nicholls, J.M.; Pearce, M.B.; Mishin, V.P.; Belser, J.A.; Chen, L.M.; Chan, R.W.; Chan, M.C.; Hedlund, M.; Larson, J.L.; Moss, R.B.; Katz, J.M.; Tumpey, T.M.; Fang, F. Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein. PLoS One, 2009, 4(11)e7788
[http://dx.doi.org/10.1371/journal.pone.0007788] [PMID: 19893747]
[19]
Moss, R.B.; Hansen, C.; Sanders, R.L.; Hawley, S.; Li, T.; Steigbigel, R.T. A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection. J. Infect. Dis., 2012, 206(12), 1844-1851.
[http://dx.doi.org/10.1093/infdis/jis622] [PMID: 23045618]
[20]
Meertens, L.; Labeau, A.; Dejarnac, O.; Cipriani, S.; Sinigaglia, L.; Bonnet-Madin, L.; Le Charpentier, T.; Hafirassou, M.L.; Zamborlini, A.; Cao-Lormeau, V.M.; Coulpier, M.; Missé, D.; Jouvenet, N.; Tabibiazar, R.; Gressens, P.; Schwartz, O.; Amara, A. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses. Cell Rep., 2017, 18(2), 324-333.
[http://dx.doi.org/10.1016/j.celrep.2016.12.045] [PMID: 28076778]
[21]
Ni, Y.; Lempp, F.A.; Mehrle, S.; Nkongolo, S.; Kaufman, C.; Fälth, M.; Stindt, J.; Königer, C.; Nassal, M.; Kubitz, R.; Sültmann, H.; Urban, S. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 2014, 146(4), 1070-1083.
[http://dx.doi.org/10.1053/j.gastro.2013.12.024] [PMID: 24361467]
[22]
Lempp, F.A.; Ni, Y.; Urban, S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(10), 580-589.
[http://dx.doi.org/10.1038/nrgastro.2016.126] [PMID: 27534692]
[23]
Blank, A.; Markert, C.; Hohmann, N.; Carls, A.; Mikus, G.; Lehr, T.; Alexandrov, A.; Haag, M.; Schwab, M.; Urban, S.; Haefeli, W.E. First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B. J. Hepatol., 2016, 65(3), 483-489.
[http://dx.doi.org/10.1016/j.jhep.2016.04.013] [PMID: 27132172]
[24]
Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56.
[http://dx.doi.org/10.1038/nrd.2017.162] [PMID: 28935918]
[25]
Carette, J.E.; Raaben, M.; Wong, A.C.; Herbert, A.S.; Obernosterer, G.; Mulherkar, N.; Kuehne, A.I.; Kranzusch, P.J.; Griffin, A.M.; Ruthel, G.; Dal Cin, P.; Dye, J.M.; Whelan, S.P.; Chandran, K.; Brummelkamp, T.R. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature, 2011, 477(7364), 340-343.
[http://dx.doi.org/10.1038/nature10348] [PMID: 21866103]
[26]
Jae, L.T.; Raaben, M.; Herbert, A.S.; Kuehne, A.I.; Wirchnianski, A.S.; Soh, T.K.; Stubbs, S.H.; Janssen, H.; Damme, M.; Saftig, P.; Whelan, S.P.; Dye, J.M.; Brummelkamp, T.R. Virus entry. Lassa virus entry requires a trigger-induced receptor switch. Science, 2014, 344(6191), 1506-1510.
[http://dx.doi.org/10.1126/science.1252480] [PMID: 24970085]
[27]
Hulseberg, C.E.; Fénéant, L.; Szymańska, K.M.; White, J.M. Lamp1 increases the efficiency of lassa virus infection by promoting fusion in less acidic endosomal compartments. MBio, 2018, 9(1), 9.
[http://dx.doi.org/10.1128/mBio.01818-17] [PMID: 29295909]
[28]
Hulseberg, C.E.; Fénéant, L.; Szymańska-de Wijs, K.M.; Kessler, N.P.; Nelson, E.A.; Shoemaker, C.J.; Schmaljohn, C.S.; Polyak, S.J.; White, J.M. Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and Ebola Viruses. J. Virol., 2019, 93(8), 93.
[http://dx.doi.org/10.1128/JVI.02185-18] [PMID: 30700611]
[29]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[30]
Hoffmann, M; Kleine-Weber, H; Schroeder, S; Kruger, N; Herrler, T; Erichsen, S SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease. Inhibitor Cell, 2020, 181, 271-280.
[31]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[32]
Kawase, M.; Shirato, K.; van der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[33]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[34]
Ambrosino, C.; Palmieri, C.; Puca, A.; Trimboli, F.; Schiavone, M.; Olimpico, F.; Ruocco, M.R.; di Leva, F.; Toriello, M.; Quinto, I.; Venuta, S.; Scala, G. Physical and functional interaction of HIV-1 Tat with E2F-4, a transcriptional regulator of mammalian cell cycle. J. Biol. Chem., 2002, 277(35), 31448-31458.
[http://dx.doi.org/10.1074/jbc.M112398200] [PMID: 12055184]
[35]
Kashanchi, F.; Agbottah, E.T.; Pise-Masison, C.A.; Mahieux, R.; Duvall, J.; Kumar, A.; Brady, J.N. Cell cycle-regulated transcription by the human immunodeficiency virus type 1 Tat transactivator. J. Virol., 2000, 74(2), 652-660.
[http://dx.doi.org/10.1128/JVI.74.2.652-660.2000] [PMID: 10623726]
[36]
Kundu, M.; Sharma, S.; De Luca, A.; Giordano, A.; Rappaport, J.; Khalili, K.; Amini, S. HIV-1 Tat elongates the G1 phase and indirectly promotes HIV-1 gene expression in cells of glial origin. J. Biol. Chem., 1998, 273(14), 8130-8136.
[http://dx.doi.org/10.1074/jbc.273.14.8130] [PMID: 9525916]
[37]
Liang, W.S.; Maddukuri, A.; Teslovich, T.M.; de la Fuente, C.; Agbottah, E.; Dadgar, S.; Kehn, K.; Hautaniemi, S.; Pumfery, A.; Stephan, D.A.; Kashanchi, F. Therapeutic targets for HIV-1 infection in the host proteome. Retrovirology, 2005, 2, 20.
[http://dx.doi.org/10.1186/1742-4690-2-20] [PMID: 15780141]
[38]
Cohen, G.B.; Gandhi, R.T.; Davis, D.M.; Mandelboim, O.; Chen, B.K.; Strominger, J.L.; Baltimore, D. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity, 1999, 10(6), 661-671.
[http://dx.doi.org/10.1016/S1074-7613(00)80065-5] [PMID: 10403641]
[39]
Lozano, J.M.; González, R.; Kindelán, J.M.; Rouas-Freiss, N.; Caballos, R.; Dausset, J.; Carosella, E.D.; Peña, J. Monocytes and T lymphocytes in HIV-1-positive patients express HLA-G molecule. AIDS, 2002, 16(3), 347-351.
[http://dx.doi.org/10.1097/00002030-200202150-00005] [PMID: 11834945]
[40]
Bhattacharya, D.; Danaviah, S.; Muema, D.M.; Akilimali, N.A.; Moodley, P.; Ndung’u, T.; Das, G. Cellular Architecture of Spinal Granulomas and the Immunological Response in Tuberculosis Patients Coinfected with HIV. Front. Immunol., 2017, 8, 1120.
[http://dx.doi.org/10.3389/fimmu.2017.01120] [PMID: 28955338]
[41]
Kleinman, A.J.; Sivanandham, R.; Pandrea, I.; Chougnet, C.A.; Apetrei, C.; Regulatory, T.; Regulatory, T. Cells As Potential Targets for HIV Cure Research. Front. Immunol., 2018, 9, 734.
[http://dx.doi.org/10.3389/fimmu.2018.00734] [PMID: 29706961]
[42]
Nakagawa, M.; Sakamoto, N.; Tanabe, Y.; Koyama, T.; Itsui, Y.; Takeda, Y.; Chen, C.H.; Kakinuma, S.; Oooka, S.; Maekawa, S.; Enomoto, N.; Watanabe, M. Suppression of hepatitis C virus replication by cyclosporin a is mediated by blockade of cyclophilins. Gastroenterology, 2005, 129(3), 1031-1041.
[http://dx.doi.org/10.1053/j.gastro.2005.06.031] [PMID: 16143140]
[43]
Flisiak, R.; Feinman, S.V.; Jablkowski, M.; Horban, A.; Kryczka, W.; Pawlowska, M.; Heathcote, J.E.; Mazzella, G.; Vandelli, C.; Nicolas-Métral, V.; Grosgurin, P.; Liz, J.S.; Scalfaro, P.; Porchet, H.; Crabbé, R. The cyclophilin inhibitor Debio 025 combined with PEG IFNalpha2a significantly reduces viral load in treatment-naïve hepatitis C patients. Hepatology, 2009, 49(5), 1460-1468.
[http://dx.doi.org/10.1002/hep.22835] [PMID: 19353740]
[44]
Hopkins, S.; DiMassimo, B.; Rusnak, P.; Heuman, D.; Lalezari, J.; Sluder, A.; Scorneaux, B.; Mosier, S.; Kowalczyk, P.; Ribeill, Y.; Baugh, J.; Gallay, P. The cyclophilin inhibitor SCY-635 suppresses viral replication and induces endogenous interferons in patients with chronic HCV genotype 1 infection. J. Hepatol., 2012, 57(1), 47-54.
[http://dx.doi.org/10.1016/j.jhep.2012.02.024] [PMID: 22425702]
[45]
Kuivanen, S.; Bespalov, M.M.; Nandania, J.; Ianevski, A.; Velagapudi, V.; De Brabander, J.K.; Kainov, D.E.; Vapalahti, O. Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Res., 2017, 139, 117-128.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.022] [PMID: 28049006]
[46]
Miner, J.J.; Diamond, M.S. Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe, 2017, 21(2), 134-142.
[http://dx.doi.org/10.1016/j.chom.2017.01.004] [PMID: 28182948]
[47]
Rossignol, J.F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res., 2014, 110, 94-103.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.014] [PMID: 25108173]
[48]
Haffizulla, J.; Hartman, A.; Hoppers, M.; Resnick, H.; Samudrala, S.; Ginocchio, C.; Bardin, M.; Rossignol, J.F. US Nitazoxanide Influenza Clinical Study Group. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis., 2014, 14(7), 609-618.
[http://dx.doi.org/10.1016/S1473-3099(14)70717-0] [PMID: 24852376]
[49]
Spiropoulou, C.F.; Ranjan, P.; Pearce, M.B.; Sealy, T.K.; Albariño, C.G.; Gangappa, S.; Fujita, T.; Rollin, P.E.; Nichol, S.T.; Ksiazek, T.G.; Sambhara, S. RIG-I activation inhibits ebolavirus replication. Virology, 2009, 392(1), 11-15.
[http://dx.doi.org/10.1016/j.virol.2009.06.032] [PMID: 19628240]
[50]
Ashraf, U.; Tengo, L.; Le Corre, L.; Fournier, G.; Busca, P.; McCarthy, A.A.; Rameix-Welti, M.A.; Gravier-Pelletier, C.; Ruigrok, R.W.H.; Jacob, Y.; Vidalain, P.O.; Pietrancosta, N.; Crépin, T.; Naffakh, N. Destabilization of the human RED-SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proc. Natl. Acad. Sci. USA, 2019, 116(22), 10968-10977.
[http://dx.doi.org/10.1073/pnas.1901214116] [PMID: 31076555]
[51]
Saiz, J.C.; Oya, N.J.; Blázquez, A.B.; Escribano-Romero, E.; Martín-Acebes, M.A. Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses, 2018, 10(9), 10.
[http://dx.doi.org/10.3390/v10090453] [PMID: 30149598]
[52]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[53]
Hu, T.Y.; Frieman, M.; Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol., 2020, 15(4), 247-249.
[http://dx.doi.org/10.1038/s41565-020-0674-9] [PMID: 32203437]
[54]
Heim, M.H. 25 years of interferon-based treatment of chronic hepatitis C: an epoch coming to an end. Nat. Rev. Immunol., 2013, 13(7), 535-542.
[http://dx.doi.org/10.1038/nri3463] [PMID: 23743475]
[55]
Wack, A.; Terczyńska-Dyla, E.; Hartmann, R. Guarding the frontiers: the biology of type III interferons. Nat. Immunol., 2015, 16(8), 802-809.
[http://dx.doi.org/10.1038/ni.3212] [PMID: 26194286]
[56]
Muir, A.J.; Arora, S.; Everson, G.; Flisiak, R.; George, J.; Ghalib, R.; Gordon, S.C.; Gray, T.; Greenbloom, S.; Hassanein, T.; Hillson, J.; Horga, M.A.; Jacobson, I.M.; Jeffers, L.; Kowdley, K.V.; Lawitz, E.; Lueth, S.; Rodriguez-Torres, M.; Rustgi, V.; Shemanski, L.; Shiffman, M.L.; Srinivasan, S.; Vargas, H.E.; Vierling, J.M.; Xu, D.; Lopez-Talavera, J.C.; Zeuzem, S. EMERGE study group. A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. J. Hepatol., 2014, 61(6), 1238-1246.
[http://dx.doi.org/10.1016/j.jhep.2014.07.022] [PMID: 25064437]
[57]
Terrault, N.A.; Bzowej, N.H.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Murad, M.H. American Association for the Study of Liver Diseases. AASLD guidelines for treatment of chronic hepatitis B. Hepatology, 2016, 63(1), 261-283.
[http://dx.doi.org/10.1002/hep.28156] [PMID: 26566064]
[58]
Guidelines approved by the guidelines review committee. Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Infection www.who.int/hiv/pub/hepatitis/hepatitis-b-guidelines/en/2015
[59]
Khandia, R.; Munjal, A.; Dhama, K.; Karthik, K.; Tiwari, R.; Malik, Y.S.; Singh, R.K.; Chaicumpa, W. Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection. Front. Immunol., 2018, 9, 597.
[http://dx.doi.org/10.3389/fimmu.2018.00597] [PMID: 29740424]
[60]
Liu, B.; Li, M.; Zhou, Z.; Guan, X.; Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun., 2020.111102452
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[61]
Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science, 2020, 368(6490), 473-474.
[http://dx.doi.org/10.1126/science.abb8925] [PMID: 32303591]
[62]
Bhalla, K.; Chugh, M.; Mehrotra, S.; Rathore, S.; Tousif, S.; Prakash Dwivedi, V.; Prakash, P.; Kumar Samuchiwal, S.; Kumar, S.; Kumar Singh, D.; Ghanwat, S.; Kumar, D.; Das, G.; Mohmmed, A.; Malhotra, P.; Ranganathan, A. Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nat. Commun., 2015, 6, 6049.
[http://dx.doi.org/10.1038/ncomms7049] [PMID: 25586702]
[63]
Dwivedi, V.P.; Bhattacharya, D.; Singh, M.; Bhaskar, A.; Kumar, S.; Fatima, S.; Sobia, P.; Kaer, L.V.; Das, G. Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection. J. Ethnopharmacol., 2019.243111634
[http://dx.doi.org/10.1016/j.jep.2018.12.008] [PMID: 30537531]
[64]
Napier, R.J.; Norris, B.A.; Swimm, A.; Giver, C.R.; Harris, W.A.; Laval, J.; Napier, B.A.; Patel, G.; Crump, R.; Peng, Z.; Bornmann, W.; Pulendran, B.; Buller, R.M.; Weiss, D.S.; Tirouvanziam, R.; Waller, E.K.; Kalman, D. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog., 2015, 11(3)e1004770
[http://dx.doi.org/10.1371/journal.ppat.1004770] [PMID: 25822986]
[65]
Napier, R.J.; Rafi, W.; Cheruvu, M.; Powell, K.R.; Zaunbrecher, M.A.; Bornmann, W.; Salgame, P.; Shinnick, T.M.; Kalman, D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe, 2011, 10(5), 475-485.
[http://dx.doi.org/10.1016/j.chom.2011.09.010] [PMID: 22100163]
[66]
Noss, E.H.; Pai, R.K.; Sellati, T.J.; Radolf, J.D.; Belisle, J.; Golenbock, D.T.; Boom, W.H.; Harding, C.V. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol., 2001, 167(2), 910-918.
[http://dx.doi.org/10.4049/jimmunol.167.2.910] [PMID: 11441098]
[67]
Martens, S.; Howard, J. The interferon-inducible GTPases. Annu. Rev. Cell Dev. Biol., 2006, 22, 559-589.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104619] [PMID: 16824009]
[68]
Hawn, T.R.; Matheson, A.I.; Maley, S.N.; Vandal, O. Host-directed therapeutics for tuberculosis: can we harness the host? Microbiol. Mol. Biol. Rev., 2013, 77(4), 608-627.
[http://dx.doi.org/10.1128/MMBR.00032-13] [PMID: 24296574]
[69]
Gupta, A.; Pant, G.; Mitra, K.; Madan, J.; Chourasia, M.K.; Misra, A. Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis. Mol. Pharm., 2014, 11(4), 1201-1207.
[http://dx.doi.org/10.1021/mp4006563] [PMID: 24533458]
[70]
Khan, A.; Mann, L.; Papanna, R.; Lyu, M.A.; Singh, C.R.; Olson, S.; Eissa, N.T.; Cirillo, J.; Das, G.; Hunter, R.L.; Jagannath, C. Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci. Rep., 2017, 7(1), 15010.
[http://dx.doi.org/10.1038/s41598-017-15290-z] [PMID: 29118429]
[71]
Singhal, A.; Jie, L.; Kumar, P.; Hong, G.S.; Leow, M.K.; Paleja, B.; Tsenova, L.; Kurepina, N.; Chen, J.; Zolezzi, F.; Kreiswirth, B.; Poidinger, M.; Chee, C.; Kaplan, G.; Wang, Y.T.; De Libero, G. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med., 2014, 6(263)263ra159
[http://dx.doi.org/10.1126/scitranslmed.3009885] [PMID: 25411472]
[72]
Padmapriyadarsini, C.; Bhavani, P.K.; Natrajan, M.; Ponnuraja, C.; Kumar, H.; Gomathy, S.N.; Guleria, R.; Jawahar, S.M.; Singh, M.; Balganesh, T.; Swaminathan, S. Evaluation of metformin in combination with rifampicin containing antituberculosis therapy in patients with new, smear-positive pulmonary tuberculosis (METRIF): Study protocol for a randomised clinical trial. BMJ Open, 2019, 9(3)e024363
[http://dx.doi.org/10.1136/bmjopen-2018-024363] [PMID: 30826761]
[73]
Krutzik, S.R.; Hewison, M.; Liu, P.T.; Robles, J.A.; Stenger, S.; Adams, J.S.; Modlin, R.L. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J. Immunol., 2008, 181(10), 7115-7120.
[http://dx.doi.org/10.4049/jimmunol.181.10.7115] [PMID: 18981132]
[74]
Anand, S.P.; Selvaraj, P. Effect of 1, 25 dihydroxyvitamin D(3) on matrix metalloproteinases MMP-7, MMP-9 and the inhibitor TIMP-1 in pulmonary tuberculosis. Clin. Immunol., 2009, 133(1), 126-131.
[http://dx.doi.org/10.1016/j.clim.2009.06.009] [PMID: 19615945]
[75]
Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; Kamen, D.L.; Wagner, M.; Bals, R.; Steinmeyer, A.; Zügel, U.; Gallo, R.L.; Eisenberg, D.; Hewison, M.; Hollis, B.W.; Adams, J.S.; Bloom, B.R.; Modlin, R.L. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768), 1770-1773.
[http://dx.doi.org/10.1126/science.1123933] [PMID: 16497887]
[76]
Robinson, R.T. T Cell Production of GM-CSF Protects the Host during Experimental Tuberculosis. MBio, 2017, 8(6), 8.
[http://dx.doi.org/10.1128/mBio.02087-17] [PMID: 29233902]
[77]
Chen, C.; Liu, Q.; Zhu, L.; Yang, H.; Lu, W. Vitamin D receptor gene polymorphisms on the risk of tuberculosis, a meta-analysis of 29 case-control studies. PLoS One, 2013, 8(12)e83843
[http://dx.doi.org/10.1371/journal.pone.0083843] [PMID: 24349552]
[78]
Kearns, M.D.; Tangpricha, V. The role of vitamin D in tuberculosis. J. Clin. Transl. Endocrinol., 2014, 1(4), 167-169.
[http://dx.doi.org/10.1016/j.jcte.2014.08.002] [PMID: 29159097]
[79]
Verma, R.K.; Agrawal, A.K.; Singh, A.K.; Mohan, M.; Gupta, A.; Gupta, P.; Gupta, U.D.; Misra, A. Inhalable microparticles of nitric oxide donors induce phagosome maturation and kill Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2013, 93(4), 412-417.
[http://dx.doi.org/10.1016/j.tube.2013.02.012] [PMID: 23562366]
[80]
Verma, R.K.; Singh, A.K.; Mohan, M.; Agrawal, A.K.; Verma, P.R.; Gupta, A.; Misra, A. Inhalable microparticles containing nitric oxide donors: saying NO to intracellular Mycobacterium tuberculosis. Mol. Pharm., 2012, 9(11), 3183-3189.
[http://dx.doi.org/10.1021/mp300269g] [PMID: 22978290]
[81]
Agger, E.M.; Andersen, P. Tuberculosis subunit vaccine development: on the role of interferon-gamma. Vaccine, 2001, 19(17-19), 2298-2302.
[http://dx.doi.org/10.1016/S0264-410X(00)00519-3] [PMID: 11257351]
[82]
Rafi, W.; Bhatt, K.; Gause, W.C.; Salgame, P. Neither primary nor memory immunity to Mycobacterium tuberculosis infection is compromised in mice with chronic enteric helminth infection. Infect. Immun., 2015, 83(3), 1217-1223.
[http://dx.doi.org/10.1128/IAI.03004-14] [PMID: 25605766]
[83]
Scott-Browne, J.P.; Shafiani, S.; Tucker-Heard, G.; Ishida-Tsubota, K.; Fontenot, J.D.; Rudensky, A.Y.; Bevan, M.J.; Urdahl, K.B. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J. Exp. Med., 2007, 204(9), 2159-2169.
[http://dx.doi.org/10.1084/jem.20062105] [PMID: 17709423]
[84]
Lienhardt, C.; Azzurri, A.; Amedei, A.; Fielding, K.; Sillah, J.; Sow, O.Y.; Bah, B.; Benagiano, M.; Diallo, A.; Manetti, R.; Manneh, K.; Gustafson, P.; Bennett, S.; D’Elios, M.M.; McAdam, K.; Del Prete, G. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur. J. Immunol., 2002, 32(6), 1605-1613.
[http://dx.doi.org/10.1002/1521-4141(200206)32:6<1605:AID-IMMU1605>3.0.CO;2-6] [PMID: 12115643]
[85]
Allen, S.S.; Cassone, L.; Lasco, T.M.; McMurray, D.N. Effect of neutralizing transforming growth factor beta1 on the immune response against Mycobacterium tuberculosis in guinea pigs. Infect. Immun., 2004, 72(3), 1358-1363.
[http://dx.doi.org/10.1128/IAI.72.3.1358-1363.2004] [PMID: 14977939]
[86]
Bhattacharya, D.; Dwivedi, V.P.; Maiga, M.; Maiga, M.; Van Kaer, L.; Bishai, W.R.; Das, G. Small molecule-directed immunotherapy against recurrent infection by Mycobacterium tuberculosis. J. Biol. Chem., 2014, 289(23), 16508-16515.
[http://dx.doi.org/10.1074/jbc.M114.558098] [PMID: 24711459]
[87]
Bhattacharya, D.; Dwivedi, V.P.; Kumar, S.; Reddy, M.C.; Van Kaer, L.; Moodley, P.; Das, G. Simultaneous inhibition of T helper 2 and T regulatory cell differentiation by small molecules enhances Bacillus Calmette-Guerin vaccine efficacy against tuberculosis. J. Biol. Chem., 2014, 289(48), 33404-33411.
[http://dx.doi.org/10.1074/jbc.M114.600452] [PMID: 25315774]
[88]
Ahmad, S.; Bhattacharya, D.; Gupta, N.; Rawat, V.; Tousif, S.; Van Kaer, L.; Das, G. Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells. PLoS Pathog., 2020, 16(5)e1008356
[http://dx.doi.org/10.1371/journal.ppat.1008356] [PMID: 32437421]
[89]
Dwivedi, V.P.; Bhattacharya, D.; Yadav, V.; Singh, D.K.; Kumar, S.; Singh, M.; Ojha, D.; Ranganathan, A.; Van Kaer, L.; Chattopadhyay, D.; Das, G. The Phytochemical Bergenin Enhances T Helper 1 Responses and Anti-Mycobacterial Immunity by Activating the MAP Kinase Pathway in Macrophages. Front. Cell. Infect. Microbiol., 2017, 7, 149.
[http://dx.doi.org/10.3389/fcimb.2017.00149] [PMID: 28507951]
[90]
Mootoo, A.; Stylianou, E.; Arias, M.A.; Reljic, R. TNF-alpha in tuberculosis: a cytokine with a split personality. Inflamm. Allergy Drug Targets, 2009, 8(1), 53-62.
[http://dx.doi.org/10.2174/187152809787582543] [PMID: 19275693]
[91]
Eisen, D.P.; McBryde, E.S.; Walduck, A. Low-dose aspirin and ibuprofen’s sterilizing effects on Mycobacterium tuberculosis suggest safe new adjuvant therapies for tuberculosis. J. Infect. Dis., 2013, 208(11), 1925-1927.
[http://dx.doi.org/10.1093/infdis/jit476] [PMID: 23997233]
[92]
Bengoechea, J.A.; Sa Pessoa, J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol. Rev., 2019, 43(2), 123-144.
[http://dx.doi.org/10.1093/femsre/fuy043] [PMID: 30452654]
[93]
Dumigan, A.; Fitzgerald, M.; Santos, J.S.G.; Hamid, U.; O’Kane, C.M.; McAuley, D.F.; Bengoechea, J.A. A Porcine Ex Vivo Lung Perfusion Model To Investigate Bacterial Pathogenesis. MBio, 2019, 10(6), 10.
[http://dx.doi.org/10.1128/mBio.02802-19] [PMID: 31796543]
[94]
Chiang, C.Y.; Uzoma, I.; Moore, R.T.; Gilbert, M.; Duplantier, A.J.; Panchal, R.G. Mitigating the Impact of Antibacterial Drug Resistance through Host-Directed Therapies: Current Progress, Outlook, and Challenges. MBio, 2018, 9(1), 9.
[http://dx.doi.org/10.1128/mBio.01932-17] [PMID: 29382729]
[95]
Zhang, G.; Lin, X.; Zhang, S.; Xiu, H.; Pan, C.; Cui, W. A Protective Role of Glibenclamide in Inflammation-Associated Injury. Mediators Inflamm., 2017, 20173578702
[http://dx.doi.org/10.1155/2017/3578702] [PMID: 28740332]
[96]
Hamon, Y.; Luciani, M.F.; Becq, F.; Verrier, B.; Rubartelli, A.; Chimini, G. Interleukin-1beta secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1. Blood, 1997, 90(8), 2911-2915.
[http://dx.doi.org/10.1182/blood.V90.8.2911] [PMID: 9376570]
[97]
Lamkanfi, M.; Mueller, J.L.; Vitari, A.C.; Misaghi, S.; Fedorova, A.; Deshayes, K.; Lee, W.P.; Hoffman, H.M.; Dixit, V.M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol., 2009, 187(1), 61-70.
[http://dx.doi.org/10.1083/jcb.200903124] [PMID: 19805629]
[98]
Koh, G.C.; Maude, R.R.; Schreiber, M.F.; Limmathurotsakul, D.; Wiersinga, W.J.; Wuthiekanun, V.; Lee, S.J.; Mahavanakul, W.; Chaowagul, W.; Chierakul, W.; White, N.J.; van der Poll, T.; Day, N.P.; Dougan, G.; Peacock, S.J. Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin. Infect. Dis., 2011, 52(6), 717-725.
[http://dx.doi.org/10.1093/cid/ciq192] [PMID: 21293047]
[99]
Koh, G.C.; Weehuizen, T.A.; Breitbach, K.; Krause, K.; de Jong, H.K.; Kager, L.M.; Hoogendijk, A.J.; Bast, A.; Peacock, S.J.; van der Poll, T.; Steinmetz, I.; Wiersinga, W.J. Glyburide reduces bacterial dissemination in a mouse model of melioidosis. PLoS Negl. Trop. Dis., 2013, 7(10)e2500
[http://dx.doi.org/10.1371/journal.pntd.0002500] [PMID: 24147174]
[100]
Dalli, J.; Chiang, N.; Serhan, C.N. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med., 2015, 21(9), 1071-1075.
[http://dx.doi.org/10.1038/nm.3911] [PMID: 26236990]
[101]
Lee, C.R.; Zeldin, D.C. Resolvin infectious inflammation by targeting the host response. N. Engl. J. Med., 2015, 373(22), 2183-2185.
[http://dx.doi.org/10.1056/NEJMcibr1511280] [PMID: 26605933]
[102]
Kuijl, C.; Savage, N.D.; Marsman, M.; Tuin, A.W.; Janssen, L.; Egan, D.A.; Ketema, M.; van den Nieuwendijk, R.; van den Eeden, S.J.; Geluk, A.; Poot, A.; van der Marel, G.; Beijersbergen, R.L.; Overkleeft, H.; Ottenhoff, T.H.; Neefjes, J. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature, 2007, 450(7170), 725-730.
[http://dx.doi.org/10.1038/nature06345] [PMID: 18046412]
[103]
Frank, C.G.; Reguerio, V.; Rother, M.; Moranta, D.; Maeurer, A.P.; Garmendia, J.; Meyer, T.F.; Bengoechea, J.A. Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation. Cell. Microbiol., 2013, 15(7), 1212-1233.
[http://dx.doi.org/10.1111/cmi.12110] [PMID: 23347154]
[104]
Widschwendter, M.; Siegmund, K.D.; Müller, H.M.; Fiegl, H.; Marth, C.; Müller-Holzner, E.; Jones, P.A.; Laird, P.W. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res., 2004, 64(11), 3807-3813.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3852] [PMID: 15172987]
[105]
Chiu, H.C.; Soni, S.; Kulp, S.K.; Curry, H.; Wang, D.; Gunn, J.S.; Schlesinger, L.S.; Chen, C.S. Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent. J. Biomed. Sci., 2009, 16, 110.
[http://dx.doi.org/10.1186/1423-0127-16-110] [PMID: 20003180]
[106]
Lo, J.H.; Kulp, S.K.; Chen, C.S.; Chiu, H.C. Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent. Antimicrob. Agents Chemother., 2014, 58(12), 7375-7382.
[http://dx.doi.org/10.1128/AAC.03778-14] [PMID: 25267669]
[107]
Chiu, H.C.; Kulp, S.K.; Soni, S.; Wang, D.; Gunn, J.S.; Schlesinger, L.S.; Chen, C.S. Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob. Agents Chemother., 2009, 53(12), 5236-5244.
[http://dx.doi.org/10.1128/AAC.00555-09] [PMID: 19805568]
[108]
Das, B.; Kashino, S.S.; Pulu, I.; Kalita, D.; Swami, V.; Yeger, H.; Felsher, D.W.; Campos-Neto, A. CD271(+) bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci. Transl. Med., 2013, 5(170)170ra13
[http://dx.doi.org/10.1126/scitranslmed.3004912] [PMID: 23363977]
[109]
Skrahin, A.; Ahmed, R.K.; Ferrara, G.; Rane, L.; Poiret, T.; Isaikina, Y.; Skrahina, A.; Zumla, A.; Maeurer, M.J. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respir. Med., 2014, 2(2), 108-122.
[http://dx.doi.org/10.1016/S2213-2600(13)70234-0] [PMID: 24503266]
[110]
Das, S.; Saha, B.; Hati, A.K.; Roy, S. Evidence of Artemisinin-Resistant Plasmodium falciparum Malaria in Eastern India. N. Engl. J. Med., 2018, 379(20), 1962-1964.
[http://dx.doi.org/10.1056/NEJMc1713777] [PMID: 30428283]
[111]
Hawkes, M.; Opoka, R.O.; Namasopo, S.; Miller, C.; Thorpe, K.E.; Lavery, J.V.; Conroy, A.L.; Liles, W.C.; John, C.C.; Kain, K.C. Inhaled nitric oxide for the adjunctive therapy of severe malaria: protocol for a randomized controlled trial. Trials, 2011, 12, 176.
[http://dx.doi.org/10.1186/1745-6215-12-176] [PMID: 21752262]
[112]
Anstey, N.M.; Weinberg, J.B.; Hassanali, M.Y.; Mwaikambo, E.D.; Manyenga, D.; Misukonis, M.A.; Arnelle, D.R.; Hollis, D.; McDonald, M.I.; Granger, D.L. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J. Exp. Med., 1996, 184(2), 557-567.
[http://dx.doi.org/10.1084/jem.184.2.557] [PMID: 8760809]
[113]
Yeo, T.W.; Lampah, D.A.; Gitawati, R.; Tjitra, E.; Kenangalem, E.; McNeil, Y.R.; Darcy, C.J.; Granger, D.L.; Weinberg, J.B.; Lopansri, B.K.; Price, R.N.; Duffull, S.B.; Celermajer, D.S.; Anstey, N.M. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J. Exp. Med., 2007, 204(11), 2693-2704.
[http://dx.doi.org/10.1084/jem.20070819] [PMID: 17954570]
[114]
Smith, C.M.; Jerkovic, A.; Puy, H.; Winship, I.; Deybach, J.C.; Gouya, L.; van Dooren, G.; Goodman, C.D.; Sturm, A.; Manceau, H.; McFadden, G.I.; David, P.; Mercereau-Puijalon, O.; Burgio, G.; McMorran, B.J.; Foote, S.J. Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood, 2015, 125(3), 534-541.
[http://dx.doi.org/10.1182/blood-2014-04-567149] [PMID: 25414439]
[115]
Kwiatkowski, D.; Molyneux, M.E.; Stephens, S.; Curtis, N.; Klein, N.; Pointaire, P.; Smit, M.; Allan, R.; Brewster, D.R.; Grau, G.E. Anti-TNF therapy inhibits fever in cerebral malaria. Q. J. Med., 1993, 86(2), 91-98.
[PMID: 8329024]
[116]
Kossodo, S.; Monso, C.; Juillard, P.; Velu, T.; Goldman, M.; Grau, G.E. Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology, 1997, 91(4), 536-540.
[http://dx.doi.org/10.1046/j.1365-2567.1997.00290.x] [PMID: 9378491]
[117]
Vathsala, P.G.; Dende, C.; Nagaraj, V.A.; Bhattacharya, D.; Das, G.; Rangarajan, P.N.; Padmanaban, G. Curcumin-arteether combination therapy of Plasmodium berghei-infected mice prevents recrudescence through immunomodulation. PLoS One, 2012, 7(1)e29442
[http://dx.doi.org/10.1371/journal.pone.0029442] [PMID: 22276114]
[118]
Boyle, M.J.; Jagannathan, P.; Bowen, K.; McIntyre, T.I.; Vance, H.M.; Farrington, L.A.; Schwartz, A.; Nankya, F.; Naluwu, K.; Wamala, S.; Sikyomu, E.; Rek, J.; Greenhouse, B.; Arinaitwe, E.; Dorsey, G.; Kamya, M.R.; Feeney, M.E. The Development of Plasmodium falciparum-Specific IL10 CD4 T Cells and Protection from Malaria in Children in an Area of High Malaria Transmission. Front. Immunol., 2017, 8, 1329.
[http://dx.doi.org/10.3389/fimmu.2017.01329] [PMID: 29097996]
[119]
Matheoud, D.; Moradin, N.; Bellemare-Pelletier, A.; Shio, M.T.; Hong, W.J.; Olivier, M.; Gagnon, E.; Desjardins, M.; Descoteaux, A. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe, 2013, 14(1), 15-25.
[http://dx.doi.org/10.1016/j.chom.2013.06.003] [PMID: 23870310]
[120]
Gomes, N.A.; Barreto-de-Souza, V.; Wilson, M.E.; DosReis, G.A. Unresponsive CD4+ T lymphocytes from Leishmania chagasi-infected mice increase cytokine production and mediate parasite killing after blockade of B7-1/CTLA-4 molecular pathway. J. Infect. Dis., 1998, 178(6), 1847-1851.
[http://dx.doi.org/10.1086/314520] [PMID: 9815249]
[121]
Zubairi, S.; Sanos, S.L.; Hill, S.; Kaye, P.M. Immunotherapy with OX40L-Fc or anti-CTLA-4 enhances local tissue responses and killing of Leishmania donovani. Eur. J. Immunol., 2004, 34(5), 1433-1440.
[http://dx.doi.org/10.1002/eji.200324021] [PMID: 15114677]
[122]
Parihar, S.P.; Guler, R.; Khutlang, R.; Lang, D.M.; Hurdayal, R.; Mhlanga, M.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis., 2014, 209(5), 754-763.
[http://dx.doi.org/10.1093/infdis/jit550] [PMID: 24133190]
[123]
Parihar, S.P.; Guler, R.; Lang, D.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting Listeria-induced phagosomal escape. PLoS One, 2013, 8(9)e75490
[http://dx.doi.org/10.1371/journal.pone.0075490] [PMID: 24086542]
[124]
Pucadyil, T.J.; Chattopadhyay, A. Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol., 2007, 23(2), 49-53.
[http://dx.doi.org/10.1016/j.pt.2006.12.003] [PMID: 17185038]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy