Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Perspective Article

Could Targeting HMGB1 be Useful for the Clinical Management of COVID-19 Infection?

Author(s): Mustafa Çelebier and İbrahim Celalettin Haznedaroğlu*

Volume 24 , Issue 4 , 2021

Published on: 28 July, 2020

Page: [587 - 590] Pages: 4

DOI: 10.2174/1386207323999200728114927

Price: $65

Abstract

Since the high mobility group box-1 (HMGB1) molecule had been recognized as a proinflammatory cytokine, which mediates endotoxin lethality of mice, there have been lots of papers about targeting the HMGB1 within the contexts of infection, inflammation, and cancer. The pathogenic impact of HMGB1 to the severe acute respiratory syndrome (SARS) and disease management with herbal formulations targeting this unique protein have already been proposed. However, the failure of the numerous current anti-viral therapies on the ongoing viral infections casts reappraisal of the possible interrelationships regarding the HMGB1 and SARS-CoV-2. COVID-19 pandemic due to the SARS-CoV-2 virus is a currently ongoing challenging global health crisis. There is still not any proven exact treatment of COVID-19 with high level of evidence. In this paper, we focused on the potential usage of external and/or inhalation preparation of antiviral/antibacterial herbal products capable of targeting HMGB1 for the clinical management candidates of the ongoing COVID-19 infection.

Keywords: High mobility group box-1 (HMGB1), COVID-19, infection, drug repurposing, herbal medicinal products, clinical trial.

[1]
Land, W.G. The Role of Damage-Associated Molecular Patterns (DAMPs) in human diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ. Med. J., 2015, 15(2), e157-e170.
[PMID: 26052447]
[2]
Sims, G.P.; Rowe, D.C.; Rietdijk, S.T.; Herbst, R.; Coyle, A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol., 2010, 28, 367-388.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132603] [PMID: 20192808]
[3]
Klune, J.R.; Dhupar, R.; Cardinal, J.; Billiar, T.R.; Tsung, A. HMGB1: endogenous danger signaling. Mol. Med., 2008, 14(7-8), 476-484.
[http://dx.doi.org/10.2119/2008-00034.Klune] [PMID: 18431461]
[4]
Andersson, U.; Erlandsson-Harris, H. HMGB1 is a potent trigger of arthritis. J. Intern. Med., 2004, 255(3), 344-350.
[http://dx.doi.org/10.1111/j.1365-2796.2003.01303.x] [PMID: 14871458]
[5]
Yang, H.; Tracey, K.J. Targeting HMGB1 in inflammation. Biochimica et Biophysica Acta (BBA)-. Gene Regulatory Mechanisms, 2010, 1799(1-2), 149-156.
[6]
Wang, H.; Ward, M.F.; Sama, A.E. Targeting HMGB1 in the treatment of sepsis. Expert Opin. Ther. Targets, 2014, 18(3), 257-268.
[http://dx.doi.org/10.1517/14728222.2014.863876] [PMID: 24392842]
[7]
Chen, G.; Chen, D.Z.; Li, J.; Czura, C.J.; Tracey, K.J.; Sama, A.E.; Wang, H. Pathogenic role of HMGB1 in SARS? Med. Hypotheses, 2004, 63(4), 691-695.
[http://dx.doi.org/10.1016/j.mehy.2004.01.037] [PMID: 15325019]
[8]
Wang, H.; Ward, M.F.; Fan, X-G.; Sama, A.E.; Li, W. Potential role of high mobility group box 1 in viral infectious diseases. Viral Immunol., 2006, 19(1), 3-9.
[http://dx.doi.org/10.1089/vim.2006.19.3] [PMID: 16553546]
[9]
Ding, J.; Cui, X.; Liu, Q. Emerging role of HMGB1 in lung diseases: friend or foe. J. Cell. Mol. Med., 2017, 21(6), 1046-1057.
[http://dx.doi.org/10.1111/jcmm.13048] [PMID: 28039939]
[10]
Redeploying plant defences. Nat. Plants, 2020, 6(3), 177-177.
[http://dx.doi.org/10.1038/s41477-020-0628-0] [PMID: 32170291]
[11]
Kim, S-W.; Jin, Y.; Shin, J-H.; Kim, I-D.; Lee, H-K.; Park, S.; Han, P-L.; Lee, J-K. Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiol. Dis., 2012, 46(1), 147-156.
[http://dx.doi.org/10.1016/j.nbd.2011.12.056] [PMID: 22266336]
[12]
Gantait, A.; Pandit, S.; Nema, N.K.; Mukjerjee, P.K. Quantification of glycyrrhizin in Glycyrrhiza glabra extract by validated HPTLC densitometry. J. AOAC Int., 2010, 93(2), 492-495.
[PMID: 20480894]
[13]
Smolarczyk, R.; Cichoń, T.; Matuszczak, S.; Mitrus, I.; Lesiak, M.; Kobusińska, M.; Kamysz, W.; Jarosz, M.; Sieroń, A.; Szala, S. The role of Glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy. Arch. Immunol. Ther. Exp. (Warsz.), 2012, 60(5), 391-399.
[http://dx.doi.org/10.1007/s00005-012-0183-0] [PMID: 22922889]
[14]
Kim, S.R.; Ha, Y.M.; Kim, Y.M.; Park, E.J.; Kim, J.W.; Park, S.W.; Kim, H.J.; Chung, H.T.; Chang, K.C. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem. Pharmacol., 2015, 95(4), 279-289.
[http://dx.doi.org/10.1016/j.bcp.2015.04.007] [PMID: 25896849]
[15]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[16]
Zhang, H.; Yang, N.; Wang, T.; Dai, B.; Shang, Y. Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-κB signaling pathway. Mol. Med. Rep., 2018, 17(2), 2915-2920.
[PMID: 29257249]
[17]
Cheng, L.; Zheng, W.; Li, M.; Huang, J.; Bao, S.; Xu, Q.; Ma, Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2., 2020.
[18]
Gil, M.; Kim, Y.K.; Hong, S.B.; Lee, K.J. Naringin decreases TNF-α and HMGB1 release from LPS-stimulated macrophages and improves survival in a CLP-induced sepsis mice. PLoS One, 2016, 11(10)e0164186
[http://dx.doi.org/10.1371/journal.pone.0164186] [PMID: 27716835]
[19]
VanPatten, S.; Al-Abed, Y. High mobility group box-1 (HMGb1): current wisdom and advancement as a potential drug target: miniperspective. J. Med. Chem., 2018, 61(12), 5093-5107.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01136] [PMID: 29268019]
[20]
Ursini, F.; Russo, E.; Pellino, G.; D’Angelo, S.; Chiaravalloti, A.; De Sarro, G.; Manfredini, R.; De Giorgio, R. Metformin and autoimmunity: a “new deal” of an old drug. Front. Immunol., 2018, 9, 1236.
[http://dx.doi.org/10.3389/fimmu.2018.01236] [PMID: 29915588]
[21]
EL-Arabey A. A.; Abdalla, M.. Metformin and COVID-19: A novel deal of an Old Drug. J. Med. Virol., 2020.
[22]
Ursini, F.; Ciaffi, J.; Landini, M.P.; Meliconi, R. COVID-19 and diabetes: Is metformin a friend or foe? Diabetes Res. Clin. Pract., 2020, 164108167
[http://dx.doi.org/10.1016/j.diabres.2020.108167] [PMID: 32339534]
[23]
Choi, H.W.; Tian, M.; Song, F.; Venereau, E.; Preti, A.; Park, S-W.; Hamilton, K.; Swapna, G.V.; Manohar, M.; Moreau, M.; Agresti, A.; Gorzanelli, A.; De Marchis, F.; Wang, H.; Antonyak, M.; Micikas, R.J.; Gentile, D.R.; Cerione, R.A.; Schroeder, F.C.; Montelione, G.T.; Bianchi, M.E.; Klessig, D.F. Aspirin’s active metabolite salicylic acid targets high mobility group box 1 to modulate inflammatory responses. Mol. Med., 2015, 21(1), 526-535.
[http://dx.doi.org/10.2119/molmed.2015.00148] [PMID: 26101955]
[24]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[25]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[26]
Song, J-M.; Lee, K-H.; Seong, B-L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[27]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Prepr., 2020, 0226. v1, 1-14..
[http://dx.doi.org/10. 20944/preprints202003.]
[28]
Thachil, J. The versatile heparin in COVID-19. J. Thromb. Haemost., 2020, 18(5), 1020-1022.
[http://dx.doi.org/10.1111/jth.14821] [PMID: 32239799]
[29]
Çiftçiler, R.; Haznedaroglu, I.C. Ankaferd Hemostat: from molecules to medicine. Turk. J. Med. Sci., 2020.
[http://dx.doi.org/10.3906/sag-1908-161] [PMID: 32283900]
[30]
Haznedaroğlu, I.C.; Çelebier, M. Anti-infective and wound-healing pleiotropic actions of Ankaferd hemostat. Turk. J. Med. Sci., 2020, 50(5), 1434-1435.
[http://dx.doi.org/10.3906/sag-2004-94] [PMID: 32305048]
[31]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[32]
Huang, M.; Tang, T.; Pang, P.; Li, M.; Ma, R.; Lu, J.; Shu, J.; You, Y.; Chen, B.; Liang, J.; Hong, Z.; Chen, H.; Kong, L.; Qin, D.; Pei, D.; Xia, J.; Jiang, S.; Shan, H. Treating COVID-19 with Chloroquine. J. Mol. Cell Biol., 2020, 12(4), 322-325.
[http://dx.doi.org/10.1093/jmcb/mjaa014] [PMID: 32236562]
[33]
Devaux, C.A.; Rolain, J-M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[34]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[35]
Kunle, O.F.; Egharevba, H.O.; Ahmadu, P.O. Standardization of herbal medicines-A review. Int. J. Biodivers. Conserv., 2012, 4(3), 101-112.
[http://dx.doi.org/10.5897/IJBC11.163]
[36]
Bhowmik, D.; Kumar, K.; Pankaj, T.; Chiranjib, B. Traditional herbal medicines: an overview. Arch. Appl. Sci. Res., 2009, 1(2), 165-177.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy